Iron status and risk of sepsis: a Mendelian randomisation analysis.

Fergus Hamilton¹², Ruth Mitchell¹, Haroon Ahmed³, Peter Ghazal⁴, Nic Timpson¹

1. MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2. Infection Sciences, North Bristol NHS Trust, Bristol, UK
3. Division of Population Medicine, Cardiff University Medical School, Cardiff
4. System Immunity Research Institute, Division of Infection and Immunity, Cardiff University, Cardiff, UK

Corresponding author:

Dr Fergus Hamilton
MRC Integrative Epidemiology Unit,
Oakfield House,
Oakfield Grove,
Bristol BS8 2BN
Fergus.hamilton@bristol.ac.uk
+441174143999

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Objective:
To evaluate the association between four iron biomarkers and sepsis.

Design
An observational cohort and two sample Mendelian randomisation (MR) study.

Setting
The UK Biobank prospective cohort study (for the observational cohort and for MR outcomes), the FinnGEN cohort study (replication of MR outcomes) and three large genome wide association studies (GWAS, for iron exposures).

Participants
453,169 participants enrolled in UK Biobank, 356,000 participants enrolled in FinnGen and between 131,471 - 246,139 participants enrolled across the three iron biomarker GWAS.

Exposures
In the observational cohort, iron status was determined using ferritin levels recorded in general practice data. In the MR analyses, four iron biomarkers were used: serum iron, serum ferritin, the total iron binding capacity (TIBC), and transferrin saturation (TSAT).

Main outcome measures:
Hospital admission with an ICD-10 coded sepsis diagnosis.

Results
In the observational cohort, the odds of sepsis increased as ferritin levels increased, with odds ratios of >1 once ferritin was more than >160 ug/L, within the normal accepted reference range for ferritin. Extremely low ferritin (<40ug/L) was also associated with increased odds of sepsis.

In inverse-variance-weighted mendelian randomisation analyses, increases in all iron biomarkers were associated with increasing odds of sepsis (OR 1.10 for each SD increase in TSAT; 95% CI 1.03 to 1.17) with similar results for serum iron (OR 1.07; 95% CI 0.98 to 1.16), and ferritin (OR 1.09; 95% CI 0.99 to 1.2), with the opposite result for TIBC (OR 0.92; 95% CI 0.86 to 0.99). Effect estimates were slightly larger in those with iron deficiency or anaemia.

Results were similar in the replication cohort (FinnGen) and were robust to sensitivity analyses of Mendelian randomisation.

Conclusions
Increasing measures of iron and related biomarkers are associated with increased risk of sepsis in a healthy adult volunteer cohort. MR analyses suggest this association is causal. Clinicians and policymakers should be aware of this potential risk when manipulating iron levels.
Introduction

Iron is a critical element for many biological processes and is potentially harmful if levels become too low or toxic when overloaded. Globally, iron deficiency remains a major problem in both low to middle and high-income countries. Although iron supplementation for those with iron deficiency anaemia (IDA) is uncontroversial, there remains significant uncertainty about the role of supplementation in other clinical scenarios, particularly in iron deficiency without anaemia (IDWA). Despite the lack of clear evidence of benefit in randomised trials, there is increasing use of intravenous iron both on and off label; often for symptoms attributed to iron deficiency.

Iron status is a complex trait, and no single biomarker reliably represents total body iron state. Cellular location, redox state, and availability of iron are all relevant in understanding iron state. Markers used in clinical assessment of acute iron status, that rapidly (over hours) alter with iron supplementation or in response to physiological demands, include serum iron and the total iron binding capacity (TIBC), which, as a ratio (serum iron / TIBC), form transferrin saturation (TSAT). TSAT levels clinically indicate the availability of iron for erythropoiesis and is low in iron deficiency and high in overload.

In contrast, ferritin – an iron storage protein – is generally considered a biomarker of iron body stores in a non-inflammatory state. TSAT and ferritin are used as the main diagnostic tests for iron deficiency anaemia worldwide and are measured more commonly than the other biomarkers. The master regulator for systemic iron homeostasis is the liver derived hepcidin that inhibits the only iron transporter, ferroportin, in iron-absorptive gut enterocytes and iron-recycling macrophages.

There has been longstanding interest in iron levels and the risk and outcome of infection due to the critical role of iron as a nutrient for both fungal and bacterial pathogens, and the balance between the host and pathogen in management of iron. Hepcidin is positively regulated by the inflammatory cytokine interleukin-6, resulting in as rapid reduction in serum iron and increases in serum ferritin resulting in iron replete macrophages. The inflammatory regulated hepcidin-ferroportin axis is a common response to bacterial infection in humans. This response is an attempt to reduce available iron to invading pathogens and aligns with evidence from multiple laboratory studies that many common pathogens grow more readily in serum that is high in iron.

The alteration of the iron homeostasis setpoint in infection and inflammation raises valid concerns about iron supplementation. The strongest evidence for risk and the link between iron supplementation and adverse infection outcomes was found from a large randomised controlled trial of iron and zinc supplementation in children from Zanzibar. The trial was stopped early due to
increased risks of severe illness and death in those assigned to the iron and zinc arm, with much of the increased risk attributed to malaria.

However, subsequent randomised trials have not identified this effect, and the data remain controversial. In adult settings, a recent meta-analysis of all randomised controlled trials of intravenous iron found increased risks of infection in those randomised to receive intravenous iron, but there was significant uncertainty around the effect size.

