Non-pharmacological measures for the treatment of iron deficiency anemia: A systematic review and meta-analysis

Short Title: Review of non-pharmacological measures for IDA

Francisca Mayara Brasileiro Gomes¹; Francisco Plácido Nogueira Arcanjo¹; Francisco Leandro Fonteles Moreira²; Ivana Cristina de Holanda Cunha Barreto³; Luiz Odorico Monteiro de Andrade²,³; Thiago Corrêa de Oliveira²,⁴; Eliana Pereira Vellozo⁵; Benjamin Israel Kopelman⁶; Cecília Costa Arcanjo Freire¹,²,⁴; Caio Plácido Costa Arcanjo⁴,⁷; Maria Aparecida Zanetti Passos⁸.

¹ Postgraduate Program in Family Health, Universidade Federal do Ceará, Sobral, Brazil.
² Faculty of Medicine, Universidade Federal do Ceará, Sobral, Brazil.
³ Researcher at the Osvaldo Cruz Foundation, Ceará, Brazil.
⁴ Centro Universitário INTA, Sobral, Ceará, Brazil.
⁵ Postdoctoral student in Pediatrics and Sciences Applied to Pediatrics at the Universidade Federal de São Paulo. Outpatient Supervisor of the Adolescent Medicine Sector, Department of Pediatrics, Universidade Federal de São Paulo. Co-advisor of the Postgraduate Program in Pathology at the Universidade Federal de São Paulo.
⁶ Advisor of the Graduate Program in Pediatrics and Sciences Applied to Pediatrics at the Universidade Federal de São Paulo, São Paulo, Brazil; Associate Professor, Discipline of Neonatal Pediatrics, Department of Pediatrics, Universidade Federal de São Paulo, São Paulo, Brazil.
⁷ Postgraduate Program in Health Sciences, Universidade Federal do Ceará, Sobral, Brazil.
⁸ Postgraduate Program in Education and Health in Childhood and Adolescence, Universidade Federal de São Paulo / Escola Paulista de Medicina, São Paulo, Brazil.

Corresponding author
Francisco Plácido Nogueira Arcanjo, PhD
Postgraduate Program in Family Health
Universidade Federal do Ceará - Campus Sobral
Av. Comandante Maurocéllo Rocha Ponte, 100 – Derby

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Sobral, Ceará, 62.042-280, Brazil.
Telefax: +55 88 3677 8000
E-mail: franciscoplacidoarcanjo@gmail.com
ORCID: 0000-0002-9020-3092

Other authors
Francisca Mayara Brasileiro Gomes, e-mail: mayarabrasileiro09@gmail.com ORCID: 0000-0002-6641-3698
Francisco Leandro Fonteles Moreira, e-mail: fontelesmoreira@gmail.com ORCID: 0000-0002-4380-1217
Ivana Cristina de Holanda Cunha Barreto, e-mail: ivana.barreto@fiocruz.br ORCID: 0000-0001-8447-3654
Luiz Odorico Monteiro de Andrade, e-mail: odorico.monteiro@fiocruz.br ORCID: 0000-0002-3335-0619
Thiago Corrêa de Oliveira, e-mail: tcoliveiraufc@gmail.com
Eliana Pereira Vellozo, e-mail: eliana.vellozo@unifesp.br ORCID: 0000-0002-8928-0699
Benjamin Israel Kopelman, e-mail: b.kopelman@unifesp.br ORCID: 0000-0002-5261-4296
Cecília Costa Arcanjo Freire, e-mail: cecilia_arcanjo@hotmail.com ORCID: 0000-0002-2747-4623
Caio Plácido Costa Arcanjo, e-mail: caioplacidoarcanjo@gmail.com ORCID: 0000-0002-5854-6650
Maria Aparecida Zanetti Passos, e-mail: cidazpassos94@yahoo.com.br ORCID: 0000-0003-4626-0871

Ethics declarations

Ethical considerations
This review was conducted according to established scientific guidelines. Every attempt has been made to be fair and respectful to the authors discussed.

