Therapeutic effects of different timing for PTCD and ERCP in obstructive severe acute biliary pancreatitis

Jia Huan Sun¹, Xue Ling Zhang¹, Yue Wu¹, Min Xie¹, Cong Cong Li¹, Dong Lv², Wei Yu³, Pei Lin Cui ¹, ²

¹ Department of Internal Medicine, International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University
² Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University
³ Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University

*Corresponding author:
Wei Yu, Department of General Surgery, Beijing Tiantan Hospital, Capital Medical University
Pei-lin Cui, Department of International Medical Services (IMS), Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.

Jia Huan Sun¹ † and Xue Ling Zhang¹ † equally contributed to this work and share first authorship.

Authors E-mail address:
sunjiahuan@aliyun.com (Jia Huan Sun) Zhangxueling2021@163.com (Xue Ling Zhang)
812052410@qq.com (Yue Wu) 1002073987@qq.com (Min Xie)
18810165331@163.com (Cong Cong Li)
lvdongttyy@sina.com (Dong Lv)

Authors E-mail address:
Corresponding author’s E-mail address:
yuweimade@sina.com (Wei Yu)
cuipl@aliyun.com (Pei Lin Cui)

A short running title: PTCD and ERCP in obstructive SABP

Acknowledgement
This study was funded by the Digestive Medical Coordinated Development Center of Beijing Hospitals Authority (No. XXT14).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: This study compared the therapeutic effects of different timing for PTCD and ERCP in obstructive severe acute biliary pancreatitis.

Methods: We evaluated the clinical data for 62 patients with obstructive severe acute biliary pancreatitis in Beijing Tiantan Hospital. The study was performed from July, 2013 to July, 2019. According to the treatment, patients were divided into three groups: conservative group (n=16), PTCD group (n=22) and ERCP group (n=24), and the PTCD and ERCP groups were divided into early (24-72 h) and delayed (>72 h) groups. Laboratory indices, recovery time of liver function, remission time of abdominal pain, hospitalization length, curability and complications were compared among groups.

Results: The average hospitalization length, time for abdominal pain relief and laboratory indices recovery were shorter (p <0.05) in early PTCD and ERCP groups than in the conservative group. Further, the average days of hospitalization in the ERCP group was shorter (p <0.05) than in the PTCD group. The complications were low in ERCP (33.33%) and PTCD (27.27%) groups, compared to the conservative group (62.50%).

Conclusions: For patients who cannot determine the severity of biliary pancreatitis in the first place and exclude patients who have performed ERCP within 24 hours, ERCP is recommended for relieving obstruction of obstructive severe acute biliary pancreatitis within 24-72 hours, however, PTCD may be considered in patients failed to be cured by ERCP.
Keywords: severe biliary pancreatitis; ERCP; PTCD; obstructive; acute pancreatitis

Introduction

Acute pancreatitis (AP) is a common clinical emergency and heterogeneous condition with the potential for significant morbidity and mortality[1]. Acute biliary pancreatitis (ABP) accounts for 50%-70% of acute pancreatitis incidences[2]. The etiology of ABP is complex and multifactorial. Regarding the pathogenesis of biliary pancreatitis, it has been shown that movement of gallstones may compress the diaphragm between the distal end of the biliary tract and pancreatic duct and may also be embedded in the common channel, resulting in blocked outflow of the pancreatic fluid. Both factors may lead to increased pancreatic duct pressure, causing pancreatic duct damage, and trypsinogen is inappropriately activated, leading to pancreatic autodigestion and to acute pancreatitis development[3,4].

Treatment strategies for ABP vary with severity. Early management of different levels and reasons of pancreatitis always focus on fluid resuscitation. About 20% of patients with acute pancreatitis have moderate or severe acute pancreatitis episodes. Severe AP is characterized by persistent single or multiple organ failure, which is associated with mortality rates between 20% and 40%[5-8]. Determinant-based classification[9] (DBC) and revision of the Atlanta classification[6] (RAC) both support severe AP associations with persistent organ failure (POF[10]>48 h) (cardiovascular, respiratory, and renal...
system) and high mortality rate. Although the clinical morbidity of SABP is lower than that of MABP, the treatment duration is longer, the prognosis is worse and the fatality rate is higher. Early diagnosis and treatment of SABP are significant in reducing mortality and improving the cure rate. Multiple imaging tests\[^{[11]}\] such as abdominal ultrasound, CT, EUS and MRCP can help diagnose SABP. Early removal of biliary obstruction is generally advocated for obstructive severe acute biliary pancreatitis (SABP)\[^{[12]}\]. Mini-invasive therapeutic options, such as early endoscopic retrograde cholangiopancreatography (ERCP) (within 72 h) after admission is recommended for patients with AP when cholangitis is associated\[^{[13]}\].

