The impact of COVID-19 pandemic on bronchiolitis (lower respiratory tract infection) due to respiratory syncytial virus: A systematic review and meta-analysis

Sasidharanpillai Sabeenaa, Nagaraja Ravishankarb, S Robinc, Sabitha Sasidharan Pillai d

aIndependent Researcher, Lalitpur, Bagmati Province, Kathmandu, Nepal
b Department of Biostatistics, Vallabhbhai Patel Chest Institute, University of Delhi, India
c Manipal Institute of Virology, Manipal Academy of Higher Education, Karnataka, India
d Paediatric Endocrinology Fellow, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA

Abstract

Objective

This systematic review and meta-analysis aimed to quantitatively evaluate the effect of the COVID-19 pandemic on respiratory syncytial virus (RSV) associated bronchiolitis among hospitalised infants.

Methods

The study protocol was registered in the PROSPERO database (CRD42022314000) and was designed based on PRISMA guidelines updated in May 2020. The meta-analysis component was modified appropriately to synthesise the pooled proportion of infants having RSV-associated bronchiolitis before the COVID-19 pandemic in 2019 and during the pandemic with 95\% confidence interval (CI).

Results:

The eight qualified studies for the meta-analysis were from Spain, Italy, France and China, including 109,186 symptomatic cases of bronchiolitis before the pandemic in 2019 and 61,982 cases in 2020-2021. The quantitative analysis included laboratory-confirmed RSV infection in 7691 infants with bronchiolitis reported before the pandemic in 2019. Meanwhile, during the pandemic, 4964 cases were associated with RSV infection. The pooled proportion of RSV-associated bronchiolitis before the COVID-19 pandemic in 2019 was 16.74\% (95\% CI 11.73-22.43\%). The pooled proportion of confirmed RSV cases during the pandemic in 2020/2021 was 19.20 \% (95\% CI 12.01-27.59\%).

Conclusion

There was an increase in RSV activity after the relaxation of stringent public health measures during the COVID-19 pandemic.

Keywords: bronchiolitis, COVID-19, pandemic, respiratory syncytial virus, SARS-CoV-2

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
The impact of COVID-19 pandemic on bronchiolitis (lower respiratory tract infection) due to respiratory syncytial virus: A systematic review and meta-analysis

Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious novel coronavirus that emerged in late 2019, leading to the coronavirus disease 2019 (COVID-19) pandemic. The non-pharmaceutical interventions such as masking, use of hand sanitisers and various public health measures of lockdowns, travel restrictions, social distancing, isolation, and quarantines helped to control the transmission in the initial months. Compared to the pre-pandemic seasons, the epidemiology of other common viral respiratory infections was significantly affected during the pandemic. There was a decrease in respiratory viral infections, including respiratory syncytial virus (RSV), due to various non-pharmaceutical interventions implemented to curb the pandemic. These public health measures reduced the transmission of enveloped viruses such as influenza and (RSV). Lower respiratory tract infections or bronchiolitis in infants lead to increased hospitalisations and mortality during the winter season. The primary aetiology of bronchiolitis is infection by RSV, which results in recurrent wheeze and asthma in childhood. Most of the bronchiolitis cases occur in low-income countries with limited RSV surveillance, which demands molecular diagnostic facilities. Over the past year, not a single RSV case was reported in many countries during the winter season, which extended between the last months of 2020 and early 2021. Many developed countries in the northern and southern hemispheres reported an unexpected surge in RSV cases during the summer of 2021.

COVID-19 pandemic has led to alterations in the epidemiology of RSV infection which accounts for most bronchiolitis and viral pneumonias in infants. During the spring or summer seasons, a resurgence in areas reporting a meagre number of RSV cases was noted globally during the pandemic. Monitoring the effect of COVID-19 on the circulation of RSV infection...
in infants is essential as there are no specific vaccines or antivirals for this virus. This systematic review and meta-analysis aimed to analyse the effect of the COVID-19 pandemic on RSV-associated bronchiolitis among hospitalised infants.

Methods

This systematic review was commenced after excluding registered or ongoing systematic reviews regarding the impact of the COVID-19 pandemic on bronchiolitis (lower respiratory tract infection) due to respiratory syncytial virus in the PROSPERO database. The study protocol was registered in the PROSPERO database (CRD42022314000) and can be accessed at https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022314000.

The systematic review and meta-analysis were performed based on the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines updated in May 2020\(^5\). The meta-analysis component was modified appropriately to synthesise the pooled proportion of paediatric bronchiolitis cases tested positive for RSV before the COVID-19 pandemic in 2019 and during the pandemic.