Here, we aimed to investigate the association between iron levels and sepsis using both an observational multi-cohort design and a Mendelian randomisation analysis, with independent validation, to determine whether changes in four iron biomarkers were causally associated with the risk of sepsis.

Methods:

Study design - overall:

An observational cohort study and two sample Mendelian randomisation analysis.

Data sources

For both analyses we primarily used UK Biobank, a volunteer cohort of approximately 500,000 participants, that contains both genetic, physical, and biomarker information, and is linked to UK electronic health records. Recruitment started in 2006, ended in 2010, and participants continue to be followed up. Data for this study was extracted in October 2021. UK Biobank received ethical approval from the Research Ethics Committee (REC reference for UK Biobank is 11/NW/0382). This study was performed under application number 52643.

For our MR analysis, exposures sources and our replication cohort are detailed below.

Study design – observational cohort:

Data sources and definitions

Approximately half of all participants in UK Biobank have associated primary care data (n = 222,081), including laboratory results. For our observational cohort, we extracted all serum ferritin levels (code
list in supplement) recorded in primary care data linked to UK Biobank participants. We excluded extreme values (>10,000). The index ferritin level was taken as the first recorded test result after the date the participant was recruited to UK Biobank (between 2006-2010). For participants with multiple ferritin test results, only the index ferritin level was used. All participants with available, linked data were included.

We extracted demographic information and potential confounders from UK Biobank data: smoking, alcohol usage, Townsend Deprivation Index, BMI, renal function, liver disease, presence of malignancy, and baseline inflammation (CRP on recruitment to UK Biobank). Variables were derived from UK Biobank questionnaire or algorithmic data. Included variables were all measured on recruitment and thus preceded ferritin testing and outcome ascertainment.

Statistical approach

The primary analysis used the raw ferritin level to estimate the risk of sepsis using logistic regression models adjusted for age, sex, UK Biobank recruitment centre, and the potential confounders listed above.

As very low ferritin (due to illness leading to iron deficiency) may alter the linearity of estimates, we also used restricted cubic spline modelling, using the rms package in R, and calculated specific estimates excluding those with likely iron deficiency (serum ferritin <50ug/L).10

Study design – Mendelian Randomisation

Source of instruments

For our instruments, we extracted GWAS summary statistics from a recent meta-analysis of three separate GWA studies on four iron biomarkers (iron, transferrin saturation (TSAT), total iron binding capacity (TIBC), and ferritin).11 The original studies were performed in Iceland (deCODE genetics, n = 285,664), Denmark (Danish Blood Donor Study, n = 33,727), and the UK (Interval Study, n = 43,059). Details on each studies recruitment, follow up, GWAS and the meta-analytic methodology are included in their publication.11 Each biomarker was inverse rank-normalised transformed before GWAS, so the effect sizes are reported as per standard deviation change. For each biomarker, this Genetic heritability (the proportion of variance explained by the SNPs alone) was estimated to be 16% for Iron, 22% TSAT, 25% for TIBC, and 30% for Ferritin.
Choice of primary instrument

For a primary biomarker of acute iron status we chose TSAT as this represents the biomarker most rapidly altered by iron supplementation, is the best predictor of haemoglobin response due to iron supplementation, and has the strongest prior relationship with infection outcomes, \(^6,12,13\)

Definition of instrument

For each biomarker, we extracted all SNPs that were available in the HRC-imputed UK Biobank genetic data and exposure data and met a threshold of \(p < 5 \times 10^{-8}\), then performed LD-clumping to remove correlated variants (max \(R^2 0.01\)), using the TwoSampleMR package.\(^{14}\)

Outcome definition

Cases of sepsis were identified in UK Biobank linked ICD-coded hospital admission or death data. ICD-10 codes A02, A39, A40 and A41 were used to identify sepsis. Cases were included if the code was in either the primary or secondary diagnostic position in the linked Hospital Episode Statistic (HES) data. All patients who had a code for sepsis before the age of 75 were included (13,260/16,173, or 82% of total cases), as the relative contribution of germline genetic variation on iron status on sepsis in extreme age was expected to be much smaller. As a sensitivity analysis, we included cases of sepsis at all ages.

GWAS

A case-control GWAS was performed of using regenie v2.2.4, on all UK Biobank participants of European ancestry.\(^{15}\) In house algorithms were used to perform quality control and define ancestry with details available elsewhere.\(^{16,17}\) GWAS was performed adjusting for age, sex, genetic chip, UK Biobank assessment centre and the first ten principal components.\(^{16}\)

Full details on the methodology are available in the Supplement S2. regenie was chosen as it reduces type 1 error when there is significant case control imbalance, as compared to other methods such as BOLT-LMM.\(^{15}\)
Statistical approach

Univariable two sample, Mendelian randomisation (MR) analyses were conducted using the R package TwoSampleMR to investigate total effect estimates between genetically predicted iron status (for each biomarker individually) with sepsis. This was based on the inverse variance weighted (IVW) method, which estimates the causal effect of an exposure on an outcome by combining ratio estimates using each variant in a fixed effect meta-analysis.

Testing for interactions with respect to ferritin and haemoglobin levels

As total iron status (e.g. iron deficiency defined by low ferritin) might affect MR estimates for the acute iron biomarkers, we ran specific analyses in those with varying levels of Hb and ferritin.

