An intermediate step in bridging the gap between evidence and practice: developing and applying a methodology for “general good practices”

Heléna Safadi¹*, Judit Lám¹, Ivett Baranyi¹, Éva Belicza¹

¹ Health Services Management Training Centre, Faculty of Health and Public Administration, Semmelweis University, Budapest, Hungary

*Corresponding author
E-mail: safadi.helena@emk.semmelweis.hu (HS)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The gap between evidence and clinical practice has been in the focus of researches for decades. Although successful implementation means the new knowledge must work in particular environments, it doesn’t mean that the entire process should exclusively be executed by the individual institutes. This is the point where we assumed that an intermediate step, the “general good practice”, could help to ensure that translation is done in a more professional way.

The development of the general good practice methodology was based on our infinitE model, which organized the factors of successful translation into an evidence-editing-embedding-effect on practice framework, using tools from the disciplines of Evidence-Based Medicine, Quality Improvement and Change Management.

The methodology organised the editing and embedding part of the development into a process involving three full-day sessions carried out with different health professionals, experts and moderators. After pilot testing, it was finalized and applied to other topics as well.

The methodology presented in detail in this paper, centred on flow chart, process analysis, failure mode identification and Kotter’s 8-step model. Beside the pilot topic of the institutional process of resuscitation, the methodology has also proved applicable to more than ten other topics, meaning that at least all the core elements of the proposed bundle of general good practice have been produced in the development process.

Compared to the guidelines, general good practices demonstrate the evidence in operation, helping to develop workflows, responsibilities, documentation, trainings, etc. and can also be a starting point for the digitalisation of care processes.

The next step is to examine how healthcare institutions can build on these in their own editing and embedding activities, and what the results will be. Further studies could explore the applicability of the development methodology in different healthcare systems or at different levels of maturity in terms of quality.
Introduction

The gap between evidence and daily clinical practice is widely known and has been in the focus of researches for decades. Investigating this problem and the underlying causes usually starts with identifying the barriers and facilitators to implementation.[1-9] In a scoping review, Fisher et al. grouped the barriers into three levels: personal factors that relates to physicians’ knowledge and attitudes, guideline-related factors and external factors.[3] A previous systematic review identified similar items with the additional element of patient barriers and classified them into seven categories, namely cognitive-behavioral barriers, attitudinal or rational-emotional barriers, professional barriers, barriers embedded in the guidelines or evidence, patient barriers, support or resources and system and process barriers.[9] These factors do not seem to vary much in the different areas of healthcare, be it general practice [5], long-term care [6] or for example prescribing [1].

Many different frameworks, theories or models have been developed to overcome these barriers and facilitate the translation process. Two recent reviews were carried out [10-11], both of which collected and classified these works according to Nilsen [12]. Huybrechts et al focused on the process models and the determinant frameworks, identifying their common elements. They found that the core phases of implementation are the development, translation and sustainment phase, while intended change, context and implementation strategies were highlighted as core components.[11] On the other hand, the aim of Esmail et al was to help users to select from the many existing concepts, so they categorized 36 works according to target audience, user level and Nilsen classification. Then comparison were made within each category to reveal similarities and uniqueness.[10] However, the situation is complicated by the fact that studies using implementation frameworks do not describe well their application and operationalization.[13-15] Reporting guidelines can alleviate the problem to some extent by helping readers assess the applicability of new knowledge to their own context.[16-18] We
ourselves used SQUIRE 2.0 (Standards for Quality Improvement Reporting Excellence) when compiling our manuscript.[16]

Our study focused primarily on organizational implementation. However, we wanted to develop a method that would facilitate the implementation of an evidence in several institutions at the same time. We started from the assumption that although successful implementation means the new knowledge has to work in particular environments, it doesn’t mean that the whole translation process should exclusively be executed by the individual institutes or their representatives. Part of the process is still generalizable, either because the nature of the evidence allows it or because the context and actors show similarities. Accordingly, our aim was to develop a methodology that shows how to derive the general part of the implementation from the evidence. We named this general, intermediate state “general good practice”, which is – in our reading – a detailed frame for specific health service activities and systematic considerations of what and how to build on this frame. In this way, it can be clearly distinguished from the institutional good practice, which is usually referred to as good practice or best practice and which is the effective implementation of specific health care activities in a given institution. To get to general good practice, we first had to set up a framework that would organize the existing knowledge and our experience in implementation science in a way that would suitable for building such a methodology.