Description of the condition

Bronchiolitis: Bronchiolitis is the most common lower respiratory tract viral infection caused by RSV among children below two years\(^6\), followed by rhinovirus and human Boca virus. The main clinical features of bronchiolitis are cough, chest recession or tachypnoea, crackles on chest auscultation or the first episode of acute wheeze\(^7\).

Extended severe acute respiratory infection (SARI) due to RSV: Symptoms of cough/shortness of breath within the last ten days necessitating hospitalisation due to RSV is defined as extended severe respiratory infection due to RSV\(^8\).
RSV infection: RSV infection was confirmed in symptomatic cases by real-time reverse transcription polymerase chain reaction (RT-PCR), immunofluorescence assay or virus isolation.

2 Study Protocol

An electronic search of PubMed/MEDLINE, Scopus and Google Scholar was carried out for all the articles in English published between January 2020 and March 2022 regarding the impact of the COVID-19 pandemic on bronchiolitis or lower respiratory tract infection due to the respiratory syncytial virus using search terms such as “impact” AND “COVID-19” OR “SARS-CoV-2” AND “RSV” NOT "vaccines". A manual library search for articles published in peer-reviewed journals was carried out. The references of retrieved articles were examined to increase the search sensitivity.

3 Inclusion process and criteria

Observational studies in English reporting the number of immunocompetent paediatric cases aged two years or below having bronchiolitis or lower respiratory tract infection due to RSV infection were included. Conference abstracts and commentaries were excluded. The studies reporting the data among older children and adults were eliminated. The articles reporting the RSV activity among immunocompromised cases were also not considered.

4 Data extraction

A validated proforma detailing the name of the first author, year of publication, study area, number of cases with bronchiolitis/lower respiratory tract infection (LRTI) attended the hospitals in 2019 and during the pandemic, number of laboratory-confirmed RSV positive cases in 2019 and during the pandemic was prepared. A three-stage selection of published articles was carried out for the final inclusion. One reviewer evaluated the titles of the records for the relevance for inclusion in the study (n=5479). Studies applicable for the review were
moved to the second stage after eliminating irrelevant topics and duplicates \((n=5290)\). In the second stage, the abstracts of the studies were obtained and were independently examined by two reviewers \((n=97)\). After reviewing the abstracts, full texts of studies were procured, which were inspected by two reviewers independently \((n=50)\). The corresponding authors were communicated electronically if further clarification was needed. Manual library searches for articles in peer-reviewed journals were carried out, and references of retrieved articles were reviewed to increase the search sensitivity. The PRISMA 2020 flow diagram\(^5\) (Fig. 1) depicts the study selection process. The last date of the search was on March 22, 2022.

5 Risk of bias (quality) assessment in individual studies

To assess the risk of bias in individual studies (quality assessment), chosen after the abstract and content review, the National Institutes of Health checklist for observational, cohort and cross-sectional studies was used\(^9\). The studies with a minimum score of eight or above, seven, or five or less than five "Yes responses" were considered good, fair, and poor quality, respectively. For cross-sectional studies, question numbers 1, 2, 3, 4, 5 and 11 were applicable. The responses to the remaining eight questions (6-10, 12, 13, 14) were not applicable (NA). The studies with six "Yes" responses were considered good, and those with four/five were taken as fair. The studies with less than four "Yes responses" were considered poor quality. The quality of the studies was evaluated by two reviewers independently.

6 Statistical analysis

The meta-analysis was accomplished in STATA version 13.0 (College Station, Texas 77, 845 USA). The forest plots were constructed using metaprop package in STATA. The pooled proportion of symptomatic cases of RSV-associated bronchiolitis or lower respiratory tract infections before the pandemic in 2019 and during the pandemic was reported with 95% CI. Chi-square statistic \((Q\) statistic\) and \(I^2\) index to quantify the heterogeneity was noted as
considerable heterogeneity across the studies was expected. The I^2 value ranging between 0% to 24% specifies consistency. I^2 values of 25%-49% imply low heterogeneity and 50-74% points toward moderate heterogeneity. The I^2 value varying between 75%-100% is indicative of high heterogeneity.

