Risk of COVID-19 breakthrough infection and hospitalization in individuals with comorbidities

Peter D Smits, PhD1; Samuel Gratzl, PhD1, PhD; Michael Simonov, MD1,2; Senthil K Nachimuthu, MD, PhD1; Brianna M Goodwin, MS1; Michael D Wang, MD1; Benjamin M Althouse, PhD, ScM1,3,4; Nicholas L Stucky, MD, PhD1,‡

1 Truveta Incorporated, Bellevue, WA
2 Yale School of Medicine, New Haven, CT
3 Information School, University of Washington, Seattle, WA
4 Department of Biology, New Mexico State University, Las Cruces, NM

‡ To whom correspondence should be addressed
Dr Nicholas L Stucky
Truveta, Inc
1745 114th Ave SE, Bellevue, WA 98004
Email: nicholass@truveta.com

Keywords: COVID-19; breakthrough infection; comorbid conditions; COVID-19 hospitalization

Highlights:
- COVID-19 infection has greater severity in those with comorbidities.
- Here we investigate the risk of breakthrough infections and hospitalizations in fully-vaccinated individuals with and without comorbidities.
- We find increased rates of breakthrough infections with all comorbidities, with CKD having the greatest risk.
- Individuals with chronic lung disease had the highest rate of breakthrough infection, but the lowest subsequent risk of hospitalization.
- Individuals with comorbidities should remain vigilant against infection even if vaccinated.

Conflict of Interest: All authors are employees of Truveta, Inc.

Acknowledgements: The authors thank Mackenzie Bogiages and Ari Robicsek for helpful comments on the manuscript and statistical analyses, and Ian Davies for help with establishing the code repository. This study was funded by Truveta, Inc.

Ethical Approval: This study was reviewed by the Providence St. Joseph Health Institutional Review Board (IRB) as STUDY2022000212 and determined Not Human Research. 45 CFR 46.102(e)(1).
Abstract

Background
Studies have shown that those with certain high-risk comorbidities such as diabetes, chronic kidney disease (CKD), chronic lung disease, or those with immunocompromising conditions have increased risk of hospitalization from COVID-19. Here we estimate the elevated risks of breakthrough infection and hospitalization in fully vaccinated individuals with comorbidities.

Methods
Using a population of fully-vaccinated patients in the de-identified Truveta Platform of electronic health records from January 1, 2019, to January 10, 2022, we used logistic regression to estimate risk of 1) a patient experiencing a breakthrough COVID-19 infection after being fully vaccinated, and 2) rate of hospitalization in those experiencing breakthrough infection. Potential confounding was adjusted with inverse probability weighting for each comorbidity by age, race, ethnicity, and sex. We present ORs and percentages of breakthrough infections by comorbidity status.

Results
Of 3,424,965 fully vaccinated patients, 2.79%, 2.63%, 2.38%, 1.83% with CKD, chronic lung disease, diabetes, and those in an immunocompromised state experienced breakthrough infection, respectively, compared to 1.95% in the overall population. All comorbidities were associated with significantly increased odds of breakthrough infections and subsequent hospitalizations. Breakthrough infection hospitalizations in populations with comorbidities ranged from 26.43% for CKD to 10.23% for chronic lung disease, with corresponding ORs of 2.22 (95% CI: 1.88 - 2.63) and 1.37 (95% CI: 1.21 - 1.55), respectively.

Conclusions
Fully-vaccinated individuals with certain comorbidities experienced increased risk of breakthrough COVID-19 infection and subsequent hospitalizations compared to the general population. Individuals with comorbidities should remain vigilant against infection even if vaccinated.
Introduction

Reports of declining vaccine effectiveness against COVID-19 after the primary series have driven discussion about booster vaccinations (1,2). On September 24, 2021, Pfizer booster vaccinations were approved based on data showing waning vaccine immunity against infection. On October 21, 2021, the CDC expanded its recommendation to include boosters for Moderna and Janssen vaccines. These decisions were based largely on declines in vaccine effectiveness in the elderly population in both U.S. and Israeli populations (3). The CDC recommended booster vaccinations for people aged 50 or over with high-risk medical conditions while stating that people aged 18-49 with high-risk medical conditions may receive the vaccine based on limited unpublished CDC data (4). Nevertheless, only limited data were available to understand the risk of breakthrough infections (a COVID-19 case despite being fully vaccinated) in people with high-risk medical conditions in the U.S. Prior studies in unvaccinated populations have shown more severe outcomes for COVID-19 infection for people with certain high-risk comorbidities such as diabetes, chronic kidney disease (CKD), or who are immunocompromised, e.g., because of cancer, solid organ transplant, or HIV (5–8).