Materials and Methods

We chose to use a disciplinary approach to gain the information on what knowledge is needed for a successful translation, because it was able to show what possible tools could be included in the development of general good practice (GGP). Glasziou et al explored the importance of the relationship between evidence-based medicine (EBM) and quality improvement (QI)
pointing out that if EBM helps us “do the right things” while QI tells us to “do things right”,
together we can “do the right things right”. [19] We examined in more detail the determinant
frameworks that we considered most relevant to our context, since, according to Nilsen, they
“specify types (also known as classes or domains) of determinants and individual determinants,
which act as barriers and enablers (independent variables) that influence implementation
outcomes (dependent variables). Some frameworks also specify relationships between some
types of determinants. The overarching aim is to understand and/or explain influences on
implementation outcomes, e.g. predicting outcomes or interpreting outcomes
retrospectively.”[12] We have found that, alongside EBM and QI, change management (CM)
is the main discipline with a broader perspective that includes e.g. organizational culture,
leadership, project management, general and human resource management or behavioural
science to be applied in implementation. To demonstrate, Table 1 shows how the elements of
the different determinant frameworks relate to these three disciplines. We have listed the
frameworks that were identified as determinant ones in the two reviews mentioned above[10-
11] with the exception of five that were not found to be relevant, either because they lacked an
organizational focus, included phases, levels or barriers rather than classical determinants, or
were specific to social care [9, 20-23]. At the same time, two additional frameworks [24-25],
previously known to us and considered relevant, were added, making a total of 16 conceptions
examined [24-39].

Table 1: The elements of different determinant frameworks in the light of disciplines

<table>
<thead>
<tr>
<th>Framework/Discipline</th>
<th>Evidence-based medicine (EBM)</th>
<th>Quality improvement (QI)</th>
<th>Change management (CM)</th>
<th>Evaluation by EBM, QI, CM EFFECT ON PRACTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consolidated Framework for Implementation Research (CFIR)[26]</td>
<td>- Intervention characteristics</td>
<td>- Intervention characteristics - Outer setting - Inner setting</td>
<td>- Intervention characteristics - Outer setting - Inner setting - Characteristics of individuals</td>
<td></td>
</tr>
<tr>
<td>Revised Promoting Action on Research Implementation in Health Services (PARiHS) [27]</td>
<td>-Evidence and Evidence-Based Practice Characteristics</td>
<td>-Process</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Contextual Readiness for Targeted Evidence-Based Practice Implementation</td>
<td>-Contextual Readiness for Targeted Evidence-Based Practice Implementation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Provider Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Characteristics of the Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual Model for Considering the Determinants of Diffusion, Dissemination, and Implementation of Innovations in Health Service Delivery and Organization [29]</td>
<td>-The innovation</td>
<td>-System Antecedents for Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-System Readiness for Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Adopter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Understanding user context framework for knowledge translation [30]</td>
<td>-The research</td>
<td>-The user group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-The research</td>
<td>-The issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-The researcher-user relationship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The interdisciplinary conceptual framework of clinicians' compliance with evidence-based guidelines [31]</td>
<td>-Guideline characteristics</td>
<td>-System characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Clinician characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-System characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Practical, Robust Implementation and Sustainability Model (PRISM) [32]</td>
<td>-Program (Interventions)</td>
<td>-Program (Interventions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Program (Interventions)</td>
<td>-External environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-Implementation and Sustainability Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conceptual Framework: Factors That Determine the Rate of Adoption of Innovations from</td>
<td>-The Adopting Organization</td>
<td>-The Innovation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-The Dissemination Infrastructure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research into Practice[33]</td>
<td>Detemrnants and Consequences of Implementation Effectiveness[34]</td>
<td>-The External Environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Determinants and Consequences of Implementation Effectiveness[34] | -Climate for implementation
-Skills
-Incentives and disincentives
-Absence of obstacles
-Innovation values fit
-Commitment | -Strategic accuracy of innovation adoption
-Implementation effectiveness
-Innovation effectiveness |
| Conceptual framework describing key elements that influence implementation of change in primary care[35] | -Organization
-Professional
-Intervention | -External context
-Organization
-Professional |
| Generic Implementation Framework (GIF)[36] | -Innovation
-Context domains | -Context domains
-Strategies
-Factors |
| The Ottawa Model of Health Care Research[37] | -Practice Environment
-Potential Adopters
-Evidence-Based Innovation
-Transfer Strategies | -Practice Environment
-Evidence-Based Innovation
-Transfer Strategies |
| Theoretical Domains Framework (TDF)[38] | -Knowledge
-Skills | -Skills
-Social/professional role and identity
-Beliefs about capabilities
-Optimism
-Beliefs about consequences
-Reinforcement
-Intentions
-Goals
-Memory, attention and decision processes
-Environmental context and resources
-Social influences
-Emotion
-Behavioural regulation |
| Conceptual model of evidence-based practice implementation in public service sectors[39] | -Inner context factors | -Outer context factors
-Inner context factors |
| SHIFT-Evidence[24] | -Act scientifically and pragmatically | |
Once the evidence has been identified as worthy of implementation in the light of EBM, the elements belonging to QI allow us to tailor the practice so that it is capable to produce the evidence. This group of activities can therefore be called editing. However, at this point we are still standing at a theoretical station. In order for this to be translated into real practice, we need to change the existing practice accordingly. To express that this change must be permanent, we can use the term embedding to name this part. And this is precisely the area to which the elements of CM belong. Adding to EBM and QI, CM therefore can show us “to achieve right to do the right things right”. As a result, the effect on practice can be assessed using measurements of these three disciplines. As evidence, editing, embedding and their effect on practice are all connected to each other, exist simultaneously and forms an ever-recurring process, we represent them along an infinite sign, creating the concept of infinitE (Fig 1).