Although endoscopic treatment is the primary option for patients with ABP in presence of concurrent with acute cholangitis, there is no consensus on therapeutic value of the different timing for ERCP in patients with obstructive severe acute biliary pancreatitis. Moreover, some SABP patients cannot tolerate endoscopy\[^{[14]}\] or suspect that endoscopy was unsafe\[^{[15]}\]. Percutaneous transhepatic cholangial drainage (PTCD) is widely accepted as an alternative to operative decompression in patients with cholangitis or cholecystitis, particularly elderly patients\[^{[16-18]}\]. For obstructive ABP, Van Santvoort et al. conducted a prospective observational multicenter study involving 153 patients with obstructive predicting severe ABP without cholangitis and found a significant reduction in complications in early ERCP patients with pancreatic necrosis >30%\[^{[19]}\]. A retrospective study\[^{[20]}\] involving 64 patients with obstructive SAP revealed that laboratory indicators and APACHE-II scores decreased by early PTCD.
The 2013 IAP/APA guidelines[21] suggest that there is no evidence of optimal timing for ERCP treatment in patients with biliary pancreatitis without cholangitis. The 2015 Italian consensus guidelines[10,22] on severe acute pancreatitis recommend that when the presence of biliary obstruction is confirmed, ERCP should be performed within 72 h of admission.

However, the effects of treating SABP at different times (24-72 h and <72 h) should be further investigated. This study is for patients who cannot determine the severity of biliary pancreatitis in the first place and exclude patients who have performed ERCP within 24 hours. In this study, patients with obstructive SABP were retrospectively analyzed to evaluate the therapeutic value of PTCD and ERCP in these patients and to compare the therapeutic effects at different times (24-72 h or >72 h) of administering interventions.

Methods

Patients

Patients who met the inclusion and exclusion criteria (Table 1) were recruited in this study. The clinical data were retrospectively obtained from the included patients. The patients had been diagnosed with obstructive SABP at Beijing Tiantan Hospital, China, from July, 2013 to July, 2019. A total of 62 patients who satisfied the criteria were included in this study and were divided into three groups according to the treatments: Conservative (n=16), PTCD (n=22) and ERCP (n=24) groups. The PTCD
and ERCP groups were assigned into early PTCD group (24-72 h, n=10) and delayed PTCD group (>72 h, n=12) as well as early ERCP group (24-72 h, n=8) and delayed ERCP group (>72 h, n=16), respectively. Patients who could not tolerate PTCD and ERCP+ENBD, ABP with multiple organ failure (MOF), and patients with obstruction of more than three intrahepatic bile ducts and could not receive multiple drainage, as well as those who refused to accept any traumatic therapies were included in the Conservative group. Patients who could not tolerate endoscopy due to their own reasons, such as advanced age, persistent organ failure and multiple concomitant diseases, acute abdominal pain with gallbladder enlargement and cholecystitis requiring a short period of biliary decompression, and clinical deterioration with signs or strong suspicion of infected necrotizing pancreatitis were included in the PTCD group. Patients with ABP associated with cholangitis or bile duct obstruction is indicated were included in the ERCP group\[26\]. If the previously scheduled treatment fails or in case of critical conditions, emergency intervention or surgical treatment could be chosen with provision of a written informed consent\[27,28\].
Table 1: Inclusion and exclusion criteria for patients with ABP