Conflicts of interest
The authors declare that they have no conflict of interest.
Abstract

Objective: To conduct a systematic review and meta-analysis to evaluate the effectiveness of non-pharmacological measures for the treatment of iron-deficiency anemia (IDA).

Data sources: MEDLINE (via PubMed), Cochrane library, SciELO/LILACS and EMBASE up to June 2021

Study selection and data extraction: We identified all randomized controlled trials (RCTs) that used non-pharmacological measures to treat IDA including iron pots/ingots, or food use were included. The outcomes of interest were hemoglobin (Hb) concentrations and prevalence of anemia.

Results: 479 studies were retrieved from the databases, of which 4 duplicate records were removed. After, all titles and abstracts were reviewed, 23 articles were considered potentially relevant, and were read in full and checked for eligibility. Three articles met all inclusion criteria. We also conducted a manual search for citations and a further 8 records were identified and checked for eligibility. Eleven RCTs were included in this review. Estimates showed that the use of non-pharmacological measures was associated with a statistically significant overall increase in mean Hb (MD +0.45 g/dL, 95% CI 0.05 to 0.85, p=0.03). The effect of non-pharmacological measures on the prevalence of
IDA was analyzed in only 5 RCTs. Participants in the intervention groups were 2.78 times less likely to suffer from IDA than those in the control groups, OR=2.78, 95% CI 0.93, 8.29, however without significance for the overall effect (p=0.07).

Conclusion: Non-pharmacological therapies have a positive effect on iron balance, and can a useful adjunct to programs to prevent and treat IDA in at-risk populations. (PROSPERO registration number CRD42021261773).

Abbreviations used in manuscript

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>ID</td>
<td>Iron deficiency</td>
</tr>
<tr>
<td>IDA</td>
<td>Iron-deficiency anemia</td>
</tr>
<tr>
<td>MD</td>
<td>Mean difference</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized clinical trial</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Introduction

Anemia is an important indicator of malnutrition and health with great consequences for socioeconomic development. Children under two years of age with severe anemia are at higher risk of mortality, and even mild forms, which can be corrected, cause permanent cognitive damage by decreasing attention span and memory deficits.1,2

According to WHO estimates, between 1993 and 2005, anemia affected approximately a quarter of the world’s population, which then corresponded to 1.62 billion people, the majority being children under the age of four years. A recent study showed a decrease in the prevalence of anemia between 1990 and 2010 from 40.2\% to 32.9\% of the world population, especially among men. The regions most affected by anemia were Southeast Asia and sub-Saharan Africa. Iron deficiency (ID) was the main cause, and children under the age of 5 years were most affected. Malaria, schistosomiasis and chronic renal failure were the causes of anemia for which prevalence most increased in this period.3

The Pan American Health Organization states that Brazil is in second place among countries in Latin America and the Caribbean with the highest prevalence of anemia (30\%); only Peru has higher numbers with 57\%.4,5 According to the Brazilian Ministry of Health, in 2006, the general estimate of the prevalence of anemia in the country was 25 to 30\%. In Brazil there is no official record of the prevalence of the disease; only regional studies can be found.6-9

Among the causes of anemia, ID is the most common, accounting for 50\% of cases. In developing countries such as Brazil, diet has an important role in anemia caused by ID, mainly because iron, although present in cereals and legumes (foods that are easily accessed), its presence is in a low availability form. Therefore, in risk groups, it is necessary to stimulate the consumption of animal-based foods like meat and chicken, which contain an optimal amount of iron in its active form, to prevent iron-deficiency anemia (IDA).5,8,10-13