Fig 1: a) The concept of infinitE b) Research phases and general good practice in the light of the infinitE concept

Based on this concept of ours, a methodology for the development of general good practice was developed in the framework of the European Union funded project “Professional Methodological Development of the Healthcare System” Patient Safety sub-project in Hungary. An initial methodology was put together by a core group of patient safety and quality management experts, and then validated by a wider group of experts from around the country.
with diverse healthcare experience, including professionals from all the four medical faculties in Hungary, with no proposal for change.

As the project’s expectations limited our scope somewhat, we drew evidence from two main sources. Firstly, we collected good practices from healthcare institutions through an online survey. In less than two months, 134 practices were submitted, all of which were assessed by two independent experts using an evaluation form, which was designed to map, among other things, the importance of the topic and the evidence behind it, the size of the patient population concerned, the range of specialties and occupational groups involved, the expected impact and the difficulties of design. The wider group of experts decided by consensus on which topic to develop further, considering the results of the evaluations. On the other hand, the guides produced in another strand of the sub-project were used as a source of evidence, as they were also expected to have associated good practices.

Regarding the editing part, we decided to first apply cause analysis in order to understand the factors that make the evidence not work well in practice and to respond to these by developing a detailed process of relevant care activities. To illustrate the process, we have proposed the ARIS business model diagram, which also facilitates process analysis by showing for each step the input and output event, the actors, and the input and output information or documentation needs.[40] The focus here was therefore on identifying those elements which, whatever the circumstances, seem to be generally necessary for the evidence to be take shape. As an additional aid, we have also designed a tabular representation of the information, where other elements of the process analysis not visible in the diagram, such as the devices, the location, the time or even the audit criteria, can be included. Next, we added the identification of possible failure modes to the previously identified process steps. Finally, according to the Donabedian model, a systematic definition of some structure, process and outcome indicators was placed at the end of the editing phase.
As for the embedding part, among the many change management frameworks, Kotter’s 8-step model was chosen for use, partly because it is sufficiently didactic to be followed by those less familiar with this discipline, and partly because the many areas and factors related to change management can be easily associated with the steps of the model, and thus provide a complex framework for potential users.[41] To set up a change management plan based on Kotter’s model, the following factors were considered:

- Basic conditions for implementation without which it is not worth starting
- Elements of corporate culture that are key to good practice
- Stakeholder analysis (potential stakeholders, their interests and influence)
- Level of change envisaged (e.g. individual, department, organizational)
- Possible forms of resistance and their possible solutions
- Proposed composition of the implementation team
- Associated training needs
- Potential communication channels and content (especially at the beginning, at the first success and on an ongoing basis)
- Further consideration for the 8-step model

The editing and embedding parts were designed to be carried out during a three months period with three face-to-face, full-day meetings, by a team with members from those who sent good practices in the related topic, experts in the field and moderator(s) with patient safety and quality management experience. In the period between the meetings, the preparation of related materials was done through a collaborative online editing interface.