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Concomitant conditions or characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
<td>i. Persistent pain in the upper abdomen; ii. Serum amylase and (or) lipase concentrations three times above the normal upper limit; iii. Abdominal imaging findings show changes that are relevant in acute pancreatitis. Two of the above three criteria were diagnosed with acute pancreatitis(^{[23]}). In addition, severe acute biliary pancreatitis also needs to be satisfied:</td>
</tr>
</tbody>
</table>
| | ● Biliary cause of pancreatitis.
 | ● Accompanied by POF (>48 h) (Organ failure is defined using the Modified Marshall scoring system) \(^{[24]}\).
 | ● APACHE-II scored \(\geq 8\); \(\geq 3\) for Ranson; and \(\geq 8\) for MCTSI\(^{[22]}\).
 | ● Meet the determination criteria of biliary tract obstruction: i. Venous blood biochemical activities suggesting continuous increase in total bilirubin and direct bilirubin; ii. Imaging (abdominal color ultrasound, CT, MRCP or EUS before ERCP and PTCD) suggesting biliary duct stones or total bile duct dilatation \(\geq 1.0\) cm; iii. No obvious bile is introduced in gastrointestinal decompression. |
| **Exclusion criteria** | ● MABP (no evidence of organ dysfunction and without local and systemic complications; APACHE-II scored <8; <3 for Ranson and <4 for MCTSI)
 | ● Patients with acute suppurative cholangitis\(^{[25]}\), and who had undergone emergency ERCP after admission within 24 h.
 | ● Combined with other serious diseases
 | ● Pregnancy or the puerperium
 | ● Insufficient clinical data |

Treatment procedures

1. **Conservative treatment**

 All patients were conservatively treated after admission, including: fasting for solids and liquids, liquid resuscitation, maintenance of hydroelectrolyte and acid-base balance, proton pump inhibitor for acid suppression, somatostatin inhibitory enzyme,
application of antibiotics if necessary and other treatments. Combining organ
dysfunction of other systems was given organ support in time, closely monitoring the
condition, if necessary, the unstable condition was transferred to the intensive care
unit to strengthen life care and treatment.

2. Endoscopic retrograde cholangiopancreatography (ERCP)
Preoperative blood routine, blood type, coagulation, infectious diseases and other tests
were performed. Endoscopic retrograde cholangiopancreatographies (ERCPs) were
performed based on conservative treatment in a left-lateral position under conscious
sedation with alkaline 10 mg hydrochloride and 50 mg pethidine. Endoscopy was
performed through the esophagus, stomach to descendant duodenum after which
endoscopists adjusted the mirror body angle to expose the duodenal papilla. The
critical step was performing retrograde bile duct intubation, slowly injecting iodinated
contrast agent after successful operation to confirm whether the biliary tract had
stones, stenosis or parapapillary diverticulum. Based on the time of ERCP
implementation after admission, patients were divided into early and delayed ERCP
groups whose ERCP procedures were similar. Other treatments were selected if
endoscopy was not clearly visible because of duodenal mucosa and papillary oedema
during operation[29].

3. Percutaneous transhepatic cholangial drainage (PTCD)
Preoperative examinations for PTCD were similar as earlier described for ERCP.
Ultrasound was performed to assess the walking and expansion degree of the bile duct
before operation to determine the bile duct or gallbladder puncture path and to locate
the puncture point\cite{30}. After intramuscular administration of 50 mg pethidine hydrochloride, routine disinfection and spreading towels, local infiltration anesthesia was done. All PTCDs were performed under guidance of ultrasound using an 18G puncture needle to target the bile tube or gallbladder. Bile was extracted after the needle had been removed, implying that the puncture had reached the target location. A guide wire was inserted through the puncture needle after which the needle was exited after adjusting the guide wire position. Using a subcutaneous catheter to dilate the puncture path, the 8F pigtail drainage tube was transplanted and the wire exited\cite{31,32}. The drainage pipe was firmly secured to the skin and the sterile drainage bag externally attached.

Observation indicators

The following clinical indices of SABP groups were compared: the time for white blood cell, blood amylase and liver function to return to normal, the mean time of hospitalization and abdominal pain relief, probability of cure and occurrence of complications; differences in laboratory and clinical efficacy indices between early and delayed biliary obstruction relief in SABP patients were also compared. The complications that were compared included: acute accumulation of necrotic material, pancreatic pseudocyst, paralytic ileus, upper gastrointestinal hemorrhage, respiratory failure, SIRS, abdominal infection, sepsis, pancreatic encephalopathy, hyperamylasemia post-ERCP and pancreatitis post-ERCP\cite{22}.
Statistical analysis

Normally distributed continuous variables are expressed as mean ± standard deviation (\(\bar{x} \pm s \)). Measurement data between the two groups were compared using independent sample t-test. Analysis of variance (ANOVA) was used to compare measurement data among the groups. Enumerative data were expressed as rates or constituent ratios. Comparisons between groups were evaluated using \(x^2 \)-test and Fisher’s exact test. P <0.05 denoted statistical significance. The SPSS software was used for statistical analyses.