Currently, ID in Brazil is more common than other deficiencies, such as hypovitaminosis A, primary iodine deficiency, or protein-energy malnutrition. However, ID may also be the result of blood loss. While menstrual loss is the major non-nutritional cause of ID in women of childbearing age, in men and postmenopausal women, bleeding from the gastrointestinal tract is frequent cause.11,14
Even today, despite numerous health policies developed by the WHO and other agencies, anemia is a highly prevalent pathology in Brazil and worldwide. It is important not to undervalue or trivialize the disease, even when it is mild and oligosymptomatic, given that socioeconomic, intellectual and quality of life losses may result from this problem. This is without considering the increase in mortality in biologically more fragile populations.15

A nutrition education strategy that aims at the adequate quantitative and qualitative consumption of foods that are sources of different nutrients is an alternative that has low cost and does not produce undesirable effects. Through this, it is possible to increase the population’s knowledge about ID and clarify about monotonous and iron-poor diets, which constitute one of the main causes of this deficiency. It is noteworthy, however, that changes in eating habits are not quickly achieved, making the strategy effective in the long term. Intervention studies through educational actions aimed at parents of children under the age of 24 months were effective in preventing ID. These results confirm that adherence to correct dietary practices is important to address this problem, which presents high prevalence in this age group.16 However, for positive results, their actions must guarantee the consumption of foods rich in iron and dietary strategies that increase the bioavailability of iron in the diet, in addition to reducing the factors that hinder it.

It is still uncertain whether non-pharmacological measures, including iron-rich foods, are able to prevent and treat anemia in vulnerable populations. Therefore, this study intends to evaluate the effectiveness of non-pharmacological measures for the prevention and treatment of IDA.

Methods

Study design

This is a systematic review and meta-analysis to verify the efficacy and safety of non-pharmacological measures for the treatment and prevention of IDA.

Definition of the clinical question

The definition of the specific question was carried out under the acronym PICOS, as shown in Figure 1.
Information sources

To conduct this study, the MEDLINE (via PubMed), Cochrane library, SciELO/LILACS and EMBASE databases were used. They were searched with no date or language restrictions. In addition, the reference list of included studies was also manually searched by the reviewers. This review was designed and conducted in accordance with the PRISMA17 guidelines and registered at PROSPERO under the registration number CRD42021261773.

Search

To retrieve the articles (last search date was June 2021) we used the Boolean operators OR and AND. For the SciELO/LILACS database, the operators (Anemia) AND (Food) were used. In the Cochrane library the search algorithms were (Anemia), (Food Intake), (Randomized Controlled Trial) inserted without modification. However, to perform the search in the MEDLINE (via PubMed) and EMBASE databases, the terms MeSH and EMTREE were inserted, respectively.

Therefore, to perform the PubMed search, the appropriate MeSH terms were searched first. When inserting the studied condition (Anemia) the platform generated the following term: “Anemia”. For the term (Food Intake), the following were generated: (Intake, Food) OR (Nutrient Intake) OR (Intake, Nutrient) OR (Nutrient Intakes) OR (Nutritional Intake) OR (Intake, Nutritional) OR (Nutritional Intakes) OR (Dietary Intake) OR (Dietary Intakes) OR (Intake, Dietary) OR (Micronutrient Intake) OR (Intake, Micronutrient) OR (Micronutrient Intakes) OR (Ingestion) OR (Feed Intake) OR (Feed Intakes) OR (Intake, Feed) OR (Macronutrient Intake) OR (Intake, Macronutrient) OR (Macronutrient Intakes) OR (Calorie Intake) OR (Calorie Intakes) OR (Intake, Calorie) OR “Eating”[MeSH].