The wider group of experts chose the institutional process of resuscitation as the topic for piloting the methodology, as it can affect every departments and professionals in a hospital, has a great emphasis on correct execution and on collaboration between actors, and because six different institutions submitted good practices in this area, including a cardiology institute, a
mixed profile city hospital, two children’s hospitals, an ambulance service and an outpatient
clinic, which provided a great opportunity to see how a process could be generalised. The three
meetings of the pilot development were followed live from another room by the members of
the expert groups, which not only allowed them to see the methodology in action, but also
served as a model for future moderators, who were selected from the wider group of experts.
After the pilot, the methodology of developing general good practice was finalized and applied
to many other topics. We regularly discussed the experiences and comments of team members
and expert groups in our meetings to draw conclusions and modify the development process
where necessary.
The study of the effect on practice was part of a later stage of the research (Fig 1). It is because
in order for the institutions to be able to use the results of the development of general good
practices, their content and possible uses first had to be explained to them. To this end, training
courses were designed and delivered, the methodology of which and the combined effect of the
development and training of general good practices will be presented in a forthcoming article.
For now, we focused our attention on the methodology for the development of general good
practices.

Results
The pilot development was successfully carried out with the planned three meetings in a three
months period. The development team consisted of a delegated representative from each of the
six institutions submitting a good practice, a moderator and an assistant moderator. The
delegates also represented different occupational groups, including an anaesthesia and intensive
care specialist - who was also a paediatrician-, a cardiologist, a director general, a neonatologist,
an ER nurse, a healthcare manager – who was also a graduate nurse – and a quality officer - all
of them played a key role in the development of their institution’s good practice. The moderator and the assistant moderator came from the core group of patient safety and quality management experts, and were in continuous contact with the rest of the core group.

The outputs of the general good practice development for the institutional process of resuscitation are shown in Table 2.

Table 2: Outputs of the pilot and the final proposed bundle of general good practice

<table>
<thead>
<tr>
<th>OUTPUTS OF THE PILOT DEVELOPMENT</th>
<th>PROPOSED BUNDLE OF GENERAL GOOD PRACTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Detailed flow chart (S1 Fig.)</td>
<td>• Detailed flow chart (or list of system elements for a systems approach)</td>
</tr>
<tr>
<td>• Process table (S1 Table.)</td>
<td>• Process table (or characterisation of system elements for a systems approach)</td>
</tr>
<tr>
<td>• Table of the potential failure modes and the potential underlying causes (S2 Table.)</td>
<td>• Table of the potential failure modes and the potential underlying causes</td>
</tr>
<tr>
<td>• Set of critical process steps and failure modes (focusing on the most likely to be significant elements on country level)</td>
<td>• Change management aspects and considerations (from a general, e.g. country-level or profession-specific perspective)</td>
</tr>
<tr>
<td>• Three indicator definitions (S3 Table.)</td>
<td>• Indicator definitions</td>
</tr>
<tr>
<td>• Change management aspects and considerations (focusing on the most likely to be significant factors on country level)</td>
<td>• Text description of the general good practice</td>
</tr>
<tr>
<td>• Text description of the general good practice (S1 File.)</td>
<td>• Instruction for use of the above materials</td>
</tr>
<tr>
<td>• Instruction for use of the above materials</td>
<td>• Set of critical process steps and failure modes (from a general, e.g. country-level perspective)</td>
</tr>
</tbody>
</table>

The pilot project resulted in three changes to the development methodology. Flow chart and process analysis seemed to be the primary steps to be applied, while the possible underlying causes seemed to be more reasonably attributed to the already identified failure modes. Failure modes were attached to each process step, but it seemed unnecessary to count the possible underlying causes for each failure mode because there was too much repetition. Rather it was reasonable to identify them as a group belonging to the failure modes of a particular process step. The last change was of a technical nature: instead of a whiteboard and flipchart, we used a digital solution, taking notes on a laptop, which could be simultaneously viewed and validated.
by the participants via a projector. Accordingly, templates were prepared to facilitate and standardise the steps of development. The final development process is illustrated in Fig 2.