Results

A total of 120 patients with acute obstructive biliary pancreatitis were included in this study through retrospective collection. Among them, 58 patients who were diagnosed with mild acute biliary pancreatitis (MABP) were excluded based on one exclusion criteria (Table 1). Therefore, the remaining 62 patients were finally enrolled in this study (Fig. 1).
(Fig. 1: A total of 62 patients with SABP were enrolled in this study. According to the treatments, they were divided into three groups: conservative group (n=16), ERCP group (n=24) and PTCD group (n=22). The pairwise comparison of incidence of complications among the four tested groups showed no statistical significance (P > 0.05)).

In the study, three patients in the conservative group were treated with ERCP + EST + biliary lithotomy + ENBD. Two patients in the ERCP group had failed intubation on account of respectively significant edema of the duodenal mucosa as well as papilla and stenosis of the descending duodenum. One patient in the early ERCP group was first treated conservatively after which ERCP was successfully performed at an elective time; the other patient in the delayed ERCP group was transferred to general surgery for open cholecystectomy + choledochotomy + T-tube drainage at a stable
stage. Due to lack of significant improvement of jaundice, one patient in the PTCD group was selected for ERCP treatment. Automatic discharge was referred to a patient who had voluntarily requested discharge in group therapy but was still counted in the treatment group. Five patients (two in the conservative group, two in the ERCP group and one in the PTCD group) were automatically discharged.

There were no significant differences (P >0.05) in cure rate among the three groups.

The obtained general clinical data were presented in Table 2. The clinical efficacy, cure rate and complications in the three groups as well as the clinical efficacy indices in early and delayed groups were as shown in Tables 3, 4 and 5, respectively.

Table 2: General clinical data compared in patients with obstructive SABP in the conservative, ERCP and PTCD groups

<table>
<thead>
<tr>
<th>Items</th>
<th>Conservative group (n=16)</th>
<th>ERCP (n=24)</th>
<th>PTCD (n=22)</th>
<th>F/χ²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>62.81±18.42</td>
<td>65.25±16.49</td>
<td>64.18±17.15</td>
<td>0.096</td>
<td>0.908</td>
</tr>
<tr>
<td>Gender [n (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>8 (50.00)</td>
<td>11 (45.83)</td>
<td>9 (40.91)</td>
<td>0.316</td>
<td>0.854</td>
</tr>
<tr>
<td>Female</td>
<td>8 (50.00)</td>
<td>13 (54.17)</td>
<td>13 (59.09)</td>
<td>0.316</td>
<td>0.854</td>
</tr>
<tr>
<td>WBC (*10^9/L)</td>
<td>15.31±3.17</td>
<td>16.39±3.95</td>
<td>16.33±4.14</td>
<td>0.448</td>
<td>0.641</td>
</tr>
<tr>
<td>Blood amylase (U/L)</td>
<td>1241.69±422.23</td>
<td>1286.32±327.41</td>
<td>1209.80±278.67</td>
<td>0.296</td>
<td>0.745</td>
</tr>
<tr>
<td>Urine amylase (U/L)</td>
<td>3861.36±1283.74</td>
<td>3768.74±1402.64</td>
<td>3870.70±1283.55</td>
<td>0.165</td>
<td>0.849</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>259.61±115.36</td>
<td>253.71±102.20</td>
<td>248.51±19.79</td>
<td>0.054</td>
<td>0.947</td>
</tr>
<tr>
<td>TBiL (umol/L)</td>
<td>41.66±12.72</td>
<td>43.86±13.31</td>
<td>42.96±15.28</td>
<td>0.120</td>
<td>0.887</td>
</tr>
<tr>
<td>Complications [n (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Previous attack of AP</td>
<td>3 (18.75)</td>
<td>4 (16.67)</td>
<td>3 (13.64)</td>
<td>0.913</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservative group</td>
<td>ERCP (n=24)</td>
<td>PTCD (n=22)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholelithiasis</td>
<td>3 (18.75)</td>
<td>9 (37.50)</td>
<td>7 (31.82)</td>
<td>0.505</td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td>5 (31.32)</td>
<td>4 (16.67)</td>
<td>4 (18.18)</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>8 (50.50)</td>
<td>9 (37.50)</td>
<td>6 (27.27)</td>
<td>2.053 0.358</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>2 (12.5)</td>
<td>5 (20.83)</td>
<td>4 (18.18)</td>
<td>0.914</td>
<td></td>
</tr>
<tr>
<td>APACHE-II score</td>
<td>16.06±4.99</td>
<td>14.83±4.19</td>
<td>15.32±4.58</td>
<td>0.352 0.705</td>
<td></td>
</tr>
<tr>
<td>Ranson score</td>
<td>4.63±0.81</td>
<td>4.50±1.14</td>
<td>4.41±1.26</td>
<td>0.174 0.840</td>
<td></td>
</tr>
<tr>
<td>MCTSI score</td>
<td>7.19±0.83</td>
<td>6.92±0.78</td>
<td>6.91±0.75</td>
<td>0.731 0.486</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Clinical efficacies compared in patients with obstructive SABP in the conservative, ERCP and PTCD groups

