Screening for safe opening of universities under Omicron and Delta variants of COVID-19:
When less is more

Marie Jeanne Rabil1,*,@, Sait Tunc1,@, Douglas R. Bish2,+, and Ebru K. Bish2,+

1Virginia Polytechnic Institute and State University, Grado Department of Industrial and Systems Engineering, Blacksburg, 24061, United States of America
2The University of Alabama, Department of Information Systems, Statistics, and Management Science, Culverhouse College of Business, Tuscaloosa, 35487, United States of America
*mariejeanne@vt.edu
@these authors contributed equally to this work
+these authors contributed equally to this work

ABSTRACT

As new COVID-19 variants emerge, and disease and population characteristics change, screening strategies may also need to change. We develop screening guidelines for the safe opening of college campuses, considering COVID-19 infections/hospitalizations/deaths; peak daily hospitalizations; and the tests required. Our compartmental model simulates disease spread on a college campus under co-circulating variants with different disease dynamics, considering: (i) the heterogeneity in disease transmission and outcomes for faculty/staff and students based on vaccination status and level of natural immunity; and (ii) variant- and dose-dependent vaccine efficacy. Using the Spring 2022 academic semester as a case study, we study various routine screening strategies, and find that screening the faculty/staff less frequently than the students, and/or the boosted and vaccinated less frequently than the unvaccinated, may avert a higher number of infections per test, compared to universal screening of the entire population at a common frequency. We also discuss key policy issues, including the need to revisit the mitigation objective over time, effective strategies that are informed by booster coverage, and if and when screening alone can compensate for low booster coverage.

Introduction

Two years into the pandemic, and, COVID-19, through emerging variants, continues to pose a threat to in-person education in academic institutions. Once again, universities and colleges are facing an abundance of COVID-19 cases on their campuses [1], and are finding themselves in a position to reformulate/reoptimize their infection mitigation strategies (e.g., vaccination mandates,
routine screening, face masking, and social distancing policies, hybrid learning practices), to adapt to the characteristics of the new Delta and Omicron variants, with an eye on future variants yet to come. A continuous reformulation of infection mitigation strategies will remain essential as the pandemic continues to evolve with new virus variants, and as the current interventions (vaccines, testing kits, masks), their availability, and efficacy continue to change. With COVID-19 vaccination and testing kits already developed, the current challenges for effective mitigation differ from those faced at the beginning of the pandemic.

Now the mitigation strategies need to account for new virus variants with different transmission and disease dynamics [2, 3], and vaccine effectiveness that is not only imperfect and decaying over time [4], but is also variant-dependent.

Indeed, as the year 2021 came to an end, the then-dominating Delta variant of the virus started to be replaced with the emerging Omicron variant, which, by the beginning of 2022, has become the primary variant that was causing more than 70% of all COVID-19 infections in the United States (U.S.) [5]. From an intervention strategy perspective, there are important differences between the Delta and Omicron variants. While the Omicron variant spreads easier than the Delta variant (even among the vaccinated), it is less likely to cause severe illness [6], especially in vaccinated and boosted populations [7]. Further, while this new period of the pandemic is marked by wide availability of the vaccine, it is also marked by vaccine hesitancy in certain groups [8], and, once more, by the scarcity of the testing resources [9]. As a result, there is an ongoing need to utilize the limited testing resources in the most effective and efficient way for routine screening of the asymptomatic individuals, who can still transmit the disease [10]. Motivated by these observations, in this paper we build and analyze a compartmental model, to develop optimal customized screening strategies for college/university campuses, considering the characteristics of the campus population (e.g., vaccine intake rates, campus size, age distribution), and of the disease (e.g., circulating variant(s) and their transmission and disease characteristics, and vaccine effectiveness).

The literature on screening and vaccination for infectious diseases is vast, and growing, thanks to the pandemic. We refer the interested reader to the many references in [11, 12, 13, 14, 15, 16] for screening related work, in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] for vaccination related work, and in [28, 29, 30] for screening and vaccination related work; and simply discuss the more recent, Omicron-related works here. The academic literature related to Omicron is still quite limited: [31] develops a compartmental model to predict various outcome metrics related to the Omicron variant under different transmission and severity scenarios, while [32] develops a compartmental model that considers vaccination (including boosters), waning immunity from the vaccine, and different COVID-19 variants (including Omicron), in order to estimate the reduction in transmission rates, and its effect on daily infections, in response to various government policies in Korea. [33] develops a compartmental model to investigate the impact of vaccination coverage on different outcome metrics under the Omicron variant and a less transmissible variant. Importantly, neither work [31, 32, 33] models and studies screening strategies, which is the main focus of our paper.

Specifically, we contribute to this stream of literature by building an extended compartmental model to study routine screening strategies, which may be customized based on the vaccination status and/or the demographics of campus residents. To this end, we model each individual’s vaccination status using three categories, unvaccinated, fully vaccinated (hereafter,
“vaccinated”), and boosted; and consider faculty/staff (hereafter, “faculty”) versus student groups. This customization allows us to consider a wide range of routine screening policies, ranging from universal (i.e., screening all campus residents with the same frequency), to partially customized (i.e., screening only selected vaccination status, with a common frequency), to fully customized (i.e., further customizing the screening frequency for each group selected for screening). In addition to campus demographics, our compartmental model also accounts for vaccination coverage (proportion vaccinated/proportion boosted), two circulating variants (Delta and Omicron), and less-than-perfect screening compliance of the campus residents.