Fig 2: Developing general good practices: the editing and embedding part

After the pilot, the development methodology was applied to more than ten other topics, including pressure ulcer prevention and care, perioperative pain management, two-step oncoteam practice, patient education, inpatient hand hygiene, personalized medication or some prevention processes for various hospital-acquired infections. These allowed further conclusions to be drawn. First of all, not all the topics could be approached from a process perspective. Patient education and hand hygiene seemed to be better processed from a systems-approach. In these cases, the flow chart and process analysis have been replaced by the identification and detailed study of system elements. Secondly, and unfortunately, the systematic definition of indicators seemed to be an explicitly advanced area as in most cases even the good-practice institutes did not apply such monitoring activities, and if they had, the way to standardise measurements was so elusive that it seemed very far from being possible to define a formula that could be generally applied across institutions. Therefore, in the majority of themes, the systematic development of indicators was ultimately abandoned, and only a list of names of potential indicators was drawn up. Finally, it became evident that even in cases where the developers from the institutions included people with quality experience, the moderators played a crucial role in ensuring that the use of the various QI tools was properly understood and applied. Based on this experience we have finally defined general good practice as a bundle of core elements that can always be derived from development, providing essential content and which can be supplemented with additional considerations (Table 2).
Discussion

The use of ARIS process modelling was found to be appropriate in several respects. It is suitable for showing the temporality of the process from the initial event downwards, together with the steps that can be carried out in parallel. Logical links between steps (and, or, or else) can also be detected and alternative paths can be followed. The process table structures information in a way that allows to examine a particular step in the process in detail (looking at a given row), or to monitor a type of data, like actors or required information, throughout the process (focusing on one column). We found that the flow chart and the process table can be used in many ways as shown in Table 3.

Table 3: Possible uses of the flow chart and the process table

<table>
<thead>
<tr>
<th>Possible uses of the flow chart and the process table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete in-hospital development of the given care process</td>
</tr>
<tr>
<td>Assessing, streamlining or improving the implementation of a given care process in the institution</td>
</tr>
<tr>
<td>Defining roles, responsibilities and competences, defining job descriptions</td>
</tr>
</tbody>
</table>
| Reviewing documentation requirements, ensuring the availability and development of the necessary knowledge | Whether we are developing a new process or improving an existing one, reviewing the knowledge, required or generated documents for each process step will help, for example,
- identify the documents that contain the necessary knowledge, whether they are educational materials, protocols or items in the patient's medical record, and make them available,
- ensure the availability of the documentation required for each step,
- identify whether the implementation of the process step requires documentation and, if so, assign the required content, format and person (job group) responsible for the documentation,
- coordinate the activities of the persons responsible for the process step and the documentation of the process step, by providing documentation rights and access. |

| Organisation and development of training | After an overview of the process, the actors, the necessary knowledge and the documentation requirements, the content of the related training can be identified by job group (actor). |

| Design and development of the care process monitoring system | The information in the flow chart and process table can be used to derive the structural characteristics of the care in question. For human resources, the overview of actors can provide information, while for physical assets and conditions, the identification of devices and locations can be used as a source. As for regulation, the necessary knowledge (e.g. procedures, protocols) and documentation requirements (e.g. document templates, samples) can provide a basis for monitoring. In order to define process indicators, the process steps for which measurability is theoretically meaningful can be identified. The nature of the output events, as well as the timeliness, documentation and characteristics of the persons responsible, can form the basis for demonstrating compliance. As expected, the identification of outcome indicators is the most difficult, as many factors other than the process of care are involved in the change in the patient's health status. Yet, looking at the impact of individual steps on outcomes can help to do this. This may include considering how the correct implementation of a particular process step can avoid adverse events or add value to the patient's recovery. |

Comparing a given institutional practice with a flowchart and process table can give us an answer to whether that practice can provide the right care. This approach can be complemented by an enumeration of failure modes, which in turn will answer whether the institutional practice allows for the avoidance of failures. The failure modes collected in general good practice aim to cover the theoretically possible failure modes, so that we can review them to assess which ones are relevant in a given institutional practice and how important they are. The underlying causes associated with failure modes are more of a food for thought, but if a failure mode is found to be significant in institutional practice, a detailed root-cause analysis will be needed to find the right local solution.
Proposals based on change management knowledge to support the implementation of good practice provide a menu for potential users to identify the elements that need to be addressed in their institution and to select a combination of options and approaches to address them.