7 Assessment of Publication bias

Egger's test was used to report the publication bias. Weighted linear regression with standardised effect estimate and precision was considered the dependent and independent variables, respectively. In the present study, the \log_e proportion of RSV positive bronchiolitis cases and precision were considered the effect estimate and $1/\text{standard error of log}_e$ proportion rate, respectively. Weights were allotted using the inverse variance approach ($1/\text{variance of the effect estimate}$). A statistically significant bias coefficient is the evidence for publication bias.

Results

Included studies

The eight qualified studies for the meta-analysis were from Spain, Italy, France and China, including 109,186 symptomatic cases of bronchiolitis before the pandemic in 2019 and 61,982 cases during the pandemic. All these studies were qualified, as good as shown in Table 1. These studies reported 7691 laboratory-confirmed RSV associated lower respiratory tract infections in 2019 and 4964 during the pandemic in 2020/21. Two studies from Spain and France were multicentric. The highest number of symptomatic cases were admitted in the multicentric study from Spain before the pandemic in 2019 and during the pandemic. All the studies chosen for the meta-analysis reported a decrease in bronchiolitis cases with increased RSV positivity during the pandemic. The highest RSV positivity in bronchiolitis
was 70.2% before the pandemic. Meanwhile, during the COVID-19 pandemic, RSV was the causative agent in up to 77.8% of bronchiolitis cases, as in Table 1.

Meta-analysis

The pooled proportion of RSV-associated bronchiolitis cases before the pandemic in 2019 was 16.74% (95% CI 11.73%-22.43%) as in Fig.2. Fig. 3 represents the pooled proportion of RSV cases among infants during the pandemic in 2020/2021, as 19.20% (95% CI 12.01%-27.59%). As the I²-value was>90%, high heterogeneity was observed between the studies.

Publication bias

As shown in Table 2, the p-value for the bias coefficient was not statistically significant. Hence there was no publication bias.

Discussion

The studies qualified for this meta-analysis were from China and Europe. The pooled proportion of RSV positivity in bronchiolitis cases was more during the COVID-19 pandemic, even though a decline in bronchiolitis cases or lower respiratory tract infections was observed during the COVID-19 pandemic.

Many countries such as Italy, Germany, Belgium, Vienna and Brazil reported no hospitalised bronchiolitis cases during the winter season. Similarly, the study from Israel reported a temporal shift of RSV epidemic to spring season from winter. During the COVID-19 pandemic, hospitals in Spain reported a steep decline in bronchiolitis cases and RSV positivity with seven months delayed RSV peak in July 2021. Meanwhile, France reported a
rise in RSV cases during the late winter months of 2021 after the second national lockdown in December 2020. Japan observed no reporting of RSV cases in 2020, followed by a resurgence in July 2021. The tropical country of Thailand, located in South East Asia, witnessed a delayed RSV season in 2020 among children with influenza-like illness. There was an increase in the number of confirmed RSV cases across all age groups during the spring season of the year 2020 in Australia and South Africa. The inter-seasonal rise in RSV infections during the summer was observed in the northern and southern hemispheres. Italy reported a significant decline in hospitalised cases of bronchiolitis in 2020, with no bronchiolitis cases in 2021. However, a late RSV peak was not observed in Italy, unlike many countries. In 2020, China reported a decrease in lower respiratory tract infection among children, mainly due to the strict public health measures to contain the SARS-CoV-2 infection. The studies from Shanghai and Xiamen reported a decline in RSV activity among the hospitalised children. Both the studies observed a mild increase in RSV and influenza activity during the winter months without a temporal shift in seasonality. However, another single centre study from Hangzhou reported a marked rise in RSV cases during the winter season of 2020, comparable to the pre-pandemic period. Respiratory viral infections at young age facilitate the building up of trained immunity. Apart from a relatively young population of Africa compared to other parts of the world, prior exposure to other cross-reactive viruses is another essential causative factor for low SARS-CoV-2 related morbidity and mortality in Sub-Saharan Africa. However, countries perceiving a very low number of RSV cases are at an increased risk of resurgence of RSV infection, mainly among older RSV-naïve children. Sentinel surveillance of RSV is better in many European countries than in other parts of the world. There is no data regarding the RSV activity from the majority of the Asian and African countries having higher RSV associated disease burden.
Causes of heterogeneity

The main heterogeneity was in the number of bronchiolitis cases enrolled before and during the pandemic. Two multicentric studies enrolled a higher number of hospitalised cases compared to single centre studies. Even though six studies confirmed RSV infection by RT-PCR, two studies from China detected the RSV infection by direct immunofluorescence assay, which is less sensitive. Another disparity was in the time of the year during which the samples were procured from paediatric bronchiolitis cases. Although six studies enrolled infants below one year, two studies incorporated cases below two years.