We also model imperfect vaccine effectiveness, with effectiveness values that depend on both the variant (Delta versus Omicron) and the vaccination status (vaccinated versus boosted); and a time-dependent disease transmission rate, which varies as the proportion of the infectious population changes over time. Because two variants may be circulating at the same time, vaccine effectiveness, infection transmission rates, and other disease characteristics now become conditional on which variant each individual is exposed to.

These aspects necessitate new modeling approaches in our compartmental model. Using this model, we compare the efficiency and effectiveness of various routine screening strategies based on multiple criteria, including the number of infections/hospitalizations/deaths, and peak infections/hospitalizations. Our model allows a college to conduct a comparative study of various screening strategies, so as to develop their optimal strategy based on total and peak case numbers the college is able to cope with.

Results

The study setting is a hypothetical college with a population of 24,000 (22,500 students and 2,500 faculty/staff), during an 80-day Spring 2022 academic semester that starts in January 2022. Our SEIR (Susceptible, Exposed, Infectious, Removed) framework simulates COVID-19 infection spread, considering different levels of vaccine-induced immunity and natural immunity, and a variety of protective and preventative interventions, including routine screening of the asymptomatic population, vaccination, face masking, symptomatic testing, and isolation of the test-positive cases. Another key aspect of this framework is the modeling that the two variants, Delta and Omicron, can be in circulation simultaneously, with parameter ω_0 representing the proportion (in %) of all COVID-19 infections caused by Omicron, and the remaining $1 - \omega_0$ representing the proportion caused by Delta. We explicitly model that vaccine effectiveness, infection transmission, and disease characteristics are conditional on which variant each individual is exposed to. As the initial conditions, some individuals arrive on campus as fully vaccinated or boosted; we also introduce a number of undetected, asymptotic SARS-CoV-2 infections to the campus at the outset (135 students and 9 faculty members, representing 0.6% of each group).

Screening Strategy

We first focus on routine screening that is either universal, or customizes only the screening population (Table 1), and postpone the discussion of screening frequency customization until the next section. The base case considers 75% screening compliance, and total vaccination coverage of 82% (64% boosted, 18% vaccinated), with 18% unvaccinated at the start of the semester.
(Table 2). With regards to variant prevalences, we discuss two important cases that represent the pandemic progression: $\omega_O = 50\%$, where both Omicron and Delta variants are in circulation in similar rates, which may represent the U.S. during late December 2021 [34]; and $\omega_O = 95\%$, where Omicron takes over as the predominant variant, which was the case in the U.S. starting in early January 2022 [35].

Impact of Variant Breakdown

We study the impact of pandemic progression (i.e., the transition of the dominant variant from Delta to Omicron) on the performance of screening strategies, under 82% total vaccination coverage (with 64% of the population boosted and 18% vaccinated), and 18% unvaccinated. When both Delta and Omicron variants are in circulation at similar rates ($\omega_O = 50\%$, see Supplementary Table 4), universal screening every 1/2/14 days results in 1,012/4,058/15,458 total infections, and 31/31/142 peak daily infections, respectively. If the boosted individuals are excluded from screening, the 1/2/14-day screening strategies yield 7,967/12,168/16,741 total infections, and 45/81/159 peak daily infections, respectively. The strategy that averts the highest number of infections per test is screening the unvaccinated only every 14 days, with 31.6 infections averted per 1,000 tests over no screening (see Fig. 1(a)); furthermore, this strategy also provides the highest reduction in peak infections per test, reducing the peak by 0.9 infections per 1,000 tests over no screening (see Fig. 2(a)).

Under $\omega_O = 50\%$, the strategy that averts the highest number of infections per test depends on the booster coverage. When 64% of the population is boosted and 18% is vaccinated, if the screening frequency of the unvaccinated is set to every 1/2/3/7/14 days, the strategy that averts the highest number of infections per test is screening the unvaccinated and vaccinated every 1/2 days, and screening the unvaccinated only every 3/7/14 days, averting 23.2/27.5/29/31.6 infections per 1,000 tests (see Fig. 1(a)), respectively, whereas the strategy that averts the highest number of infections per test with 38% boosted and 44% vaccinated, is screening the vaccinated and unvaccinated every 1/2/3/7 days and screening the unvaccinated only every 14 days, averting 17.6/20.19/20.23/19.5 infections per 1,000 tests (see Fig. 1(b)), respectively.

When Omicron is the predominant variant ($\omega_O = 95\%$, see Supplementary Table 5), universal screening every 1/2/14 days results in 8,568/17,327/22,512 total infections, and 61/222/465 peak daily infections, respectively. When screening excludes boosted individuals, 1/2/14-day screening yields 21,578/22,111/22,820 total infections, and 312/380/487 peak daily infections, respectively. Under this scenario, the strategy that averts the highest number of infections per test is the daily universal screening, averting 11.9 infections per 1,000 tests (see Fig. 1(c)), whereas the strategy that provides the highest reduction in peak infections per test is screening the unvaccinated every 3 days, which reduces the peak by 1.09 infections per 1,000 tests (see Fig. 2(c)).