As mentioned earlier, the proper application of quality improvement tools and the professionalism of the products produced required the intensive involvement of moderators, even when the developers included people with quality experience. Yet the most unknown and innovative element was undoubtedly the area of change management, and this is also true for quality professionals.

To formulate how the general good practice differs from or adds to the guideline, it is perhaps easiest to say that while the guideline formulates the evidence, general good practice shows the evidence in operation. On the pilot topic of resuscitation, for example, the 2020 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care present the process, recommendations and knowledge gaps that can be translated into practice, but say the evaluation of their feasibility and acceptability is not in their scope.[42] Similarly, the European Resuscitation Council (ERC) Guidelines for Resuscitation 2015 state that “the combination of medical science and educational efficiency is not sufficient to improve survival if there is poor or absent implementation”, but mention only a few, mainly systemic points in this context such as trainings in schools or establishing cardiac arrest centres.[43] The new version 2021 already includes some more concrete considerations for the institutional implementation in terms of first responder, equipment and the resuscitation team, but it remains an open question for those doing the translation on how best to design these elements in their own institution.[44] As an example, for one topic, Table 4 shows the difference between the latter, the most advanced guideline in this respect, and the general good practice.
Table 4: An example of the difference between guidelines and general good practices in the pilot topic of resuscitation

<table>
<thead>
<tr>
<th>WHAT THE GUIDELINE SAYS*</th>
<th>TOPIC IN QUESTION</th>
<th>WHAT THE GENERAL GOOD PRACTICE HELPS TO THINK THROUGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>It may differ between hospitals or locations within a hospital</td>
<td>CALL FOR HELP</td>
<td>What ensures that the first responder knows the alarm channel?</td>
</tr>
<tr>
<td>If the responder is alone, they may need to leave the patient</td>
<td></td>
<td>What ensures that the first responder knows when to call for help?</td>
</tr>
<tr>
<td>Where a telephone system is used, the standard European number should be used</td>
<td></td>
<td>What if the first responder is not a health worker (e.g. visitor, cleaning lady, another patient, etc.)?</td>
</tr>
<tr>
<td>CALL FOR HELP</td>
<td></td>
<td>Is the alarm device accessible everywhere or is the location of the nearest one known (even in places such as parks or canteen, etc.)?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What ensures that the alarm number is known by everyone?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is the alarm channel one-way so that it cannot be occupied?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What ensures that the alarm device is accessible for the receiver at any moment?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What ensures that the alarm device is always operational on both sides (e.g. maintained, charged, volume is on, adequate network coverage, signal strength, etc.)?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Is there any difference if the first responder is alone or with someone else?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What ensures that the first responder knows what to say and how to say it during an emergency call, so that they can give the necessary and correct information as quickly as possible?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>What ensures that the first responder can do this properly at any time, even in real, stressful situation?</td>
</tr>
</tbody>
</table>

*These findings are taken from the European Resuscitation Council Guidelines 2021: Adult advanced life support [44]

From the above, it seems that there is indeed a generalisable part of the implementation process, and the general good practice is a good representation of this. Accordingly, in the infinitE model, it can be fitted to the half-way point of the process, symbolically separating the generalisable and institutional parts of the translation. Furthermore, it shows the evidence in operation, which will then be put into practice by the editing and embedding processes of the
institute. The venous system of the same mechanism will ensure that the practice is incorporated
into theoretical considerations, while the evolution of general good practice can be embodied
in the directions, elements and design of further researches (Fig 1).

In our view, the novelty of the infinitE model presented in our paper lies in the fact that it
presents the elements of translation from a focus on creating practical applicability in a simple
and pragmatic way, successfully marrying CM with the EBM-QI dual already paired
before.[19] This is also reflected in the general good practice developed on the basis of the
model, as its methodology successfully combines the three disciplines. Thanks to this, the
methodology was applicable to several other topics, thus the core elements of the general good
practice bundle were always produced as a result of the development. Also, the methodology
integrates all the known factors from the related literature introduced earlier. As the use of
general good practices in different institutions can be paralleled with practice development, its
relation to it may be interesting. We can see that the formula also fits in well with the
recommendations of practice development, for example, it is suitable for the joint dissemination
of process and product knowledge[8], it takes cultural aspects into account[45] and can also
serve the main characteristics of practice development as presented by Page[46]. However, in
addition to these, our work also defines a significant additional step in the translation process,
which is, to our knowledge, the first attempt to do so.