Limitation

Before the COVID-19 pandemic, there were no routine testing of bronchiolitis samples for RSV from developing countries in South East Asia, Africa and Latin America. All the studies included in the meta-analysis were from Europe and China. Even though there were studies from other parts of the world reporting low RSV activity among infants during the COVID-19 pandemic, very few studies reported RSV positivity before the pandemic.

Conclusion

There was an increase in RSV activity after relaxing stringent public health measures during the COVID-19 pandemic in the northern and southern hemispheres. Efforts for the diagnosis and surveillance for RSV must be reinforced along with influenza and SARS-CoV-2 viruses to minimise the burden of hospitalisation and mortality among infants.

Funding: This study was not funded

Conflicts of interest: All authors report no conflicts of interest

ETHICS STATEMENT
The author states that this manuscript does not involve any misconduct such as plagiarism, forgery, tampering, improper signature, multiple submission, repeated publication, split publication, etc. The systematic review and meta-analysis used published data in indexed journals. Ethical approval to conduct the analysis was not sought as this was a secondary data analysis that requires no approval. No data with a personal identifier was used.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request (Dr Sasidharanpillai Sabeena, sabeenauthradam@gmail.com).

References

BMJ. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557

doi:10.3390/children8070556

outbreak in acute bronchiolitis: Lesson from a tertiary Italian Emergency Department. *Pediatr
Pulmonol.* 2021;56(8):2484-2488. doi:10.1002/ppul.25442

16. Torres-Fernandez D, Casellas A, Mellado MJ, Calvo C, Bassat Q. Acute bronchiolitis and
respiratory syncytial virus seasonal transmission during the COVID-19 pandemic in Spain: A

17. Ye Q, Liu H. Impact of non-pharmaceutical interventions during the COVID-19 pandemic on
common childhood respiratory viruses - An epidemiological study based on hospital data.

the COVID-19 pandemic in a Brazilian cohort: Likely role of lower transmission in the

Delayed respiratory syncytial virus epidemic in children after relaxation of COVID-19 physical

<table>
<thead>
<tr>
<th>S No.</th>
<th>Reference (year)</th>
<th>Region</th>
<th>Study design</th>
<th>Study site</th>
<th>Age in months</th>
<th>LRTI/bronchiolitis before the pandemic</th>
<th>Duration</th>
<th>RSV Positivity N(%)</th>
<th>LRTI/bronchiolitis during the pandemic</th>
<th>Duration</th>
<th>RSV Positivity N(%)</th>
<th>Diagnosis</th>
<th>Quality of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Guitart et al 2022</td>
<td>Barcelona Spain</td>
<td>Prospective observational</td>
<td>Single centre</td>
<td><12</td>
<td>124</td>
<td>2019-20</td>
<td>87 (70.2)</td>
<td>63</td>
<td>2020-21</td>
<td>49 (77.8)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
<tr>
<td>2</td>
<td>Stera et al 2021</td>
<td>Bologna Italy</td>
<td>Retrospective observational</td>
<td>Single centre</td>
<td>≤12</td>
<td>114</td>
<td>Oct 2018-April 2019</td>
<td>75 (65.8)</td>
<td>98</td>
<td>2019/2020 Oct-April</td>
<td>72 (73.5)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
<tr>
<td>3</td>
<td>Curatola et al 2021</td>
<td>Rome Italy</td>
<td>Retrospective observational</td>
<td>Single centre</td>
<td>≤24</td>
<td>238</td>
<td>2019 Feb-2020 Feb</td>
<td>40 (16.8)</td>
<td>33</td>
<td>2020 Feb-2021 Feb</td>
<td>6 (18.2)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
<tr>
<td>4</td>
<td>Liu et al Aug 2021</td>
<td>Shanghai China</td>
<td>Retrospective observational</td>
<td>Single centre</td>
<td>≤12</td>
<td>4600</td>
<td>2019</td>
<td>304 (6.6)</td>
<td>2507</td>
<td>2020</td>
<td>114 (4.5)</td>
<td>Multiplex Direct IFA</td>
<td>Good</td>
</tr>
<tr>
<td>5</td>
<td>Fourgeaud et al 2021</td>
<td>France</td>
<td>Retrospective observational</td>
<td>Single centre</td>
<td>≤11</td>
<td>5396</td>
<td>Aug 2019-July 2020</td>
<td>172 (3.2)</td>
<td>4804</td>
<td>2020/21-Aug-April</td>
<td>169 (3.5)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
<tr>
<td>6</td>
<td>Torres-Fernandes et al 2021</td>
<td>Spain</td>
<td>Retrospective observational</td>
<td>Multicentric</td>
<td>≤24</td>
<td>82,577</td>
<td>2019</td>
<td>5936 (7.2)</td>
<td>42,924</td>
<td>2020</td>
<td>3912 (9.1)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
<tr>
<td>7</td>
<td>Ye et al 2017</td>
<td>Hangzhou China</td>
<td>Retrospective observational</td>
<td>Single centre</td>
<td>≤12</td>
<td>7010</td>
<td>2019</td>
<td>953 (13.6)</td>
<td>2825</td>
<td>2020</td>
<td>565 (20.0)</td>
<td>Multiplex Direct IFA</td>
<td>Good</td>
</tr>
<tr>
<td>8</td>
<td>Casalegno et al 2021</td>
<td>Lyon France</td>
<td>Retrospective observational</td>
<td>Multicentric</td>
<td>≤12</td>
<td>9,127</td>
<td>2019/20 Sept-May</td>
<td>124 (1.35)</td>
<td>8,728</td>
<td>2020/21 Sept-May</td>
<td>77 (0.88)</td>
<td>RT-PCR</td>
<td>Good</td>
</tr>
</tbody>
</table>
Table 2: The table depicts the results of Egger’s test for publication bias