Before the SARS-CoV-2 delta variant became prevalent, one study of 108,720 mostly male U.S. veterans with high-risk conditions showed vaccine effectiveness for preventing infection remained high (>95%) but did not evaluate the risk of severe disease (9). Another study in a similar population did not show an elevated risk of severe outcomes in breakthrough infections (10). In order to better understand the risk of breakthrough infection and severe outcomes in high-risk populations, we the newly developed Truveta Platform to ask whether vaccinated patients with comorbidities have higher rates of breakthrough COVID-19 infection and higher rates of hospitalization following breakthrough infection than in those vaccinated but without the studied comorbidities.

Methods

Our study population included a subset of fully vaccinated patients present in the de-identified Truveta electronic health records (EHR) Platform from January 1, 2019, to January 10, 2022 (11). This covers patients across Alaska, California, Montana, New Mexico, Oregon, Texas, and Washington. A patient was considered fully vaccinated two weeks after receiving two mRNA vaccine doses (Moderna or Pfizer) or two weeks after receiving a single dose of the Janssen vaccine. Additionally, patients were excluded from our study population if they were missing sex or age fields, experienced a COVID-19 infection prior to being fully vaccinated (i.e., 14 days
post last dose of primary series), had no health system encounters following vaccination, were
missing their date of being fully vaccinated, were under 12 years of age at time of vaccination,
or had any vaccination events prior to December 1st, 2020. These last three criteria likely
indicated a recording error in patient age at vaccination or their time of vaccination. All
vaccination events were extracted from the EHR from member health systems; these events
generally consisted of vaccinations that took place within the health system as well as
vaccination records actively pulled from the health system’s respective state’s Immunization
Information System.

Comorbidities were defined using Elixhauser comorbidity ICD-10-CM diagnostic codes taken
from the patient's medical record (12), and included chronic kidney disease (CKD), chronic lung
disease/chronic obstructive pulmonary disease (COPD), diabetes, and those in an
immunocompromised state. CKD was defined as the earliest date a patient had an ICD-10-CM
diagnostic code consistent with CKD or when Kidney Disease: Improving Global Outcomes
(KDIGO) criteria for CKD were met by estimated glomerular filtration rate (eGFR) criteria (13).
For each comorbidity of interest, patients with that comorbidity diagnosed prior to being fully
vaccinated were compared with patients with none of the comorbidities of interest. Patients who
were diagnosed with a comorbidity after being fully vaccinated were excluded from analysis to
ensure the risk of breakthrough infection after vaccination was associated with a comorbidity
extant before vaccination. The complete list of comorbidity ICD-10 codes is presented in the
Supplementary Material.

Our response variables of interest were 1) if a patient experienced a breakthrough COVID-19
infection at any point after being fully vaccinated, and 2) if a patient who experienced a
breakthrough infection was hospitalized. SARS-CoV-2 infection was defined as a patient's first
diagnosis of COVID-19 as per ICD-10-CM code (U07.1). COVID-19 hospitalizations were
defined as an inpatient encounter where the patient's SARS-CoV-2 positivity fell within the
interval of 14 days prior to admission up to the date of discharge.

To account for potential confounding, we used inverse probability weighting (IPW) for each of
the comorbidities with the following confounding features as predictors: age (<18, 18-49, 50-64,
65-74, 75+), race (White, Asian, Black or African American, American Indian or Alaska Native,
Native Hawaiian or Other Pacific Islander, Unknown), ethnicity (Hispanic or Latino, Not Hispanic
or Latino, and Unknown), and sex. Propensity scores were estimated using logistic regression
and transformed into IPWs to estimate the average effect of the comorbidity on those patients’
outcomes (i.e., average “treatment” effect in the “treated”) (14). IPWs were calculated
separately for the breakthrough infection analysis and the hospitalization following breakthrough infection analysis.