A randomized controlled trial filter18 was used with the previously described MeSH terms: (randomized controlled trial [pt] OR controlled clinical trial [pt] OR randomized controlled trials [mh] OR random allocation [mh] OR double-blind method [mh] OR single-blind method [mh] OR clinical trial [pt] OR clinical trials [mh] OR (“clinical trial” [tw]) OR ((singl* [tw] OR doubl* [tw] OR trebl* [tw] OR tripI* [tw]) AND (mask* [tw] OR blind* [tw])) OR (“latin square” [tw]) OR placebos [mh] OR placebo* [tw] OR random* [tw] OR research design [mh:noexp] OR follow-up studies
[mh] OR prospective studies [mh] OR cross-over studies [mh] OR control*[tw] OR prospectiv* [tw] OR volunteer* [tw]) NOT (animal [mh] NOT human [mh]).

To search the EMBASE platform, in addition to the terms listed above, the EMTREE terms were used: ‘iron deficiency anemia’/exp AND ‘iron deficiency’/exp AND (‘food intake’/exp OR ‘appetite regulation’ OR ‘feed intake’ OR ‘feeding methods’ OR ‘food consumption’ OR ‘food intake’ OR ‘food intake regulation’ OR ‘food uptake’ OR ‘meal’).

In addition to this search strategy, a manual search was carried out to analyze the references cited in the selected articles to identify additional documents for review.

Study selection

Randomized controlled clinical trials (RCTs) that used non-pharmacological measures to treat IDA including iron pots, iron ingots, or food use were included. There was no age group restriction. We excluded studies that did not include any quantifiable data.

Data collection process and quality assessment

Data were extracted from the included studies in standardized tables by one reviewer and verified by a second. Data were collected on study title, 1st author, year of publication, country, objectives, number of participants, population, type of intervention and comparison, primary and secondary outcomes, and main results. Synthesized data from all studies included in this review are shown in Table 1.

[Table 1 about here]

The Cochrane Risk-of-Bias (RoB 2.0) tool (available via the Risk of Bias tools website: www.riskofbias.info) was used to assess the quality and risk of bias in the RCTs included in this review. This tool is structured into five domains, through which bias may be introduced into the result: 1) bias arising from the randomization process - used to generate the participants’ allocation sequence, which should be random; 2) bias due to deviations from intended interventions – this domain concerns the patient and the study team not knowing (being “blind”) to which group the patient was allocated and whether there were deviations from the proposed intervention that could affect the outcome; 3) bias due to missing outcome data - loss to follow-up of study participants.
and, in case of loss, the reason for its occurrence; 4) bias in measurement of the outcome – outcome variable assessment, participant, researcher or data collector do not know which group the participants have been assigned to; and 5) bias in selection of the reported result - the possibility that the researchers assessed outcomes through multiple assessments, but reported only the most convenient one(s).

To assess the quality of evidence, the Grading of Recommendations Assessment, Development and Evaluation (GRADE)20 was used, thus ensuring a systematic and transparent process in this systematic review process. This system classifies evidence into high, moderate, low or very low quality, considering all the factors that determine how reliable the results are. Two outcomes were evaluated, hemoglobin (Hb) concentrations, and prevalence of anemia.

\textit{Synthesis of results}

Data was summarized and aggregated in a quantitative synthesis of the studies through a meta-analysis. Review Manager (RevMan)21 statistical software, provided by Cochrane, was used to analyze data. Using the random-effects model of meta-analysis we assessed the magnitude of the intervention effects according to study outcomes in two graphs: 1) \(Hb\) index of all selected studies, subdivided into food and iron pot / iron ingot subgroups, further stratified to present data on children only using the same subdivisions; 2) prevalence of IDA, subdivided and stratified in the same manner. Data were summarized in a forest-plot type graph.

\textit{Results}

\textit{Selection and characterization of studies}

A total of 479 studies were retrieved from the databases (226 SciELO/LILACS; 207 MEDLINE (via PubMed); 29 in Cochrane Library; and 17 in EMBASE). Of these 4 duplicate records were removed. All titles and abstracts were reviewed and then 23 articles were read in full and reviewed for eligibility checking. Three articles met inclusion criteria. We also conducted a manual search for citations from the included articles to identify additional relevant studies, a further 8 records were identified. After these reports were screened for eligibility, all studies met inclusion criteria. Thus, eleven RCTs were included in this review (Figure 2).
Risk of bias within studies

The quality of the included studies was independently assessed by two researchers (FMBG and FPNA) using the RoB 2.0 tool. After initial analysis, discrepancies between items were discussed, and consensus was reached. In assessing the risk of bias, all outcomes (primary and secondary) were evaluated. Of the eleven studies evaluated in this review, 4 had low risk of bias, 4 had unclear risk of bias, and 3 had high risk of bias.