<table>
<thead>
<tr>
<th></th>
<th>Results of Egger’s test (Before the Pandemic)</th>
<th>Results of Egger’s test (after the Pandemic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient</td>
<td>Estimate (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Slope</td>
<td>0.0532 (0.0067, 0.0997)</td>
<td>0.051</td>
</tr>
<tr>
<td>Bias</td>
<td>2.9071 (-2.5261, 8.3403)</td>
<td>0.238</td>
</tr>
<tr>
<td>Slope</td>
<td>0.0605 (-0.0093, 0.1304)</td>
<td>0.449</td>
</tr>
<tr>
<td>Bias</td>
<td>2.4388 (-3.7147, 8.5924)</td>
<td>0.370</td>
</tr>
</tbody>
</table>
Identification of new studies via databases (n=5479)

PubMed/Medline (n=216)
Scopus (n=403)
Google Scholar (n=4860)

Additional records identified through other sources (n=0)

Records after duplicates removed (n=189)

Records screened from databases (n=189)

Records excluded (n=92)

Abstracts retrieved (n=97)

Full texts excluded with reasons (n=42)
- Age of children >2 years/all age groups 31
- Modelling studies 5
- Incomplete data 5
- Viral reproduction numbers 1

Full texts assessed for eligibility (n=50)

Studies included for quantitative synthesis (n=8)

Fig.1: PRISMA 2020 flow diagram for updated systematic reviews which included searches of databases, registers and other source. The flow diagram illustrates the number of studies identified, screened, abstracts/full-text articles included/excluded for the systematic review and meta-analysis.
Fig. 2. The Forest Plot depicting the proportion of bronchiolitis cases tested positive for RSV before the COVID-19 pandemic using random effects model. Squares indicate the effect size of individual studies and the extended lines denote 95% confidence intervals (CI). Sizes of squares imply the weight of studies based on sample size using a random effects analysis. The diamond data indicates pooled prevalence. Test of heterogeneity: $I^2 = 99.62\%$, p-value=0.00.
Fig. 3 The Forest Plot illustrating the proportion of RSV positive bronchiolitis cases during the COVID-19 pandemic. Squares indicate the effect size of individual studies and the extended lines denote 95% confidence intervals (CI). Sizes of squares imply the weight of studies based on sample size using a random effects analysis. The diamond data indicates pooled prevalence. Test of heterogeneity: $\chi^2=99.69\ %, p=0.00.$
Figure captions

Fig.1. PRISMA 2020 flow diagram for updated systematic reviews which included searches of databases, registers and other sources. The flow diagram illustrates the number of studies identified, screened, abstracts/full-text articles included/excluded for the systematic review and meta-analysis.