Event rates were calculated using the weighted data. The proportion of breakthrough cases was calculated as the number of patients with a given comorbidity who experienced a breakthrough COVID-19 infection divided by the total number of patients with that comorbidity to yield a rate, weighted by the IPWs. The confidence interval for this proportion was calculated using the normal approximation of the binomial confidence interval (15). See Supplemental Code at https://github.com/Truveta/smits_et_al_covid_breakthrough_comorbidities.

The weighted event rates for the population of patients without any of the comorbidities were different for each of the focal comorbidities because of how each population was weighted to resemble their respective group of patients with the comorbidity. To ease visual comparison, we calculated a composite of these four weighted event rates using a Binomial Generalized Linear Model with only an intercept to estimate an average event rate from these samples. This composite was not used in any statistical comparisons and was only used to ease absolute interpretation of outcomes (e.g., Figure 1). This process was repeated for patients who experienced hospitalization post breakthrough COVID-19.

Odds ratios (ORs) of breakthrough infection associated with a comorbidity were calculated using logistic regression weighted using the calculated IPWs. This method was repeated for calculating the OR of hospitalization following breakthrough infection associated with a comorbidity. The confounding demographic features used in the weighting model were included as additional covariates in these regression models. ORs were calculated as the exponentiated regression coefficient (16) for the comorbidity covariate in the logistic regression model. Each comorbidity was analyzed independently. This process was repeated for the analysis of hospitalization following breakthrough infection.

Analysis was done using the R programming language (4.1.1)(17) along with the following packages: arrow(18), broom(19), dplyr(20), ggplot2(21), janitor(22), magrittr(23), purrr(24), questionr(25), rlang(26), stringr(27), tableone(28), targets(29), tibble(30), and tidyr(31).

Results

Study population

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Change in Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Sample Size</td>
<td>3424965</td>
</tr>
</tbody>
</table>
Table 1: Study population sample size. Table shows the determination of final sample size used in the analysis.

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Change in Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Missing Sex and Vaccination Date</td>
<td>3130114</td>
</tr>
<tr>
<td>No Previous COVID-19 Infection</td>
<td>3059106</td>
</tr>
<tr>
<td>No Encounters After Vaccination</td>
<td>2262391</td>
</tr>
<tr>
<td>No Impossible Times</td>
<td>2109302</td>
</tr>
<tr>
<td>No Missing Ages or Ages <= 12 years</td>
<td>2106893</td>
</tr>
<tr>
<td>Final Sample Size</td>
<td>2106893</td>
</tr>
</tbody>
</table>