Assessment of the quality of evidence according to GRADE

Included randomized studies had a low risk of bias and two outcomes were directly assessed: 1) differences in Hb levels (11 studies), 2) prevalence of anemia (five studies). Information bias was also unlikely. Regarding the analysis of the two outcomes, there was inconsistency in the results due to the participants’ non-adherence to the proposed interventions. In the iron pots groups, use was not daily (average use was three times a week), and in the red meat group, mean consumption was less than half of what the intervention intended (0.7 dishes/day out of 2 dishes/day). Therefore, we consider the overall certainty of evidence to be moderate (Table 2).

Synthesis of results

Effect of using food and iron pots / ingots on hemoglobin levels

Estimates showed that the use of non-pharmacological measures was associated with a statistically significant overall increase in mean Hb (mean difference (MD) +0.45 g/dL, 95% CI 0.05 to 0.85, p=0.03), with a high level of heterogeneity among studies (p<0.0001, I²=91%). This mean increase in Hb concentrations was also present in the subgroups but without statistical significance (for the studies with food: MD +0.51 g/dL, 95% CI -0.32, 1.34, p=0.22) (for the studies with iron pots / ingots: MD +0.43 g/dL, 95% CI -0.06, 0.92, p=0.09) (Figure 4).
Considering the studies conducted exclusively with children, the overall effect of non-pharmacological measures on Hb levels was statistically significant (p=0.01), resulting in a mean increase of 0.69 g/dL (95% CI 0.15, 1.24), with a high level of heterogeneity (91%). In the subgroup analysis, only iron pots / ingots produced a significant rise (0.88 g/dL 95% CI 0.05, 1.72, p=0.04) in mean Hb values when compared to food (0.51 g/dL, 95% CI -0.32, 1.34, p=0.22) (Figure 5).

Effect of use of food and iron pots / ingots on the prevalence of IDA

The effect of non-pharmacological measures on the prevalence of IDA was analyzed in only 5 RCTs. Participants in the intervention groups were 2.78 times less likely to suffer from IDA than those in the control groups, odds ratio (OR)=2.78, 95% CI 0.93, 8.29, with a high level of heterogeneity (p<0.0001, I²=90%), however without significance for the overall effect (p=0.07). In the subgroup analysis, participants in both the food and iron pots / ingots groups were less likely to be anemic when compared to control, OR=4.61, 95% CI 0.75, 28.50 and OR=1.99, 95% CI 0.47, 8.44, respectively, although once again without statistical significance (Figure 6).

When analyzing changes in the prevalence of anemia only in children (3 trials), we found that participants in the interventions group were 3.20 times less likely to have IDA (OR=3.20, 95% CI 0.80, 12.80), without significance (p=0.10). In the food subgroup, IDA was less prevalent in the intervention group, as is the case with iron pots / ingots, although without statistical significance (p=0.10 and 0.50, respectively) (Figure 7).

Discussion
Our systematic review showed that non-pharmacological treatments for IDA had a significant positive impact on Hb concentrations (MD +0.45 g/dL); however, in the subgroup (food or iron pots / ingots) analysis, although mean Hb values increased this was not statistically significant, probably due to a small subgroup size and a large confidence interval. This interval may result from the heterogeneity of the meta-analysis, by combining studies with different methods, treatments used and target populations, but with a common objective. In the RCTs conducted exclusively with children, again the overall effect of non-pharmacological interventions provided a significant mean increase in Hb concentrations (0.69 g/dL). In the subgroup analyses, we found that iron pots / ingots impacted more significantly on mean Hb values than food (0.88 g/dL vs. 0.51 g/dL) in this population.