Under $\omega_O = 95\%$, if the screening frequency of the unvaccinated is every 1/2/3/7/14 days, the strategy that averts the highest number of infections per test is 1/2/3/7/14 day universal screening for both the 64% boosted and 18% vaccinated, or the 38% boosted and 44% vaccinated cases, averting 11.4/9.9/7.2/6 and 7.4/5.8/3.8/3 infections per 1,000 tests (see Fig. 1(c) and Fig. 1(d)), respectively.
Impact of Vaccination Status

Next, we study the impact of the proportion boosted on the performance of screening strategies, first for the scenario where Omicron is the predominant variant ($\omega_O = 95\%$). We consider the scenario with total vaccination coverage of 82\% (38\% boosted, 44\% vaccinated), hence with 18\% unvaccinated. Under this scenario, universal screening every 1/2/14 days result in 13,803/20,241/23,221 total infections, and 143/357/612 peak daily infections, respectively (see Supplementary Table 5), compared to 8,568/17,327/22,512 total, and 61/222/465 peak daily infections, respectively, when 64\% of the population is boosted. The strategy that averts the highest number of infections per test is daily universal screening, averting 9.3 infections per 1,000 tests, see Fig. 1(d), whereas the strategy that provides the highest reduction in peak infections per test is screening the unvaccinated every 3 days, which reduces the peak by 1 infection per 1,000 tests (see Fig. 2(d)).

The boosted proportion further impacts hospitalizations (see Supplementary Table 5). With a boosted proportion of only 38\%, universal screening every 1/2/14 days results in 100/133/145 total hospitalizations, and 12/22/29 peak daily hospitalizations, respectively; compared to 61/102/118 total, and 6/14/21 peak daily hospitalizations, respectively, when the boosted proportion is 64\%.

When both Delta and Omicron variants are circulating at similar rates ($\omega_O = 50\%$, see Supplementary Table 4) and 38\% of the population is boosted, universal screening every 1/2/14 days results in 1,584/7,478/18,546 infections, and peak daily infections of 36/47/219, respectively. If we exclude boosted individuals from screening, 1/2/14-day screening yields 6,341/12,932/19,096 infections, and peak daily infections of 36/94/229, respectively.

Customizing the Screening Frequencies

In this section, we study the impact of further customizing the screening frequencies. We first consider that the screening frequency can be customized for each vaccination category included in the screening population, under 82\% vaccination coverage (64\% boosted, 18\% vaccinated). When $\omega_O = 50\%$, the strategy that averts the highest number of infections per test is screening the unvaccinated every 14 days (see Fig. 3(a)), leading to 31.6 infections averted per 1,000 tests (see Supplementary Table 9). The same strategy also provides the highest reduction in peak infections per test (see Fig. 4(a)), i.e., a reduction of 0.9 infections per 1,000 tests. When $\omega_O = 95\%$, the strategy that averts the highest number of infections per test is daily screening of the unvaccinated and vaccinated, and 2-day screening of the boosted (see Fig. 3(b)), resulting in 12.4 infections averted per 1,000 tests, with a 4\% improvement compared to the most effective universal screening strategy (i.e., the strategy that screens the entire population with the same screening frequency), see Fig. 3(b) and Supplementary Table 9; whereas the strategy that provides the highest reduction in peak infections per test is screening the unvaccinated only every 3 days (see Fig. 4(b)), reducing the peak by 1.09 infections per 1,000 tests.

We next consider fully customized screening, where the screening frequency can be customized for each group (faculty versus students) and each vaccination category included in the screening population, under 82\% vaccination coverage (64\% boosted, 18\% vaccinated). When $\omega_O = 50\%$, the strategy that averts the highest number of infections per test is screening only the unvaccinated students every 14 days (see Fig. 3(c)), leading to 32.5 infections averted per 1,000 tests, with a 2.8\%
improvement compared to the most effective strategy that customizes the screening population only. The same strategy also provides the highest reduction in peak infections per test (see Fig. 4(c)), with a reduction of 0.93 infections per 1,000 tests, which provides a 3.3% improvement compared to the most effective strategy that customizes the screening population only. When $\omega_o = 95\%$, the strategy that averts the highest number of infections per test is the daily screening of the unvaccinated and vaccinated students, 2-day screening of the boosted students, and the unvaccinated and vaccinated faculty, and 3-day screening of the boosted faculty, resulting in 12.5 infections averted per 1,000 tests, with a 5% improvement compared to the most effective universal screening strategy (see Fig. 3(d)); whereas the strategy that provides the highest reduction in peak infections per test is screening only the unvaccinated students every 3 days (see Fig. 4(d)), reducing the peak by 1.13 infections per 1,000 tests and providing a 3.7% improvement compared to the most effective strategy that customizes the screening population only.