Our overall study population included 3,424,965 fully vaccinated patients. 1,318,072 patients were excluded based on inclusion criteria, resulting in 2,106,893 patients for analysis. We assigned to each patient whether they have a specific comorbidity or are comorbidity-free. This led to five populations, one for each comorbidity of interest and one comorbidity-free general population. If a patient has multiple comorbidities, they were assigned to each of the corresponding comorbidities sub populations, see also the limitations discussion below for details. Table 1 summarizes the distributions of raw patient counts within each sub population.
<table>
<thead>
<tr>
<th>Age Group</th>
<th>General Population (Comorbidity-free)</th>
<th>Chronic Kidney Disease</th>
<th>Chronic Lung Disease</th>
<th>Diabetes</th>
<th>Immunocompromised</th>
</tr>
</thead>
<tbody>
<tr>
<td><18</td>
<td>72,080 (4.52%)</td>
<td>115 (0.11%)</td>
<td>8,347 (3.44%)</td>
<td>462 (0.29%)</td>
<td>351 (0.22%)</td>
</tr>
<tr>
<td>18-49</td>
<td>676,410 (42.44%)</td>
<td>5,748 (5.25%)</td>
<td>72,302 (29.79%)</td>
<td>21,955 (13.87%)</td>
<td>18,960 (11.90%)</td>
</tr>
<tr>
<td>50-64</td>
<td>419,257 (26.31%)</td>
<td>18,511 (16.90%)</td>
<td>66,124 (27.25%)</td>
<td>49,188 (31.08%)</td>
<td>42,357 (26.58%)</td>
</tr>
<tr>
<td>65-74</td>
<td>262,984 (16.50%)</td>
<td>33,109 (30.23%)</td>
<td>53,051 (21.86%)</td>
<td>47,866 (30.24%)</td>
<td>50,458 (31.66%)</td>
</tr>
<tr>
<td>75+</td>
<td>163,049 (10.23%)</td>
<td>52,030 (47.51%)</td>
<td>42,863 (17.66%)</td>
<td>38,813 (24.52%)</td>
<td>47,225 (29.64%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>970,513 (60.89%)</td>
<td>58,487 (53.41%)</td>
<td>155,099 (63.91%)</td>
<td>80,571 (50.90%)</td>
<td>93,785 (58.85%)</td>
</tr>
<tr>
<td>Male</td>
<td>622,626 (39.07%)</td>
<td>51,004 (46.57%)</td>
<td>87,514 (36.06%)</td>
<td>77,655 (49.06%)</td>
<td>65,531 (41.12%)</td>
</tr>
<tr>
<td>Other</td>
<td>641 (0.04%)</td>
<td>22 (0.02%)</td>
<td>74 (0.03%)</td>
<td>58 (0.04%)</td>
<td>35 (0.02%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>1,046,279 (65.65%)</td>
<td>82,647 (75.47%)</td>
<td>187,443 (77.24%)</td>
<td>107,640 (68.00%)</td>
<td>132,706 (83.28%)</td>
</tr>
<tr>
<td>Asian</td>
<td>153,193 (9.61%)</td>
<td>7,637 (6.97%)</td>
<td>15,008 (6.18%)</td>
<td>16,269 (10.28%)</td>
<td>8,417 (5.28%)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>39,430 (2.47%)</td>
<td>5,706 (5.21%)</td>
<td>9,095 (3.75%)</td>
<td>7,901 (4.99%)</td>
<td>3,826 (2.40%)</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>10,399 (0.65%)</td>
<td>877 (0.80%)</td>
<td>2,903 (1.20%)</td>
<td>2,129 (1.35%)</td>
<td>1,096 (0.69%)</td>
</tr>
<tr>
<td>Native Hawaiian or Other Pacific Islander</td>
<td>6,867 (0.43%)</td>
<td>799 (0.73%)</td>
<td>1,579 (0.65%)</td>
<td>1,574 (0.99%)</td>
<td>569 (0.36%)</td>
</tr>
<tr>
<td>Other</td>
<td>337,612 (21.18%)</td>
<td>11,847 (10.82%)</td>
<td>26,659 (10.98%)</td>
<td>22,771 (14.39%)</td>
<td>12,737 (7.99%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic or Latino</td>
<td>212,628 (13.34%)</td>
<td>9,798 (8.95%)</td>
<td>20,546 (8.47%)</td>
<td>18,711 (11.82%)</td>
<td>8,067 (5.06%)</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>1,201,147 (75.36%)</td>
<td>95,615 (87.31%)</td>
<td>213,497 (87.97%)</td>
<td>133,524 (84.36%)</td>
<td>145,900 (91.56%)</td>
</tr>
<tr>
<td>Other</td>
<td>180,005 (11.30%)</td>
<td>4,100 (3.74%)</td>
<td>8,644 (3.56%)</td>
<td>6,049 (3.82%)</td>
<td>5,384 (3.38%)</td>
</tr>
</tbody>
</table>
Table 2: Baseline characteristics table for each comorbidity population along with the reference comorbidity-free general population. If a patient has multiple comorbidities, they were assigned to multiple corresponding comorbidity sub populations. Data represented are unweighted counts of patients.