For the effect of food interventions on Hb concentrations, only 2 out of 3 interventions provided a positive effect.28,33 In the study by Szymlek-Gay et al. (2009),27 the authors reported that mean consumption (red meat intervention) was less than half of what the intervention intended (0.7 dishes/day out of 2 dishes/day), they recognized that identifying and removing factors that might have affected adherence could have delivered more effective results. Consequently, this study had a negative impact on the overall effect (MD -0.10, 95% CI -0.48, 0.28) of the studies.

The results of the interventions that used iron pots / ingots for cooking on Hb concentrations were extremely varied, in 5 out of 8 RCTS,23,24,29,30,32 the effect of the intervention was superior to that of the control. Although, when analyzing the study by Talley et al. (2009),29 we found that this study was carried out in different aid-dependent refugee camps where the prevalence of anemia had reduced significantly due to the distribution of a corn-soy blend prior to the intervention; furthermore, the authors believe that the response may also be due to lack of compliance with the Fe-alloy pots. The three remaining RCTs25,26,31 reported negative effects on Hb values from the use of iron pots / ingots when compared with control. The study by Geerligs et al. (2003),25 to assess the effect of cooking in iron pots with aluminum ones, was conducted in rural Malawian households. The authors attributed the inconsistent results of this study to high malaria parasite prevalence in the area. Nevertheless, they maintained the recommendation for this type of intervention. In the two other studies,26,31 the results were inconclusive, and the authors recommended further studies on the bioavailability of this iron or the nonuse of these strategies.
However, in studies with children only, the use of iron pots/ingots provided a significant impact on Hb concentrations. For the three studies conducted in children only, the authors considered this kind of intervention as a useful adjunct for programs to prevent IDA in at-risk populations, recommending their provision for households in less developed countries.

For the prevalence of anemia, we found that although participants in the intervention groups were less likely to suffer from IDA this probability was weakened due to the small number of trials with this outcome measure, and as consequence we were unable to confirm statistical significance (p=0.07 for all studies, and p=0.10 for studies performed with children). However, this outcome measure was only report in five studies. The results of the food interventions provided a greater impact on the prevalence of anemia, and participants in the intervention groups of these studies were 4.61 times less likely to suffer from IDA. The iron pots/ingots interventions presented inclusive findings; in the study by Charles et al. (2015), participants in the control group were about 4 times more likely to be anemic than those in the intervention groups; for Arcanjo et al. (2018), there was little difference between the intervention and control groups, (reduction of prevalence of IDA from 10.7% to 8.4% in the intervention group, and 13.2% to 11.8% in the control group); but for Shariief et al. (2007) anemia was more prevalent in the intervention group when compared to the control group.

In studies with children only (three RCTs) there was a reduction in the prevalence of IDA for studies with food interventions; in one the prevalence of anemia fell from 40% to 20% in the intervention group, with no change in the control group, while in the other the prevalence of anemia fell from 36.8% to 15.8% in the intervention group, and rose from 16.7% to 25% in the control group. For the study with iron pots, there was little difference between the intervention and control groups.

Strengths and limitations of the study

This systematic review evaluated the use of non-pharmacological measures on the prevention and treatment of anemia. These analyses examined the effect of sugar cane honey, brown sugar, red meat and cooking with iron pot or ingots on hemoglobin levels and the prevalence of anemia. To our knowledge, this is the first systematic review and meta-analysis aiming to understand the effect of alternative strategies for the treatment and prevention of IDA.
However, our review has limitations. First, few RCTs have investigated non-pharmacological measures, and the data available for the analysis of the study outcomes was limited. Second, some of the studies were conducted in populations with traditionally low Hb concentrations and high levels of anemia that were possible involved in other nutrition programs at the time or shortly before the interventions. In addition, many of the studies presented large confidence intervals which prevented the authors from making a meaningful interpretation.