To do this, we generated weighted allelic polygenic risk score (PRS) generated for each UK Biobank participant for each biomarker. All SNPs from the MR analysis were included, with weighting of each SNP by the effect size of that SNP. With certain underlying assumptions, this allelic risk score can be then used to perform MR. We then extracted haemoglobin levels (from blood taken on recruitment to UK Biobank), and ferritin levels (from the primary care data, as detailed above). We also extracted sepsis cases occurring after blood sampling, using the same approach as in the observational data.

We then performed ordinary least-squares (OLS) regression for each PRS on haemoglobin and ferritin, individually, and extracted the residuals from this regression. In effect, this removes the PRS effect on each biomarker, an approach previously used to assess the dose-response relationship of other biomarkers. Subsequently, we then stratified these residuals into strata, and ran a logistic regression for each PRS on sepsis cases within each strata. In effect, this allows us to estimate whether MR estimates are altered in those who have differing levels of haemoglobin and/or ferritin.

For haemoglobin, we stratified into anaemic and non-anaemic (Hb < 125g/L for women, Hb < 135g/L for men). For Ferritin, we split into three cohorts: Iron deficient (<50ug/L), normal ferritin (50-450 ug/L), and high ferritin (>450 ug/L).
Sensitivity analyses

Mendelian randomization analysis assumes that a genetic instrument used to proxy a risk factor (1) is associated with the risk factor (“relevance”), (2) does not share a common cause with the outcome (“exchangeability”), and (3) affects the outcome only through the risk factor (“exclusion restriction”). To test relevance, we measured the F-statistic for each exposure for each biomarker, while the previous meta-analysis has shown a reasonable proportion of variance explained (>15% for each biomarker).11

To test the assumption of exclusion restriction we tested a weighted allelic risk score (described below) against confounders (sex, BMI, diabetes, deprivation and, smoking status) by OLS regression using a specific MR-PheWAS software (PHESANT).22 Finally we also performed a set of statistical sensitivity analyses that test assumptions of MR, including different meta-analytic methods: MR-Egger, weighted median, weighted mode, and iterative leave one out analyses, all of which test various assumptions of the MR approach.

Replication

The linear analysis was then replicated using the FinnGen R6 summary statistics for sepsis.23 As some SNPs were not available in the replication cohort, SNP proxies (LD > 0.8) were selected and harmonised to ensure the effect alleles matched using the gwasVCF and TwoSampleMR package if a SNP was not available.14

We report both the replication results, and a fixed effects meta-analysis of both cohorts using the meta package in R. 24

Power calculation

Given the sample size (~12,500 cases of sepsis), and coefficient of determination of exposure (R^2 0.2-0.3 depending on biomarker), our study had approximately 99% power to detect a causal effect of an OR of 1.1 for each SD change in the exposure. Formally, we calculated power with a sample size of 460,000 participants, an R^2 of 0.20, alpha at 0.05 and a case-to-control ratio of 40 to be 99.4% to detect an OR of 1.1 or more using the approach of Burgess et al.25
Reporting

This study is reported in line with the STROBE-MR reporting guidelines, available in the supplement.²⁶

Code and data availability

Access to individual data for UK Biobank is via application to the independent data access committee. For this paper, summary outcome GWAS were released to the OpenGWAS repository (https://gwas.mrcieu.ac.uk/datasets/ieu-b-5066/), and summary exposure data are available at deCODE.genetics website (https://www.decode.com/summarydata/), and therefore all MR results can be replicated using the TwoSampleMR package.

Patient and public involvement:

Patients and or the public were not involved in the design, analysis or reporting of this study

Results:

Observational data

In UK Biobank, we assessed all participants with primary care and linked EHR data (n = 222,081). In this cohort, 195,444 ferritin tests were performed on 82,678 participants. Supplementary Figure 1 describes the flow through the study. The mean ferritin for men was 148 ug/L, and 76ug/L for women, while the distribution was approximately log-normal (Supplementary Figure 2). Tests were much more common in women.

In the analysis population, we included those with ferritin levels taken after recruitment to UK Biobank (n = 72,865). This population differed from the cohort who were not tested, with more females (64% vs 53%), and with a different pattern of comorbidities (Table 1), reflecting the differences in illness conditioning on testing, and the observational associations with ferritin level.
Table 1: Associations between ferritin testing status and level on potential confounders.