Booster Coverage, Vaccine Effectiveness, and Screening Compliance

While screening can be an effective tool for reducing the infection spread, it is uncertain whether aggressive screening, without a high enough booster coverage, would be sufficient for controlling the infection during various phases of the pandemic. We next study the impact of the booster coverage on total infections and total hospitalizations under perfect screening compliance for different Omicron proportions. If $\omega_o = 50\%$, universal daily screening yields 1,036/894/606/473/295 infections, and 10/10/8/7/5 hospitalizations at the end of the semester under booster coverages of 0.2%/20%/50%/75%/82%, respectively, see Fig. 5(a), whereas not performing any routine screening during the semester results in 22,445/21,335/19,036/15,248 infections, and 142/127/103/87/77 hospitalizations at the end of the semester under booster coverages of 0.2%/20%/50%/75%/82%, respectively, see Fig. 5(a). On the other hand, if $\omega_o = 95\%$, universal daily screening results in 15,965/12,192/5,901/2,382/1,444 total infections, and 127/93/43/20/13 total hospitalizations for booster coverages of 0.2%/20%/50%/75%/82%, respectively, see Fig. 5(b), whereas no screening leads to 23,833/23,704/23,338/22,776/22,601 total infections, and 183/164/134/109/101 total hospitalizations under booster coverages of 0.2%/20%/50%/75%/82%, respectively, see Fig. 5(b).

Next, we study the impact of vaccine effectiveness, which is imperfect, decaying over time, and variant-dependent (see Table 3), over several outcomes. When $\omega_o = 95\%$, even when the entire population is vaccinated (but not boosted) and is screened under perfect compliance, 1/2-day screening leads to 13,755/21,496 total infections, and 70/115 hospitalizations under vaccine effectiveness values reported for Omicron (see Supplementary Table 7). If the vaccine effectiveness for Omicron were as high as for Delta (see Supplementary Table 8), the same level of mitigation efforts would yield 123/327 infections, and 1/2 hospitalization(s). In this scenario, the number of infections and hospitalizations would be 690/4,079/9,068, and 4/17/37, respectively, under 3/7/14-day screening (see Supplementary Table 8). The discrepancy between the two scenarios is less striking, but still significant, when the proportion of Omicron is lower, i.e., $\omega_o = 50\%$, or when the entire population is boosted (see Supplementary Table 8).

Recognizing that different campus populations may exhibit different characteristics in their screening compliance, we further investigate the impact of screening compliance. For 82% vaccination coverage (64% boosted, 18% vaccinated) and $\omega_o = 95\%$, increasing the screening compliance of universal screening from 75% to 90% reduces the infections from 8,568 to...
5,563 for daily screening, and from 17,327 to 15,655 for 2-day screening, see Supplementary Table 6.

Discussion

As new COVID-19 variants emerge, the challenges for effective mitigation of the pandemic in closed communities evolve. Considering the Spring 2022 academic semester and the co-circulating Delta and Omicron variants in this period, the results from the extended compartmental model in this study suggest that routine screening continues to play a key role in the safe opening and operation of universities. However, allocating the limited screening resources in the most effective manner requires extensive planning, considering the specific transmission and disease dynamics of the circulating variants, as well as the vaccination coverage, the imperfect, waning, and variant-dependent immunity from vaccination, and the level of natural immunity in the population.

As expected, the benefits of routine screening increase as the screening coverage is expanded and screening is more frequent. However, frequent universal screening of the whole campus population may not always be feasible due to the limited testing resources [36], and may not even be preferred by the universities due to the well-known testing fatigue [37]. Thus, designing strategies that yield the highest per-test benefit for various key metrics may provide essential guidelines to universities in establishing effective mitigation policies that are needed for a safe campus environment that is conducive to learning. The results in this paper demonstrate that the screening strategy that averts the highest number of infections per test depends on the booster coverage and the characteristics of the predominant variant. Comparing universal strategies with those that customize the screening population, our results indicate that universal screening is never the most efficient strategy in terms of infections averted per test when both Delta and Omicron variants are in circulation at similar rates, which may represent the U.S. during late December 2021 [34]. On the other hand, when Omicron is the predominant variant, which has been the case in the U.S. since early January 2022 [35], universal screening does provide the highest per-test reduction in infections. In fact, our findings highlight that the higher the proportion of Omicron and the lower the boosted coverage, the more vaccination status categories need to be screened, and at a higher frequency, in order to maximize the infections averted per test. Several factors, including the higher reproduction number of, and the lower vaccine efficiency against, Omicron, and the waning vaccine-induced immunity against both variants, contribute to this finding. Furthermore, we observe that as the proportion of Omicron (versus Delta) decreases, the screening frequency that is needed to maximize the efficiency also decreases.

Another key finding is the need for the decision maker to revisit their mitigation objectives as new variants, having different characteristics, emerge. Our results show that when Omicron is the primary circulating variant and screening resources are limited, it might be better to focus on minimizing the peak infections, instead of the total infections, where the latter requires aggressive screening that may not be resource-feasible, or practical, for most universities. We show that screening only unvaccinated individuals (that is, customizing the screening population) is the most efficient strategy in terms of the peak infections averted per test under various Omicron proportions and boosted coverage rates. This finding signifies that when a variant with a higher reproduction number is the dominant strain, allocating the available testing resources to the most
vulnerable provides the most efficient response to the pandemic, by “flattening the curve.” We need to emphasize, however, that the most efficient strategy, i.e. the strategy that maximizes infections (or peak infections) averted per-test, may not (and in most scenarios will not) minimize the total number of infections. Since increasing the screening coverage and/or frequency always reduces the total number of infections, universities may need to choose their strategy based on sequentially increasing the screening coverage and/or frequency, in the most efficient way, until the expected number of infections is reduced to a tolerable level.