Fig.2. The Forest Plot depicting the proportion of bronchiolitis cases tested positive for RSV before the COVID-19 pandemic using random effects model. Squares indicate the effect size of individual studies and the extended lines denote 95% confidence intervals (CI). Sizes of squares imply the weight of studies based on sample size using a random effects analysis. The diamond data indicates pooled prevalence. Test of heterogeneity: $\Gamma^2 = 99.62\%$, p-value=0.00

Fig.3. The Forest Plot illustrating the proportion of RSV positive bronchiolitis cases during the COVID-19 pandemic using random effects model. Squares indicate the effect size of individual studies and the extended lines denote 95% confidence intervals (CI). Sizes of squares imply the weight of studies based on sample size using a random effects analysis. The diamond data indicates pooled prevalence. Test of heterogeneity: $\Gamma^2 = 99.69\%$, $p=0.00$.
Figure 1: PRISMA 2020 flow diagram for updated systematic reviews which included searches of databases, registers and other source. The flow diagram illustrates the number of studies identified, screened, abstracts/full-text articles included/excluded for the systematic review and meta-analysis.
<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Country</th>
<th>ES (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guitart et al, 2022</td>
<td>124</td>
<td>Spain</td>
<td>70.16 (61.29, 78.04)</td>
<td>11.05</td>
</tr>
<tr>
<td>Stera et al, 2021</td>
<td>114</td>
<td>Italy</td>
<td>65.79 (56.32, 74.42)</td>
<td>10.89</td>
</tr>
<tr>
<td>Curatola et al, 2021</td>
<td>238</td>
<td>Italy</td>
<td>16.81 (12.29, 22.17)</td>
<td>12.00</td>
</tr>
<tr>
<td>Liu et al, 2021</td>
<td>4600</td>
<td>China</td>
<td>6.61 (5.91, 7.37)</td>
<td>13.18</td>
</tr>
<tr>
<td>Fourgeaud et al, 2021</td>
<td>5396</td>
<td>France</td>
<td>3.19 (2.74, 3.69)</td>
<td>13.19</td>
</tr>
<tr>
<td>Torres-Fernandes et al, 2021</td>
<td>82577</td>
<td>Spain</td>
<td>7.19 (7.01, 7.37)</td>
<td>13.25</td>
</tr>
<tr>
<td>Ye et al, 2021</td>
<td>7010</td>
<td>China</td>
<td>13.59 (12.80, 14.42)</td>
<td>13.21</td>
</tr>
<tr>
<td>Casalegno et al, 2021</td>
<td>9127</td>
<td>France</td>
<td>1.36 (1.13, 1.62)</td>
<td>13.22</td>
</tr>
<tr>
<td>Overall (I² = 99.62%, p = 0.00)</td>
<td></td>
<td></td>
<td>16.74 (11.73, 22.43)</td>
<td>100.00</td>
</tr>
<tr>
<td>Study</td>
<td>n</td>
<td>Country</td>
<td>ES (95% CI)</td>
<td>Weight</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>------------</td>
<td>-----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Guitart et al, 2022</td>
<td>63</td>
<td>Spain</td>
<td>77.78 (65.54, 87.28)</td>
<td>11.15</td>
</tr>
<tr>
<td>Stera et al, 2021</td>
<td>98</td>
<td>Italy</td>
<td>73.47 (63.59, 81.88)</td>
<td>11.89</td>
</tr>
<tr>
<td>Curatola et al, 2021</td>
<td>33</td>
<td>Italy</td>
<td>18.18 (6.98, 35.46)</td>
<td>9.65</td>
</tr>
<tr>
<td>Liu et al, 2021</td>
<td>2507</td>
<td>China</td>
<td>4.55 (3.77, 5.44)</td>
<td>13.43</td>
</tr>
<tr>
<td>Fourgeaud et al, 2021</td>
<td>4804</td>
<td>France</td>
<td>3.52 (3.01, 4.08)</td>
<td>13.46</td>
</tr>
<tr>
<td>Torres-Fernandes et al, 2021</td>
<td>42924</td>
<td>Spain</td>
<td>9.11 (8.84, 9.39)</td>
<td>13.50</td>
</tr>
<tr>
<td>Ye et al, 2021</td>
<td>2825</td>
<td>China</td>
<td>20.00 (18.54, 21.52)</td>
<td>13.44</td>
</tr>
<tr>
<td>Casalegno et al, 2021</td>
<td>8728</td>
<td>France</td>
<td>0.88 (0.70, 1.10)</td>
<td>13.48</td>
</tr>
<tr>
<td>Overall (I² = 99.69%, p = 0.00)</td>
<td></td>
<td></td>
<td>19.20 (12.01, 27.59)</td>
<td>100.00</td>
</tr>
</tbody>
</table>