<table>
<thead>
<tr>
<th>Ferritin Quartile:</th>
<th>Quartile 1, N = 24,858</th>
<th>Quartile 2, N = 24,857</th>
<th>Quartile 3, N = 24,857</th>
<th>Quartile 4, N = 24,857</th>
<th>Not tested, N = 146,600</th>
<th>p-value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferritin (ug/L)</td>
<td>14 (8, 21)</td>
<td>46 (38, 56)</td>
<td>91 (78, 107)</td>
<td>199 (156, 280)</td>
<td>n/a</td>
<td><0.001</td>
</tr>
<tr>
<td>Age at recruitment (years)</td>
<td>54 (47, 62)</td>
<td>58 (51, 64)</td>
<td>60 (53, 65)</td>
<td>61 (55, 65)</td>
<td>58 (51, 63)</td>
<td><0.001</td>
</tr>
<tr>
<td>Sex:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Female</td>
<td>19,903 (80%)</td>
<td>18,755 (75%)</td>
<td>15,922 (64%)</td>
<td>10,254 (41%)</td>
<td>74,156 (51%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>4,955 (20%)</td>
<td>6,102 (25%)</td>
<td>8,935 (36%)</td>
<td>14,603 (59%)</td>
<td>72,444 (49%)</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index at recruitment (kg/m2)</td>
<td>26.4 (23.5, 30.3)</td>
<td>26.4 (23.8, 29.9)</td>
<td>26.9 (24.3, 30.4)</td>
<td>27.9 (25.2, 31.1)</td>
<td>26.9 (24.3, 29.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown</td>
<td>6,050</td>
<td>6,403</td>
<td>6,345</td>
<td>6,150</td>
<td>36,096</td>
<td></td>
</tr>
<tr>
<td>Creatinine at recruitment (umol/L)</td>
<td>69 (60, 78)</td>
<td>69 (61, 81)</td>
<td>72 (61, 82)</td>
<td>77 (66, 90)</td>
<td>74 (64, 85)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown</td>
<td>24,367</td>
<td>24,323</td>
<td>24,235</td>
<td>24,308</td>
<td>143,255</td>
<td></td>
</tr>
<tr>
<td>CRP at recruitment (umol/L)</td>
<td>1.11 (0.57, 2.37)</td>
<td>1.25 (0.59, 2.12)</td>
<td>1.35 (0.64, 3.04)</td>
<td>1.67 (0.82, 3.33)</td>
<td>1.18 (0.62, 2.35)</td>
<td><0.001</td>
</tr>
<tr>
<td>Unknown</td>
<td>24,371</td>
<td>24,327</td>
<td>24,237</td>
<td>24,311</td>
<td>143,259</td>
<td></td>
</tr>
<tr>
<td>History of diabetes at recruitment:</td>
<td>1,548 (8.2%)</td>
<td>1,342 (7.2%)</td>
<td>1,216 (6.5%)</td>
<td>1,308 (7.0%)</td>
<td>4,762 (4.3%)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of cancer:</td>
<td>1,271 (5.1%)</td>
<td>1,571 (6.3%)</td>
<td>1,615 (6.5%)</td>
<td>1,887 (7.6%)</td>
<td>15,779 (11%)</td>
<td><0.001</td>
</tr>
<tr>
<td>History of liver disease:</td>
<td>154 (0.6%)</td>
<td>203 (0.8%)</td>
<td>264 (1.1%)</td>
<td>430 (1.7%)</td>
<td>146,600 (100%)</td>
<td><0.001</td>
</tr>
<tr>
<td>Townsend deprivation index:</td>
<td>-1.80 (-3.47, 0.95)</td>
<td>-1.84 (-3.50, 0.94)</td>
<td>-1.99 (-3.58, 0.83)</td>
<td>-2.03 (-3.60, 0.76)</td>
<td>-2.23 (-3.68, 0.28)</td>
<td><0.001</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Unknown</td>
<td>5,946</td>
<td>6,264</td>
<td>6,231</td>
<td>6,048</td>
<td>35,646</td>
<td></td>
</tr>
<tr>
<td>Alcohol intake frequency:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>24 (0.1%)</td>
<td>31 (0.2%)</td>
<td>22 (0.1%)</td>
<td>27 (0.1%)</td>
<td>109 (<0.1%)</td>
<td></td>
</tr>
<tr>
<td>Daily or almost daily</td>
<td>1,931 (10%)</td>
<td>2,512 (14%)</td>
<td>3,266 (18%)</td>
<td>4,847 (26%)</td>
<td>22,836 (21%)</td>
<td></td>
</tr>
<tr>
<td>Three or four times a week</td>
<td>3,144 (17%)</td>
<td>3,401 (18%)</td>
<td>3,851 (21%)</td>
<td>4,543 (24%)</td>
<td>27,058 (24%)</td>
<td></td>
</tr>
<tr>
<td>Once or twice a week</td>
<td>4,850 (26%)</td>
<td>4,710 (25%)</td>
<td>4,695 (25%)</td>
<td>4,586 (24%)</td>
<td>29,677 (27%)</td>
<td></td>
</tr>
<tr>
<td>One to three times a month</td>
<td>2,771 (15%)</td>
<td>2,449 (13%)</td>
<td>2,354 (13%)</td>
<td>1,662 (8.8%)</td>
<td>12,296 (11%)</td>
<td></td>
</tr>
<tr>
<td>Special occasions only</td>
<td>3,403 (18%)</td>
<td>3,085 (17%)</td>
<td>2,565 (14%)</td>
<td>1,821 (9.7%)</td>
<td>11,496 (10%)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>2,786 (15%)</td>
<td>2,404 (13%)</td>
<td>1,855 (10.0%)</td>
<td>1,321 (7.0%)</td>
<td>7,504 (6.8%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>5,949</td>
<td>6,265</td>
<td>6,249</td>
<td>6,050</td>
<td>35,624</td>
<td></td>
</tr>
<tr>
<td>Smoking status:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Prefer not to answer</td>
<td>81 (0.4%)</td>
<td>101 (0.5%)</td>
<td>84 (0.5%)</td>
<td>83 (0.4%)</td>
<td>403 (0.4%)</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>11,539 (61%)</td>
<td>10,521 (57%)</td>
<td>9,815 (53%)</td>
<td>8,883 (47%)</td>
<td>61,084 (55%)</td>
<td></td>
</tr>
<tr>
<td>Previous</td>
<td>5,693 (30%)</td>
<td>5,960 (32%)</td>
<td>6,616 (36%)</td>
<td>7,582 (40%)</td>
<td>37,828 (34%)</td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>1,596 (8.4%)</td>
<td>2,010 (11%)</td>
<td>2,093 (11%)</td>
<td>2,259 (12%)</td>
<td>11,661 (11%)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>5,949</td>
<td>6,265</td>
<td>6,249</td>
<td>6,050</td>
<td>35,624</td>
<td></td>
</tr>
<tr>
<td>Sepsis diagnosis:</td>
<td>889 (3.6%)</td>
<td>786 (3.2%)</td>
<td>818 (3.3%)</td>
<td>1,322 (5.3%)</td>
<td>4,651 (3.2%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