Table 4: Cure rate and complications in patients with obstructive SABP in the conservative, ERCP and PTCD groups

<table>
<thead>
<tr>
<th>Index</th>
<th>Conservative group (n=16)</th>
<th>ERCP (n=24)</th>
<th>PTCD (n=22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic discharge [n (%)]</td>
<td>2 (12.50)</td>
<td>2 (8.33)</td>
<td>1 (4.55)</td>
</tr>
<tr>
<td>Cured cases [n (%)]</td>
<td>10 (62.50)</td>
<td>18 (75.00)</td>
<td>19 (86.36)</td>
</tr>
<tr>
<td>Complications cases [n (%)]</td>
<td>10 (62.50)</td>
<td>8 (33.33)</td>
<td>6 (27.27) 1)</td>
</tr>
</tbody>
</table>

1) ERCP and PTCD group respectively compared with to the conservative group (p<0.05)
2) ERCP group compared to the PTCD group (p<0.05)
Acute accumulation of necrotic material (n) 5 3 3
Pancreatic pseudocyst (n) 1 0 0
Paralytic ileus (n) 2 1 1
Upper gastrointestinal hemorrhage (n) 1 0 1
Respiratory failure (n) 3 3 2
Systemic inflammatory response syndrome (n) 8 8 6
Abdominal infection (n) 2 0 1
Sepsis (n) 1 0 0
Pancreatic encephalopathy (n) 1 0 0
Hyperamylasemia post-ERCP (n) 0 2 0
Pancreatitis post-ERCP (n) 0 1 0

1) PTCD group compared to the conservative group (p<0.05)

Table 5: Clinical efficacy indices and complications compared in patients with obstructive SABP in early and delayed ERCP/PTCD groups

<table>
<thead>
<tr>
<th>Index</th>
<th>Early ERCP (n=8)</th>
<th>Delayed ERCP (n=16)</th>
<th>Early PTCD (n=10)</th>
<th>Delayed PTCD (n=12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average length of stay (d)</td>
<td>13.88±3.271)</td>
<td>18.63±4.064)</td>
<td>16.38±3.662)</td>
<td>21.93±4.30</td>
</tr>
<tr>
<td>Abdominal pain relief time (d)</td>
<td>5.63±2.37</td>
<td>8.22±3.13</td>
<td>6.80±2.672)</td>
<td>10.54±4.19</td>
</tr>
<tr>
<td>Leukocyte remission time (d)</td>
<td>6.31±0.921)</td>
<td>9.88±2.406</td>
<td>8.50±2.072)</td>
<td>11.14±4.09</td>
</tr>
<tr>
<td>Blood amylase recovery time (d)</td>
<td>5.50±1.311)</td>
<td>8.89±1.91</td>
<td>6.13±1.732)</td>
<td>10.14±3.98</td>
</tr>
<tr>
<td>ALT recovery time (d)</td>
<td>9.63±2.56</td>
<td>12.25±2.594)</td>
<td>10.13±3.202)</td>
<td>14.85±3.85</td>
</tr>
<tr>
<td>TBiL recovery time (d)</td>
<td>9.13±1.981)</td>
<td>11.81±2.90</td>
<td>10.85±3.112)</td>
<td>14.08±3.76</td>
</tr>
</tbody>
</table>
Complication cases [n (%)]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 (37.50)</td>
<td>5 (31.25)</td>
<td>3 (30.00)</td>
</tr>
</tbody>
</table>