There have been significant discrepancies among U.S. colleges and universities regarding routine screening. For example, some universities conducted universal screening [38], whereas some others customized the screening population based on vaccination status, but still used the same screening frequency for all the screening population [39, 40], yet some others did switch, at some point, to screening the faculty and students with different screening frequencies. For instance, at the beginning of the Spring semester, Boston University required the faculty to be routinely screened once a week, and the students twice a week [41]. Stanford, on the other hand, required students to be screened weekly but exempted the faculty from routine screening at some point in the semester [42]. Comparing screening strategies with varying degrees of customization, our findings demonstrate that customizing both the screening population and the frequency based on vaccination status may avert slightly more infections per test over universal strategies, or strategies that customize the screening population only, especially when it is feasible to screen the unvaccinated at higher frequencies, and when both Delta and Omicron are in circulation at similar rates. In this case, the most efficient strategy calls for screening the vaccinated and the boosted less frequently than the unvaccinated, and perhaps not screening the boosted at all. This finding is significant, as it implies that, through customization, a less aggressive strategy (that screens a smaller portion of the population) can provide higher per-test efficiency than universal screening.

Full customization, which considers both the vaccination status and faculty versus student groups further increases the infections averted per test, over customization based on vaccination status alone. While the improvement is small, the main message is again that the decision maker can achieve higher per-test benefits with less screening. In particular, when full customization is considered, the most efficient strategy (for infections averted per test) recommends the faculty to be screened either less frequently than the students, or not at all. In terms of the peak number of infections averted per test, on the other hand, customizing the screening population already provides a highly efficient strategy, and further customizing the screening frequency does not offer significant benefits: screening only the unvaccinated remains the dominating strategy.

Overall, our results suggest that allowing customization of both the screening population and the frequency based on population characteristics may indeed yield more efficient strategies; equally important is the fact that these customized strategies may also lower the required testing resources during the semester. This is because in many cases efficient customized strategies call for some groups to be either tested with very low frequency, or not at all, and this may even reduce the logistical complexity of screening, which was contrary to our initial intuition about customized strategies.

As the vaccine-induced immunity in the population wanes over time and/or new variants, which are more resistant to the
available vaccines, emerge, as was the case at the beginning of 2022, important policy questions arise on whether on-campus screening would be sufficient for infection control, and how these efforts should be adjusted based on the booster coverage at the start of the semester. Our results indicate that when both Delta and Omicron are in circulation at similar rates, aiming for both aggressive screening and high levels of booster coverage may be redundant; screening alone may even be able to compensate for a lack of an appropriate booster coverage at the start of the semester. Ideally, integrating moderate levels of booster coverage and screening can provide a highly effective, yet not aggressive, mitigation effort to keep both the number of infections and hospitalizations under control. When Omicron is the primary circulating variant, however, integrating boosters and screening is key for effective mitigation, as none of these efforts would be sufficient, on its own, for controlling the infection, even when implemented at an aggressive level. Accordingly, our results suggest that both adequate booster coverage and routine screening are essential for a safe opening of university campuses, considering the diminishing vaccine effectiveness over time and new vaccine-resistant variant threats. From a practical perspective, integrated screening and booster efforts work especially well towards creating an academic environment that is conducive to in-person learning, because the system is unlikely to be overwhelmed by a large volume of students and/or faculty missing from the classroom due to an active infection or isolation orders; this can also reduce the potential testing fatigue.

Finally, our findings from the sensitivity analyses suggest that if new vaccines are developed with high effectiveness against emerging variants – at levels comparable to the effectiveness of current vaccines over the Delta variant– it may be possible to keep both the infections and hospitalizations under control, even with lenient screening, as long as sufficient levels of vaccination/booster coverage are maintained. Our analysis also indicates that, although higher screening compliance leads to fewer infections, its impact is not substantial, as long as the compliance is kept at a reasonable level (e.g., 75% in our study).

Methods

Study Design and Parameters

Our SEIR (Susceptible, Exposed, Infectious, Removed) model extends the compartmental framework in [29] in the following ways: We consider a setting where two variants of the virus (Delta and Omicron) might be in circulation simultaneously, and model both vaccine-induced immunity and natural immunity (i.e., acquired based on a prior infection), as well as imperfect vaccine effectiveness that depends on both the variant (Delta versus Omicron) and the vaccination status (vaccinated versus boosted). Due to two circulating variants, vaccine effectiveness, infection transmission, and disease characteristics now become conditional on which variant each individual is exposed to. This setting necessitates the modeling of the heterogeneity in the campus population not only in terms of faculty and student groups (indexed by “f, s,” respectively), but also based on vaccination status (unvaccinated, vaccinated, and boosted, indexed by “u, v, b,” respectively), and the presence or absence of natural immunity. The model simulates the probabilistic transitioning of individuals through different health and vaccination states (compartments), governed by a series of difference equations, group-dependent and/or vaccination status-dependent transition probabilities. In particular, each individual transitions through *some* subset of the following health states: exposure to...
the virus, symptom development or asymptomatic infection, recovery and natural immunity (with or without knowledge of the infection), hospitalization, and death; both disease transmission and disease outcome rates depend on the variant, faculty versus student group, and vaccination status, see the Supplementary information text for details. We consider the following interventions:

- **Isolation and face masking**: All symptomatic subjects, and positive-testing subjects during routine screening immediately go into isolation. Indoor face masking is required for all subjects.