1 Median (IQR); n (%) 2 Kruskal-Wallis rank sum test; Pearson's Chi-squared test
Subsequently in the tested cohort, there were 2,399 diagnoses of sepsis recorded, with a median of 1,943 days (IQR 1,060 – 3,105) between the ferritin result and diagnosis of sepsis.

In logistic regression adjusted for age, biobank recruitment centre, smoking and alcohol usage, deprivation, and clinical comorbidities, ferritin level was associated with sepsis (OR 1.05; 95% CI 1.04-1.06, p < 1.1 x 10⁻¹¹ for every 100ug/L increase in ferritin (Supplementary Table 1 for full regression output).

We then fitted restricted cubic spline models to explore non-linearity (Figure 1). There was a clear U-shaped relationship with those at both extremes of ferritin levels at higher risk. Supplementary Figure 3 shows the effect stratified by sex, where there was little difference in shape, but some difference in magnitude, with women having comparatively more risk with the same ferritin level, while Figure 2 shows the association within the normally accepted reference range for ferritin (50-400) for both men and women.

Figure 1: Restricted cubic spline plots of ferritin level and odds ratio for sepsis.
The inflection point at which increased ferritin was associated with increased risk was 105ug/L in men, and 68ug/L in women, both of which are well within the normal range of ferritins recorded (median Ferritin for men 108ug/L, for women 54ug/L).

In order to explore only the effects in those without iron deficiency, we re-ran the linear analyses excluding all with ferritin results below 50ug/L. Effect estimates were similar, although larger, with an OR of 1.07 (95% CI 1.05-1.08, p = 5.8 x 10^-13).

Figure 2: OR for sepsis with increasing ferritin within a physiological reference range.

![Graph showing OR for sepsis with increasing ferritin](image)

In summary, there was a U-shaped association with risk of sepsis and ferritin levels; with higher risk at increasing ferritin levels, but also at extreme low values. However, over the physiological normal reference range, the association was broadly linear, with increasing ferritin associated with increased risks of sepsis.
Mendelian randomisation

Figure 3 describes the exposure and outcomes used for this analysis.

GWAS results

To generate outcome summary statistics, we first performed a GWAS for sepsis in UK Biobank. In total 12,664 cases were included, with 462,869 controls, giving a disease incidence of 2.5%. In total, we tested 12,224,356 variants. Manhattan and QQ-plots for GWAS performed as part of this study are available in Supplementary Figure 4. Summary statistics are available at the IEU Open GWAS repository (https://gwas.mrcieu.ac.uk/datasets/ieu-b-5066/). The top GWAS hits per chromosome are described in Supplement S3.

Exposure statistics

For our primary analysis, we included 17 SNPs for TSAT with a mean F-statistic of 325.1 (Conventionally, scores of >10 are consistent with strong instruments). The minimum F-statistic included was 36.4. For serum iron, we included 23 SNPs (mean F statistic 186.7), for TIBC 26 SNPs (mean F statistic 214.3), and 50 SNPs for Ferritin (mean F statistic 86.7). Details of included SNPs, F-statistics, and data on the other biomarkers is included in Supplement S4.

As the original GWAS were performed using transformed data, the effect sizes are in relation to standard deviation increases in rank-normalised transformed values. In the DECODE Icelandic cohort,
the standard deviation on untransformed data for TSAT was 11.6%, for serum iron 6 µmol/L, for ferritin 224µg/L, and for TIBC it was 12.6 µmol/L.

Replication cohort

In our replication cohort (FinnGEN), there were 7,463 cases of sepsis and 234,755 controls, an incidence rate of 3.1%. As not all SNPs were available in FinnGEN, we used harmonised, proxy SNPs where LD proxied SNPs were available, resulting in 16 SNPs available for TSAT, 22 for Iron, 25 for TIBC and 50 for Ferritin.

Primary analysis results

In IVW meta-analysis using the UK Biobank GWAS, increasing TSAT was associated with increasing incidence of sepsis (OR 1.17 for each SD increase in TSAT; 95% CI 1.09 – 1.27, Figure 3, Table 3), with similar results for serum iron (OR 1.13; 95% CI 1.03 – 1.23), and ferritin (OR 1.17; 95% CI 1.04 – 1.29), with the opposite result for TIBC (OR 0.91; 95% CI 0.83 – 0.99). Scatter plots for the other biomarkers are available in Supplementary Figure 5.