<table>
<thead>
<tr>
<th>General Population (Comorbidity-free)</th>
<th>Chronic Kidney Disease</th>
<th>Chronic Lung Disease</th>
<th>Diabetes</th>
<th>Immunocompromised</th>
</tr>
</thead>
<tbody>
<tr>
<td>(11.29%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 and Table 3 summarize the association between comorbidities and the likelihood of having a COVID-19 breakthrough infection. Figure 1 shows the percentage of the population that experienced a breakthrough infection and the ORs of breakthrough infections for individuals with comorbidities compared to a comorbidity-free population, both calculated from weighted data. Table 2 includes the results for each individual population as well as the computed average comorbidity-free general population. In general, we see that those with chronic lung disease are more likely to have a breakthrough infection (2.63% [95% Confidence Interval: 2.57% - 2.70%], OR: 1.43 [95% CI:1.37 - 1.48]), followed by those with diabetes (2.38% [95% CI: 2.30% - 2.45%], OR: 1.29 [95% CI: 1.23 - 1.36]).
Figure 1: Left: Percentage of the analyzed vaccinated population that experienced a breakthrough COVID-19 infection among individuals with comorbidities compared to a comorbidity-free population. These values are estimated from the propensity score weighted data. Right: ORs for breakthrough infection associated with having a comorbidity versus having none of the analyzed comorbidities.

<table>
<thead>
<tr>
<th>Comorbidity Population</th>
<th>General Population</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Kidney Disease</td>
<td>2.30% (2.20% - 2.41%)</td>
<td>1.73% (1.64% - 1.82%)</td>
</tr>
<tr>
<td>Chronic Lung Disease</td>
<td>2.63% (2.57% - 2.70%)</td>
<td>1.86% (1.81% - 1.91%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.38% (2.30% - 2.45%)</td>
<td>1.85% (1.78% - 1.92%)</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>1.83% (1.77% - 1.90%)</td>
<td>1.72% (1.65% - 1.78%)</td>
</tr>
<tr>
<td>General Population</td>
<td>1.77% (1.74% - 1.81%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Underlying data table that is used to generate Figure 1. Each cell contains the estimated value as well as its 95% confidence interval (CI). The average comorbidity-free general population was computed to simplify the visual representation within the left side of Figure 1.

Percentage of breakthrough cases who are hospitalized

Figure 2 and Table 3 summarize our results based on the weighted population or risk of hospitalization from breakthrough infection. In contrast to infection risk, those with CKD were more likely to be hospitalized from breakthrough infection (26.43% [95% Confidence Interval: 24.43% - 28.54%], OR: 2.22 [95% CI: 1.88 – 2.63]). Differently, those with diabetes and those immunocompromised patients were the other highest risk groups with 16.82% (95% CI: 15.64% - 18.06%) and 15.95% (95% CI: 14.65% - 17.34%) hospitalized, respectively, and ORs of 1.81 (95%CI: 1.58 – 2.08), and 1.52 (95%CI: 1.31 – 1.77), respectively.
Figure 2: Left: Percentage of population that experienced hospitalization following a breakthrough COVID-19 infection among individuals with comorbidities compared to a comorbidity-free general population. These values are estimated from weighted data. Right: ORs for hospitalization following a breakthrough infection associated with having a comorbidity versus having none of the analyzed comorbidities.

<table>
<thead>
<tr>
<th>Comorbidity Population</th>
<th>General Population</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic Kidney Disease</td>
<td>26.43% (24.43% - 28.54%)</td>
<td>13.91% (12.37% - 15.61%)</td>
</tr>
<tr>
<td>Chronic Lung Disease</td>
<td>10.23% (9.50% - 11.00%)</td>
<td>7.67% (7.03% - 8.35%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>16.82% (15.64% - 18.06%)</td>
<td>10.05% (9.11% - 11.06%)</td>
</tr>
<tr>
<td>Immuno-compromised</td>
<td>15.95% (14.65% - 17.34%)</td>
<td>11.10% (9.99% - 12.30%)</td>
</tr>
<tr>
<td>General Population</td>
<td>8.85% (8.42% - 9.29%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Each cell contains the estimated value as well as its 95% confidence interval (CI). The average comorbidity-free general population was computed to simplify the visual representation within the left side of Figure 2.