- **Vaccination**: We consider two-dose vaccines (i.e., Pfizer and Moderna, which represent around 96% of the vaccines administered in the U.S. as of March 13, 2022 [43]), and model each subject’s vaccination status through the following categories: unvaccinated, vaccinated (fully vaccinated with a two-dose vaccine prior to August 2021), boosted (fully vaccinated, and boosted in January 2022). We do not consider the population that has received only one dose of a two-dose vaccine. Each subject starts the Spring 2022 academic semester in one of these vaccination categories, and remains in the same vaccination status throughout the semester. We do not consider vaccine mandates, but model the vaccination coverage of the campus population, that is, the proportion boosted/proportion vaccinated. Because the vaccinated individuals (i.e., without a booster) are assumed to have received their second dose more than four months prior to the start of the spring semester, we also model the waning protection from the vaccine, in terms of reduced vaccine effectiveness.

- **Routine screening** excludes subjects who are symptomatic (symptomatic testing is conducted separately), or who are in isolation, at the hospital, or who have tested positive for, and recovered from, the infection (i.e., “recovered and known” subjects). We study routine screening, with the specific strategy dictating the screening population (i.e., vaccination categories, or faculty versus student groups included in routine screening) and the screening frequency of each vaccination category, or faculty/student group. The screening strategy can be universal across all groups and vaccination status categories, or customized. We study various screening policies, presented below in increasing level of customization, see Table 1.

All screening is conducted via the COVID-19 PCR test, which is the primary test used to detect SARS-CoV-2 [44], and subjects receive their test result 8 hours after taking the test, with a positive test result immediately leading to isolation. All false positives are corrected the next day (through additional testing). We assume perfect compliance for all isolation orders and face masking policies, and model imperfect compliance for routine screening.

Setting and Parameters: We simulate the infection spread in our hypothetical college of 24,000 (22,500 students and 2,500 faculty members), with 135 students and 9 faculty members (0.6% of each group) having undetected, asymptotic SARS-CoV-2 infection at the outset, and some individuals arriving on campus as vaccinated or boosted. The study period is an 80-day Spring 2022 academic semester that starts in January 2022. Table 2 reports the key parameters, along with corresponding references, and the details are provided in the Supplementary information.
A unique feature of our model is that the two variants, Delta and Omicron, can potentially be in circulation simultaneously, and parameter ω_0 represents the proportion (in %) of all COVID-19 infections caused by Omicron ($1 - \omega_0$ represents the proportion caused by Delta). The basic reproduction number (R_0) varies with both groups (faculty versus student) and variant (Delta versus Omicron), while vaccine effectiveness against symptom development (ϵ) and hospitalization (ν) vary with both vaccination status (vaccinated versus boosted) and variant (Delta versus Omicron). To reflect these characteristics in our model, we compute the basic reproduction number per group, and vaccine effectiveness per vaccination status, as weighted averages of their respective values for each variant, that is, as a function of ω_0 – see Table 3, which provides the key parameters, the weighted average formula, and the computed parameters for the $\omega_0 = 50\%$ case, considering a 3:1 ratio between the R_0 values for Omicron and Delta [45, 46, 47]. While these numbers may seem high for the general population, they are more relevant for the college campus setting [48].

Outcome Measures of Interest: Total infections, hospitalizations, deaths by group (student versus faculty) and by vaccination status over the 80-day semester; peak daily new infections, peak daily hospitalizations; average number of screening tests per day; number of infections, or peak infections, averted per 1,000 tests compared to the no screening scenario.

Sensitivity Analysis: We conduct various sensitivity analyses through varying the values for: the proportion of all COVID-19 infections caused by Omicron (versus Delta), vaccination coverage (proportion boosted/vaccinated), and screening compliance. We study the effectiveness of various universal and customized screening strategies (see Table 1), obtained by varying the screening frequency(ies) (every 1, 2, 3, 7, 14 days, or no screening) for each vaccination status, see Table 2. Different strategies may require different numbers of tests, representing scenarios with different testing capacities or testing kits.

Statistical Analysis

The compartmental model is coded in C++, and the results are analyzed in Microsoft Excel, through various plots. Our analysis does not involve any statistical tests, therefore, we do not report statistical significance levels.

Code availability

The codes used to generate the results are available at:

References

47. Liu, Y. & Rocklöv, J. The effective reproduction number for the Omicron SARS-CoV-2 variant of concern is several times higher than Delta. *J. travel medicine* (2022).

49. CDC. Investigation of a SARS-CoV-2 B.1.1.529 (Omicron) variant cluster — Nebraska, November–December 2021 (Accessed on December 2021). https://www.cdc.gov/mmwr/volumes/70/ww/mm705152e3.htm.

Author contributions statement

M.J.R wrote the first draft of the manuscript, coded the model, and produced the numerical results. S.T. supervised the coding and the visualization of the results. S.T, D.R.B, and E.K.B contributed to the research question, and the conceptualization and supervision of the work. All authors developed the research question and the methodology, analyzed the results, and reviewed and edited the manuscript.