Figure 3: Scatter plot for increasing TSAT and risk of sepsis
In the replication cohort we identified broadly similar effect sizes (OR 1.05 for TSAT, 95% CI 0.94 – 1.16, OR 1.24 for serum iron, 95% CI 1.12 – 1.75), although given the smaller sample size, confidence intervals were wider. In this cohort, increasing serum iron had a larger effect size than TSAT, although all four biomarkers had concordant effects. Scatter plots are available in Supplementary Figure 6.

When meta-analysing both cohorts together (Figure 4, Table 3), the summary estimates for each SD increase in iron biomarker was OR 1.09 (95% CI 1.02-1.15) for TSAT, OR 1.12 (95% CI 1.01 – 1.19) for iron, OR 1.08 (95% CI 0.98 – 1.18) for ferritin, and OR 0.93 (95% CI 0.93 – 0.98) for TIBC.

Table 3: Meta-analysed estimates for each biomarker across both FinnGen and UK Biobank.

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FinnGen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSAT</td>
<td>1.05</td>
<td>0.94</td>
<td>1.16</td>
<td>0.41</td>
</tr>
<tr>
<td>Iron</td>
<td>1.24</td>
<td>1.03</td>
<td>1.45</td>
<td>0.04</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.94</td>
<td>0.84</td>
<td>1.04</td>
<td>0.23</td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.04</td>
<td>0.85</td>
<td>1.23</td>
<td>0.70</td>
</tr>
<tr>
<td>UK Biobank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSAT</td>
<td>1.17</td>
<td>1.09</td>
<td>1.24</td>
<td><0.001</td>
</tr>
<tr>
<td>Iron</td>
<td>1.13</td>
<td>1.03</td>
<td>1.23</td>
<td>0.02</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.91</td>
<td>0.83</td>
<td>0.99</td>
<td>0.02</td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.17</td>
<td>1.04</td>
<td>1.29</td>
<td>0.01</td>
</tr>
<tr>
<td>Combined – IVW meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSAT</td>
<td>1.11</td>
<td>1.05</td>
<td>1.20</td>
<td><0.001</td>
</tr>
<tr>
<td>Iron</td>
<td>1.15</td>
<td>1.05</td>
<td>1.26</td>
<td>0.003</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.92</td>
<td>0.87</td>
<td>0.98</td>
<td>0.01</td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.13</td>
<td>1.02</td>
<td>1.25</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Effect of measured iron status on MR estimates

It is possible that the effect of iron related genetic variants varies by iron status. That is, it may be that increases in e.g. TSAT have more or less of an effect in those who are clinically iron deficient or iron overloaded (low or high ferritin) or those with differing levels of haemoglobin. To assess this, we used a polygenic risk score for each biomarker derived from the above SNPs and measured the association with sepsis in strata of haemoglobin and ferritin levels, separately.

We used two cohorts for this: the full cohort, where haemoglobin levels were available on admission for nearly all participants with genetic data (n = 448,978), and those with linked primary care data, genetic data, and ferritin levels (n = 75,277). For haemoglobin, we stratified into anaemic and non-anaemic as per NICE definitions (Hb < 125g/L for women, Hb < 135g/L for men), as there were very...
few (<300) polycythaemic patients. For Ferritin, we split into three cohorts: Iron deficient (<50ug/L), normal ferritin (50-450 ug/L), and high ferritin (>450 ug/L).

As described in the methods, we performed each regression on the residuals of the regression of the PRS on ferritin and haemoglobin, in order to avoid any collider bias. For all associations, there was no correlation between the PRS and the residual haemoglobin or ferritin, and the correlation between biomarker and residuals was >=0.997 in all cases.

For haemoglobin, effect estimates were in the same direction (Table 2, Figure 5) for both strata and effect sizes were actually larger for three of the four biomarkers (TSAT, Iron, and Ferritin), suggesting the effect of the iron PRS was greater in those with anaemia.

Figure 5: Effect estimates for each PRS in anaemic and non-anaemic population in UK Biobank

![Figure 5](https://example.com/image.png)
Table 2: Effect estimates for each PRS in the anaemic and non-anaemic population in UK Biobank

<table>
<thead>
<tr>
<th></th>
<th>Normal (n = 413,264)</th>
<th>Anaemic n = 34,122</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>P value</td>
<td>Estimate</td>
<td>P value</td>
</tr>
<tr>
<td>TSAT</td>
<td>1.17 (1.09 - 1.26)</td>
<td><0.001</td>
<td>1.3 (1.07 - 1.52)</td>
<td>0.022</td>
</tr>
<tr>
<td>Iron</td>
<td>1.13 (1.02 - 1.24)</td>
<td>0.035</td>
<td>1.46 (1.16 - 1.76)</td>
<td>0.014</td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.13 (1 - 1.25)</td>
<td>0.072</td>
<td>1.36 (1.02 - 1.7)</td>
<td>0.073</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.88 (0.79 - 0.97)</td>
<td>0.006</td>
<td>0.96 (0.72 - 1.2)</td>
<td>0.735</td>
</tr>
</tbody>
</table>

For ferritin, we saw a broadly similar effect both TSAT and Iron with the largest effect estimates in those with the lowest ferritins. Importantly, for patients with high ferritins (>450), we saw a reversal of the effect, with increasing PRS for iron associated with a reduction in the risk of sepsis, although with significant uncertainty due to the low numbers of patients with high ferritin results.
Figure 6: Effect estimates within each stratum of ferritin for each PRS:

Table 3: Effect estimates in each stratum of ferritin level

<table>
<thead>
<tr>
<th></th>
<th>Normal (50-450 ug/L)</th>
<th>Low Ferritin (<50 ug/L)</th>
<th>High ferritin (>450 ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>P value</td>
<td>Estimate</td>
</tr>
<tr>
<td>TSAT</td>
<td>1.19 (0.97 - 1.42)</td>
<td>0.128</td>
<td>1.33 (1.03 - 1.64)</td>
</tr>
<tr>
<td>Iron</td>
<td>1.31 (1.01 - 1.62)</td>
<td>0.077</td>
<td>1.43 (1.02 - 1.85)</td>
</tr>
<tr>
<td>Ferritin</td>
<td>1.19 (0.85 - 1.53)</td>
<td>0.317</td>
<td>1 (0.52 - 1.47)</td>
</tr>
<tr>
<td>TIBC</td>
<td>0.99 (0.75 - 1.23)</td>
<td>0.956</td>
<td>0.92 (0.6 - 1.25)</td>
</tr>
</tbody>
</table>
Testing assumptions of MR

We then tested the three main assumptions of MR and performed sensitivity analyses. Firstly, we tested for pleiotropy. Using our PRS in all UK Biobank participants, we looked for associations with potential confounders of sepsis (Supplementary Table 2). We found no association between age, sex, and most clinical comorbidities, although there were associations identified for liver disease (OR 1.03; 95% CI 1.01-1.05, p = 0.002), and a history of cancer (OR 1.01; 95% CI 1.00-1.03, p = 0.01). Both of these are known associations of iron overload.

Subsequently, we performed a leave one out analysis; whereby each SNP is removed from the MR one at a time, to ensure no individual SNP is driving the results. All results were robust to the LOO analysis, with little change in estimates (Supplementary Figure 7). Importantly, results were robust with or without inclusion of variants in the HFE gene, the commonest genetic cause of iron overload in the U.K.

Secondly, we meta-analysed the results using the MR-Egger approach and weighted median approach (Figure 3, Figure S4). Although the effect size of the estimates differed slightly, we found similar results regardless of statistical approach. Finally, we looked at the intercept of the MR-Egger analysis. If the intercept differs strongly from zero, this can represent confounding. However, all intercepts were close to 0, with formal tests for heterogeneity negative (Intercepts 0.002 for TSAT; -0.006 for iron; -0.001 for ferritin, -0.002 for TIBC, all p > 0.3).

Sensitivity analyses

As a sensitivity analysis for case definition, we ran the same analysis including cases diagnosed in those over 75 years old. This showed broadly the same effect estimates, although confidence intervals were broader. Supplementary Table 3 includes these estimates, and the IVW weighted MA results with FinnGen.
Discussion:

Summary

In our observational cohort study using data from UK Biobank, ferritin levels had a U-shaped relationship with sepsis, with greater odds of sepsis in those with iron deficiency, but also once ferritin rose above around 80ug/L in women, and 100ug/L in men, with a relatively linear increase in risk.

Mendelian randomisation (MR) analyses suggest there is an increasing risk of sepsis with increasing serum iron and transferrin, and with reduction in total iron binding capacity. These increases were seen with physiologically relevant increases in iron levels, with an OR of 1.11 for an increase in TSAT of one SD (11%), similar to changes in TSAT observed in both IV and oral iron supplementation.

Importantly, effect estimates were actually larger in those who were iron deficient or anaemic for both TSAT and iron, suggesting that increases in iron even in those who have reduced iron stores (e.g. low ferritin) are associated with an increased risk of sepsis. For those with extremely high ferritin levels, we saw a reversal of effect for one biomarker (iron), although with wide confidence intervals around the point estimate.

Effect sizes were broadly similar in our replication cohort, despite the well-recognised heterogeneity in sepsis presentation, definition, and coding across cohorts. 28

Strengths and weaknesses

This study has many strengths. Firstly, it combines both traditional observational epidemiology with two sample MR on both summarised and individual data, not relying on any individual statistical approach. Secondly, UK Biobank has high quality, curated genetic and phenotypic data, and the Hospital Episode Statistic (HES) based coding has been shown to be reliable in many other studies. Thirdly, the genetic instruments used as instrumental variables in MR satisfy all the testable assumptions of instrumental variables, and did not associate with common and important confounders.

In common with many observational studies; this study has weaknesses. Firstly, for the observational cohort, large differences in covariates across ferritin levels mean that associations with increased infection are difficult to interpret causally, as there is likely significant residual confounding. The U-shaped association, identified in other biomarkers (e.g. lymphocyte count, BMI 29,30), with increased
risk in those with severe iron deficiency likely represents the increased risk associated with the
disease driving severe iron deficiency (e.g. malignancy).

Secondly, common to all MR based studies, interpretation of an estimate for lifelong exposure to iron
via SNPs in to other contexts such as iron supplementation requires justification. In particular, iron
exposure via supplementation is generally short lived, increases iron biomarkers over a short period
(hours to days), and by a much larger amount than via most common SNPs. However, it is well
established that MR estimates for vitamin D supplementation and other nutrient supplementation
have matched randomised controlled trial data well, in some cases having nearly exactly the same
estimate of effect.19,31

Thirdly, the heterogeneity of sepsis presents both a strength and a weakness. Sepsis is caused by a
variety of bacteria, fungi, and viruses, only some of which scavenge free iron as a nutritional source
(e.g. \textit{S. aureus}, a common and important pathogen, uses largely heme-derived iron, and bacterial
growth has been shown to independent of serum iron levels6). As we were unable to access pathogen
specific data, we could not identify pathogen-specific effects. This is compounded by the
heterogeneity of clinical presentation and coding of sepsis, which has the effect of also reducing
power significantly.28,32 In that context, we were comforted to see similar effect sizes across both UK
Biobank and FinnGen, supporting our main findings and supporting the biological plausibility of the
effect.