1) Early ERCP group compared to delayed ERCP group (p<0.05)
2) Early PTCD group compared to delayed PTCD group (p<0.05)
3) Early ERCP group compared to early PTCD group (p<0.05)
4) Delayed ERCP group compared to delayed PTCD group (p<0.05)

The general clinical data, including age, gender, WBC, blood and urine amylase were not comparable in the conservative, ERCP and PTCD groups (P >0.05). Differences in cure rate among the conservative group (62.5%), ERCP group (75.0%) and PTCD group (86.36%) were not significant (P >0.05). Compared to the conservative group, there was statistical difference (P <0.05) in clinical efficacy (leukocyte remission time, blood amylase recovery time, ALT recovery time and TBiL recovery time) in the two non-conservative groups. The average length of stay between the ERCP and PTCD groups were found to be significantly different (P <0.05). It was evidently revealed that the probability of complications in ERCP and PTCD groups were lower, compared to the conservative group. Further, incidence of complications in the PTCD group significantly differed from those in the conservative group.

Differences in clinical efficacy indices (average length of stay, abdominal pain relief time, leukocyte and blood amylase recovery time) between the early ERCP and delayed ERCP group were significant (P <0.05). Differences in clinical efficacy indices between the early PTCD and delayed PTCD groups were also significant. Although the hospital stay time was shorter and clinical indicators recovered faster in the early ERCP group than in the early PTCD group, it was evident that the
differences were not statistically significant (P <0.05). Moreover, the average days of hospitalization and recovery time of liver function in the delayed ERCP group were not significantly different, compared to the delayed PTCD group. However, pairwise comparison of incidence of complications among the four tested groups showed no statistical significance (P >0.05).

Discussion

Acute biliary pancreatitis is frequent in a real-world setting[33]. Obstructive severe acute biliary pancreatitis is a clinical emergency with high mortality rates of about 15%[34]. The main cause of obstruction of ABP is gallstones. Moreover, obstruction of the common outflow tract of the pancreaticobiliary duct is also caused by Oddi sphincter spasm and pancreatic edema[35,36]. Although the removal of obstruction is associated with symptomatic relief, the mortality of obstructive SABP is still high because of organs failure[18,26]. In the study, non-emergency ERCP (24-72 hours and > 72 hours) for identifiable common bile duct or ampullary stones, and PTCD (24-72 hours and > 72 hours) for relieve symptoms of obstruction were performed on patients with SABP to Evaluate the differences and similarities of the therapeutic value. There hasn't been a similar study, we also aimed at providing strategies for management of severe acute biliary pancreatitis.

This study had some limitations. First, the surgical risk of patients was not assessed, which could have led to deviations in the success rate of surgery, subsequent cure rate and postoperative complications among other aspects. Second, as a single center
retrospective study, the sample size is small. An obstruction type strategy for early
treatment of ABP requires a larger sample and prospective randomized controlled
trials to explore the diverse clinical outcomes for SABP patients. There is a high case
fatality rate, which has been the focus of clinical personalized treatment strategies.
Given these limitations, a stricter standard, follow-up visits, high-quality and large sample tests are required to verify the reliability of conclusions drawn from this study.
PTCD and ERCP showed comparable effects in treatment (clinical efficacy) of
obstructive SABP. Pairwise comparison of the incidence of complications among the
early/delayed PTCD and the early/delayed ERCP do not have significant differences. In conclusion, for patients who cannot determine the severity of biliary pancreatitis in the first place and exclude patients who have performed ERCP within 24 hours, ERCP is recommended to relieve obstruction of obstructive severe acute biliary pancreatitis within 24-72 h while PTCD drainage may be considered in
patients failed to be cured by ERCP.

Abbreviations

PTCD, Percutaneous transhepatic cholangial drainage; ERCP, Endoscopic retrograde
colangiopancreatography; ABP, Acute biliary pancreatitis; SABP, Severe acute
biliary pancreatitis; MABP, Mild acute biliary pancreatitis; SIRS, Systemic
inflammation response syndrome; MODS, Multiple organ dysfunction syndrome;
POF, Persistent organ failure.

References