Competing interests

Authors have no conflict of interest to declare.

Supplementary Information

Supplementary Information.
Fig. 1 Number of infections averted per 1,000 tests with respect to the screening frequency of the unvaccinated, for various universal and customized screening strategies under various booster and vaccination coverages and Omicron proportions (unvac: unvaccinated, vac: vaccinated)
Fig. 2 Peak number of infections averted per 1,000 tests with respect to the screening frequency of the unvaccinated, for various universal and customized screening strategies under various booster and vaccination coverages and Omicron proportions (unvac: unvaccinated, vac: vaccinated)
Fig. 3 Number of infections averted per 1,000 tests with respect to the screening frequency of the unvaccinated, for various customized screening strategies under 64% boosted, 18% vaccinated, 18% unvaccinated, and various Omicron proportions. (a)-(b): Screening is customized based on vaccination status only; the label represents the screening frequency for unvaccinated, vaccinated, boosted. (c)-(d): Screening is customized based on both vaccination status and faculty versus students; the label represents the screening frequency for unvaccinated students, vaccinated students, boosted students, unvaccinated faculty, vaccinated faculty, boosted faculty. (“-” indicates no screening.)
Fig. 4 Peak number of infections averted per 1,000 tests with respect to the screening frequency of the unvaccinated, for various customized screening strategies under 64% boosted, 18% vaccinated, 18% unvaccinated, and various Omicron proportions. (a)-(b): Screening is customized based on vaccination status only; the label represents the screening frequency for unvaccinated, vaccinated, boosted. (c)-(d): Screening is customized based on both vaccination status and faculty versus students; the label represents the screening frequency for unvaccinated students, vaccinated students, boosted students, unvaccinated faculty, vaccinated faculty, boosted faculty. ("-" indicates no screening).
Fig. 5 Total number of infections and hospitalizations with respect to the booster coverage under no screening and universal daily screening under 18% unvaccinated and remaining either boosted or vaccinated, and 100% screening compliance ($\eta = 100\%$) for: (a) $\omega_0 = 50\%$, (b) $\omega_0 = 95\%$.
Table 1 Description of universal and customized screening strategies.

<table>
<thead>
<tr>
<th>Screening Strategy</th>
<th>Policy-maker’s Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>No screening</td>
<td>• None</td>
</tr>
<tr>
<td>Universal screening</td>
<td>• The common screening frequency</td>
</tr>
<tr>
<td>Screening population customization</td>
<td>• Which vaccination categories to screen (unvaccinated, vaccinated, boosted) • The common screening frequency for the screening population</td>
</tr>
<tr>
<td>Screening population and frequency customization</td>
<td>• Which vaccination categories to screen (unvaccinated, vaccinated, boosted) • A screening frequency for each vaccination category included in screening</td>
</tr>
<tr>
<td>Full customization</td>
<td>• Which vaccination categories (unvaccinated, vaccinated, boosted) and groups (faculty versus students) to screen • A screening frequency for each vaccination category & group (faculty versus students) included in screening</td>
</tr>
</tbody>
</table>

Table 2 Parameter Values and Ranges for Sensitivity Analysis.