Finally, our approach in using residuals to develop strata in which to generate specific MR estimates
allows us to make inference on whether MR estimates are the same in important subgroups (e.g.
aemic patients). However, the reversal of the effect estimate for increasing iron in those with high
(>450 ug/L) ferritin was unexpected. Although it is possible this effect estimate is real, it may be that
this represents an unaccounted-for collider bias (those who have high ferritin despite a low PRS for
iron have a more sinister cause for their hyperferritinaemia).

\textit{Comparisons with other literature}

This is the first paper to use MR to examine the association between iron status and sepsis. However,
one previous study performed an MR-PheWAS of iron status in UK Biobank, with the strongest
association being skin and soft tissue infection (OR 1.25; 95% CI 1.1-1.42 for each SD increase in
serum iron).33 Although this study did not identify an association with sepsis, there were fewer cases
(7,628 vs 15,614 in our analysis) at the time in UK Biobank. Secondly, a recent study of patients who
carry mutations in the gene HFE leading to hereditary hemochromatosis, the commonest cause of iron overload in the UK, identified an increased risk of pneumonia in male patients carrying HFE variants.34

In non-genetic literature, there have been a number of randomised trials of iron supplementation, some of which have measured infection as an outcome. These are summarised in a recent meta-analysis of 154 randomised trials of intravenous iron that found an increased risk of infection (RR 1.16; 95% CI 1.03-1.29), although there was marked heterogeneity across studies, and intravenous iron was compared against both “no iron”, and iron supplementation.

Although it is difficult to directly compare genetic instruments that associate with lifelong iron status and iron supplementation, this data is consistent with trial data that suggests iron supplementation is associated with an increased risk of severe infection. The odds ratio for sepsis with each increasing standard deviation of TSAT from our meta-analysis of both cohorts (1.11, 95% CI 1.05-1.20), should be put in the context that taking an oral iron supplement transiently increases TSAT by around 2-3 standard deviations for around 8 hours35; while intravenous iron increases TSAT by around a standard deviation for at least three months in non-anaemic populations with chronic kidney disease.36

One recent experimental study explored the effect of oral iron supplementation on bacterial growth in healthy adults, and identified an increase in TSAT from 42.1\% (SD 12.5\%) to 75.7\% (SD 18\%) and total serum iron increased from 30.3 μmol/L (SD 10.2) to 53.0μmol/L (SD 15.8) at four hours after iron supplementation, and identified TSAT as the key driver of bacterial growth, with positive associations at all levels of transferrin saturation.

As such, our estimates are remarkably consistent with that of a recent meta-analysis which found a RR of 1.16 (95% CI 1.03 – 1.29) for intravenous iron vs oral iron and/or no iron, a broadly similar effect size given the approximately 1 SD increase in iron associated with IV iron as compared to oral iron.

Our findings and those from recent trial and in-vitro data, provide further evidence that iron state is a predictor of risk of severe infection, and suggest caution in iron supplementation in areas without robust evidence of benefit.

\textit{Implications for practice:}

These results support caution in prescription of oral and/or intravenous iron and suggest a consideration of the risk of severe infection in those that are prescribed it. Clinicians should also consider the length of course of iron supplementation, and ideally aim for it to be as short as possible.
Implications for research:

Although these estimates support the trial literature, ongoing research should focus on estimating absolute risks of severe infection across differing situations and with differing baseline iron levels. Further mechanistic understanding of why iron increases the risk of sepsis, and the implications for iron management within infection, are warranted.

Conclusion:

Observational data shows ferritin levels have a U-shaped relationship with sepsis, but the odds of sepsis increase even within the normal range of iron levels. Mendelian randomisation analyses show that physiologically relevant increases in iron biomarkers causally associated with an increased risk of sepsis, regardless of baseline iron status.

These findings are in keeping with the hypothesis that iron supplementation increases the risk of severe infection and have implications for iron supplementation programmes in non-anaemic adults.
Funding, support and the role of the funding source

FH’s time was funded by the GW4-CAT Wellcome Doctoral Fellowship Scheme. UK Biobank was funded by the Wellcome Trust, the Medical Research Council, the NIHR, and a variety of other charities (https://www.ukbiobank.ac.uk/learn-more-about-uk-biobank/about-us/our-funding). FinnGen is a public-private partnership (https://www.finngen.fi/en/access_results) funded by multiple institutions across Finland. We want to acknowledge the participants and investigators of the FinnGen study. PG’s time was funded by the Ser Cymru programme, the Welsh Government, and the EU-ERDF.

The funder had no role in the design, analysis, or reporting of this study.

Conflicts of interest:

No author has any relevant conflicts of interest.

Transparency declaration

The lead author* affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

*The manuscript’s guarantor.

References:

blinded randomised controlled trial of intravenous iron (ferric Derisomaltose (FDI)) in Iron
deficient but not anaemic patients with chronic kidney disease on functional status. BMC