Perhaps, the biggest limitation of our research was that we conducted the pilot and the
subsequent general good practice developments in a country with limited resources for health
care and with persistent and substantial human resource problems.[47-50] Furthermore, the
private sector was not involved in the study as the participants of the development teams were
all employees of public healthcare institutions. Therefore, the outcomes of the developments
may not applicable to other health systems without any corrections. It is conceivable that, for
example, the layout of the processes involved could be modified by different technological backgrounds. Even in our case, two versions of the general good practice of personalized medication were produced, depending on whether it was manual or automated medication. Also, the number of professionals available and their different qualifications can affect the division of labour and the level of decision-making. On the other hand, in the case of more advanced quality system and experience, the general good practices can become even more complete, for example with developing specific indicators or even monitoring systems as well as patient registers or standardised documentation. We have only been able to do the latter in one case, perioperative analgesia, which, although it meant extra time, could contribute to improving the poor situation of Acute Pain Service in Hungary.[51] These considerations lead to conclusion that general good practices should be developed or adapted at regional or national level, or specific to a health system, but the development methodology itself is likely to be generally applicable.

Conclusions

The concept of general good practice was found to be sound, and the development methodology was seen to be applicable to a wide range of topics. General good practice represents a new, unprecedented step in the translation process that can make it easier for the institute’s quality and patient safety staff, as well as the chief medical officers and head nurses, to put professional innovations into practice, whether it is the introduction of a new guideline or best practice, or the introduction of a new technology or device. In addition, however, it can contribute to the definition of possible process indicators of care, and thus to its monitoring, as well as to the development of documentation, including standardised documentation. Such systematic mapping of processes can also be a starting point for the digitalisation of care processes. The
question arises as to who should be responsible for developing general good practices. There
are different options: guideline developers may do it as a final step in the development process,
but it can also be the responsibility of medical universities, operator of healthcare institutions
or health care workers’ professional organisations. The involvement of Research Translation
Centres may also be an obvious solution, as they were set up to accelerate the translation of
evidence by creating partnerships between research institutes, universities and health
services.[52] Whichever path we choose, it is important to ensure that the development team
represents the knowledge and skills of EBM, QI, the related practice and CM.

In our next step, we have designed a training methodology to familiarise healthcare institutions
with general good practice and how they can use it, thus, how they can base their own editing
and embedding activities on it, in order to better reflect the evidence in their care (Fig 1). In
agreement with Burke et al, while investigating the effects on practice, we focused on
sustainable implementations, that remain effective for at least six months.[53] Other studies
could investigate the applicability of the development methodology to other topics, especially
in the case of a systems approach, as there were few opportunities to do so to date.

Acknowledgements

The authors would like to thank all the members of the core and wider group of experts in the
study for providing input at any stage of the development. We are also grateful to all the health
professionals who participated in the development of general good practices on the different
topics. Moreover, we wish to thank all senior colleagues in our institute for their general support
in the conduct of our study.
References

Supporting information

S1 File. Flow chart of the institutional process of resuscitation (PDF)

S1 Table. Process table of the institutional process of resuscitation (PDF)

S2 Table. Table of the potential failure modes and underlying causes of the institutional process of resuscitation (PDF)

S3 Table. Indicators for the institutional process of resuscitation (PDF)

S2 File. Text description of the general good practice of the institutional process of resuscitation (PDF)

S3 File. Good practice submission form (PDF)

S4 File. Evaluating sheet for the evaluation of submitted good practices (PDF)
Fig 1
MEETING 1
THE PROCESS
- Flow chart
- Process analysis

MEETING 2
FAILURE MODES AND UNDERLYING CAUSES
- Failure modes
- Possible underlying causes
- Critical process steps
- Critical failure modes
- Potential indicators

MEETING 3
CHANGE MANAGEMENT ISSUES
- Basic conditions
- Corporate culture elements
- Stakeholder analysis
- Level of change
- Resistance and solutions
- Implementation team
- Training needs
- Communication channels and plan
- Further consideration