<table>
<thead>
<tr>
<th>Model Parameter</th>
<th>Value(s)</th>
<th>Comments/References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease dynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of infections due to the Omicron variant (ω)</td>
<td>50%, 95%</td>
<td>Assumption with sensitivity analysis</td>
</tr>
<tr>
<td>Mean latent time</td>
<td>3.5 days</td>
<td>Average of Delta (4 days) and Omicron (3 days), based on CDC [49], 2021</td>
</tr>
<tr>
<td>Mean time to recovery</td>
<td>3 days</td>
<td>CDC [50], 2021</td>
</tr>
<tr>
<td>Disease transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of basic reproduction numbers - Omicron:Delta</td>
<td>3:1</td>
<td>Ito et al. [45], 2021, Scientific American [46], 2021 and based on Liu & Rocklöv [47], 2022</td>
</tr>
<tr>
<td>Inputs for basic reproduction number of (variant, group):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta, students</td>
<td>$3 \times 6 = 18$</td>
<td>Assumption</td>
</tr>
<tr>
<td>Omicron, students</td>
<td>3.2</td>
<td>Assumption</td>
</tr>
<tr>
<td>Delta, faculty</td>
<td>$3 \times 3.2 = 9.6$</td>
<td>Assumption</td>
</tr>
<tr>
<td>Omicron, faculty</td>
<td>6</td>
<td>Assumption</td>
</tr>
<tr>
<td>Reduction in disease transmission rate under a face mask policy (ρ)</td>
<td>50%</td>
<td>Zhang et al. [51], 2020</td>
</tr>
<tr>
<td>Disease outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaccine effectiveness against infection for (variant, vaccination status):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta, vaccinated</td>
<td>80%</td>
<td>Bruxvoort et al. [52], 2021</td>
</tr>
<tr>
<td>Omicron, vaccinated</td>
<td>33%</td>
<td>BMJ [53], 2021</td>
</tr>
<tr>
<td>Delta, boosted</td>
<td>86.7%</td>
<td>Bruxvoort et al. [52], 2021</td>
</tr>
<tr>
<td>Omicron, boosted</td>
<td>69.4%</td>
<td>Paul [54], 2021</td>
</tr>
<tr>
<td>Symptom development rate for infected (all vaccination status)</td>
<td>30%</td>
<td>Assumption (similar to Paltiel et al. [11], 2020, also based on Poletti et al. [55], 2021</td>
</tr>
<tr>
<td>Hospitalization rate for symptomatic and unvaccinated (students/faculty)</td>
<td>1.4% / 8.4%</td>
<td>CDC [56], 2021, COVID-Net [57], 2021, Rabil et al. [29], 2021</td>
</tr>
<tr>
<td>Vaccine effectiveness against hospitalization for symptomatic (variant, vaccination status):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omicron, vaccinated</td>
<td>70%</td>
<td>BMJ [53], 2021</td>
</tr>
<tr>
<td>Delta, vaccinated</td>
<td>91.7%</td>
<td>Andrews et al. [58], 2022</td>
</tr>
<tr>
<td>Omicron, boosted</td>
<td>93%</td>
<td>Based on Thompson et al. [7], 2022</td>
</tr>
<tr>
<td>Delta, boosted</td>
<td>97.5%</td>
<td>Bruxvoort et al. [52], 2021</td>
</tr>
<tr>
<td>Fatality rate for hospitalized and unvaccinated (students/faculty)</td>
<td>0.05% / 2%</td>
<td>Rabil et al. [29], 2021, Statista [59, 60], 2021</td>
</tr>
<tr>
<td>Screening test characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test sensitivity (s_{test})</td>
<td>80%</td>
<td>Based on Stites & Wilen [61], 2020 Woloshin et al. [62], 2020, Yohe [63], 2020</td>
</tr>
<tr>
<td>Test specificity (s_{spec})</td>
<td>98%</td>
<td>Yohe [63], 2020</td>
</tr>
<tr>
<td>Coverage characteristics at the start of the semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion of vaccinated</td>
<td>82%</td>
<td>Based on Nietzel [64], 2021, Mauer [65], 2021 and Mayo Clinic [66], 2022</td>
</tr>
<tr>
<td>Proportion of boosted</td>
<td>38%</td>
<td>Based on Anderson [67], 2022 and CDC [68], 2022</td>
</tr>
<tr>
<td>Sensitivity analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Values</td>
<td></td>
</tr>
<tr>
<td>Screening frequency</td>
<td>1 day, 2 days, 3 days, 7 days, 14 days</td>
<td></td>
</tr>
<tr>
<td>Proportion of infections due to the Omicron variant (ω)</td>
<td>50%, 95%</td>
<td></td>
</tr>
<tr>
<td>Coverage (proportion boosted/vaccinated at the start of the semester)</td>
<td>64% / 18%, 38% / 44%, 0% / 100%, 100% / 0%, 0% / 0%</td>
<td></td>
</tr>
<tr>
<td>Screening compliance (χ)</td>
<td>75%, 90%, 100%</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Weighted Average Computations for the Basic Reproduction Number and Vaccine Effectiveness Values when the Proportion of Infections Caused by Omicron (Delta) is \(\omega \) \((1 - \omega)\)

<table>
<thead>
<tr>
<th></th>
<th>Group</th>
<th>Omicron</th>
<th>Delta</th>
<th>Weighted average formula</th>
<th>(\omega = 50%) case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic reproduction number ((R_0)) (k \in {u, v, b})</td>
<td>Students</td>
<td>3 x 6 = 18</td>
<td>6</td>
<td>(R_0^{(k)} = 6 \times (1 - \omega) + 18 \times \omega)</td>
<td>(R_0^{(u)} = 12)</td>
</tr>
<tr>
<td></td>
<td>Faculty</td>
<td>3 x 3.2 = 9.6</td>
<td>3.2</td>
<td>(R_0^{(k)} = 3.2 \times (1 - \omega) + 9.6 \times \omega)</td>
<td>(R_0^{(u)} = 6.4)</td>
</tr>
<tr>
<td>Vaccine effectiveness against infection ((\varepsilon))</td>
<td>Vaccinated</td>
<td>33%</td>
<td>80%</td>
<td>(\varepsilon_\omega = 80% \times (1 - \omega) + 33% \times \omega)</td>
<td>(\varepsilon_\omega = 56.5%)</td>
</tr>
<tr>
<td></td>
<td>Boosted</td>
<td>69.4%</td>
<td>86.7%</td>
<td>(\varepsilon_\omega = 86.7% \times (1 - \omega) + 69.4% \times \omega)</td>
<td>(\varepsilon_\omega = 78.05%)</td>
</tr>
<tr>
<td>Vaccine effectiveness against hospitalization ((\upsilon))</td>
<td>Vaccinated</td>
<td>70%</td>
<td>91.7%</td>
<td>(\upsilon_\omega = 91.7% \times (1 - \omega) + 70% \times \omega)</td>
<td>(\upsilon_\omega = 80.85%)</td>
</tr>
<tr>
<td></td>
<td>Boosted</td>
<td>93%</td>
<td>97.5%</td>
<td>(\upsilon_\omega = 97.5% \times (1 - \omega) + 93% \times \omega)</td>
<td>(\upsilon_\omega = 95.25%)</td>
</tr>
</tbody>
</table>