Discussion
Here we found that the incidence of SARS-CoV-2 breakthrough infection and COVID-19 hospitalization following breakthrough infection were significantly greater among patients with select comorbid medical conditions when compared to the general population. Specifically, people with diabetes, chronic lung disease, or CKD have increased incidence of breakthrough infection compared to the general population after adjusting for age, sex, race, and ethnicity. These conditions are thought to lead to impaired immune function (32–34). This is consistent with studies in unvaccinated people showing higher risk of infection in these populations as well as a study in mostly male U.S. veterans which showed reduced vaccine effectiveness in patients with a high Charlson comorbidity index (9).

In our study, patients with comorbidities had nearly twice the odds of being hospitalized than the general vaccinated population. Overall, these findings add to prior studies showing worse outcomes following COVID-19 infection in people who are immunocompromised, with diabetes, CKD, or with chronic lung disease (5–7) and adds additional support for recommendations of booster vaccines given these groups continue to fare worse than the general vaccinated population. One study in an unvaccinated population reported ORs of greater than 2 for in-hospital mortality following COVID-19 infection in patients with diabetes, CKD, or pulmonary disease when compared with the general population (6). We identified CKD as the highest risk comorbidity for hospitalization, even after adjustment for age and demographic factors. Notably, a large study in male U.S. veterans did not show an elevated risk of severe outcomes in breakthrough infections in patients with diabetes, chronic lung disease, or CKD (10). This was possibly due to their study design which matched patients by comorbidity burden thereby reducing any differences between groups. In contrast our study compared patients with identified comorbidities to a control group without these comorbidities and did not exclude or match patients with multiple comorbidities.

We found that the immunocompromised group had the smallest increased risk of breakthrough infection compared to the other comorbidities. This is possibly due to a higher adoption of protective behaviors such as social distancing and mask wearing in this group than other groups and the general population. Additionally, while we found that those with chronic lung disease had the highest rate of breakthrough infection (2.63%) it had the lowest rate of hospitalization (10.23%). This might be due to those with COPD having supplemental oxygen and steroids readily available, or that COPD may capture a broad range of disease from very mild asthma to end-stage COPD, therefore attenuating overall risk of hospitalization in our data; though future research is necessary.
Like all studies, ours is subject to limitations. First, there are multiple confounding features which are difficult to address with the available data including the timing of patient vaccination, precedent undiagnosed COVID-19 infection, and the timing of infections in relation to SARS-CoV-2 variants of concern. Future studies should correct for these potential confounders. Secondly, our current data definitions rely heavily on ICD-10-CM codes, except for CKD which incorporates lab tests. This limits the scope and may limit the accuracy of our comorbidity groups and COVID-19 diagnoses. For example, adding labs would improve sensitivity for COVID-19 cases. As more data become available, we plan to include SARS-CoV-2 variants of concern, geography, and more comorbidities.

Our current outcome models consider only the effect of a single comorbidity on our outcomes of interest. Future iterations of this analysis should consider the effect of multiple simultaneous comorbidities on outcomes as well as their interaction effects. Currently, we treat each comorbidity as purely independent, but it is known that patients can have multiple comorbidities (e.g., diabetes and CKD). Future research could consider the interaction effects of patients having multiple comorbidities on probabilities of outcome events; specifically, models of breakthrough infection and hospitalization outcomes should consider how the interactions among these comorbidities may contribute to differences in odds of breakthrough infection and hospitalization.

As vaccinated individuals continue to make decisions about booster vaccinations, they will be looking for information regarding their personal risk of breakthrough COVID-19 infection and severe outcomes like hospitalization. The FDA and CDC both made recommendations to include high-risk groups, such as those we studied, as groups who should receive booster vaccinations. While there is robust data showing increased risk to unvaccinated groups with comorbidities, both the FDA and CDC cited limited data in vaccinated groups with comorbidities. The findings of this study improve the evidence and support recommendations for people with comorbidities such as chronic kidney disease, chronic lung disease, diabetes or people who are immunocompromised to receive the primary vaccination sequence as well as a booster dose.

28. Yoshida K, Bartel A. tableone: Create “Table 1” to Describe Baseline Characteristics with or without Propensity Score Weights [Internet]. 2021. Available from: https://CRAN.R-project.org/package=tableone