Conclusion

The evidence presented from the eleven RCTs included in this review suggest that these non-pharmacological therapies have a positive effect on iron balance, and can be defined as a useful adjunct to programs to prevent and treat ID in at-risk populations, especially those in low-income environments. The findings from this review show that there are therapeutic alternatives that do not include the use of drugs for the prevention and treatment of diseases related to nutritional deficiencies. The results of this review provide an evidence base for public health managers in the elaboration of public policies focused on this theme.

References

<table>
<thead>
<tr>
<th>1st Author/Year of publication</th>
<th>Country</th>
<th>Number of participants</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Primary and secondary outcomes</th>
<th>Main results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borigato (1998)<sup>23*</sup></td>
<td>Brazil</td>
<td>45</td>
<td>Children between 4 and 12 months of age</td>
<td>Iron pots</td>
<td>Aluminum pots</td>
<td>Hemoglobin</td>
<td>Increase of 0.5g/dL in the intervention group and decrease of 0.7g/dL in the control group</td>
</tr>
<tr>
<td>Adish (1999)<sup>24*</sup></td>
<td>Ethiopia</td>
<td>407</td>
<td>Children between 2 and 5 years of age</td>
<td>Iron pots</td>
<td>Aluminum / clay pots</td>
<td>Hemoglobin</td>
<td>Increase of 1.7g/dL in Hb levels in the intervention group; there was a difference in 1.3g/dL in Hb levels between the intervention and control groups</td>
</tr>
<tr>
<td>Geerligs (2003)<sup>25</sup></td>
<td>Malawi</td>
<td>322</td>
<td>Adults and children over 1 year of age</td>
<td>Iron pots</td>
<td>Aluminum pots</td>
<td>Hemoglobin</td>
<td>0.68g/dL increase in Hb concentrations in children < 12 years and 0.53g/dL in those > 12 years, both considering groups with consistent use of the intervention; high proportion of malaria in blood samples, especially in children < 12 years 0.3g/dL increase in Hb values in the intervention group and 0.5g/dL in the control group; the effect on hematological indices was lower in the iron pot groups compared to the control groups that included the use of steel pots and iron supplementation</td>
</tr>
<tr>
<td>Sharieff (2007)<sup>26</sup></td>
<td>Benin</td>
<td>339</td>
<td>Children (6-24 months), adolescents (11-15 years) and women (15-44 years)</td>
<td>Iron pots</td>
<td>Steel pots; iron supplementation</td>
<td>Hemoglobin; anemia</td>
<td>0.13g/dL increase in Hb values in the intervention group and 0.5g/dL in the control group; neither the red meat intervention nor the iron-fortified milk intervention was associated with a statistically significant change in anemia prevalence</td>
</tr>
<tr>
<td>Szymlek-Gay (2009)<sup>27*</sup></td>
<td>New Zealand</td>
<td>225</td>
<td>Children between 12 and 20 months of age</td>
<td>Red meat intake</td>
<td>Fortified milk; non-fortified milk</td>
<td>Hemoglobin; anemia</td>
<td>Mean increase of 0.5 g/dL in Hb levels in the intervention group; reduction in the prevalence of anemia from 40% to 20% in the intervention group, remaining at 72.7%</td>
</tr>
<tr>
<td>Arcanjo (2009)<sup>28*</sup></td>
<td>Brazil</td>
<td>352</td>
<td>Children between 2 and 3 years of age</td>
<td>Evaporated sugar cane juice</td>
<td>Refined sugar</td>
<td>Hemoglobin; anemia</td>
<td></td>
</tr>
<tr>
<td>1<sup>st</sup> Author/Year of publication</td>
<td>Country</td>
<td>Number of participants</td>
<td>Population</td>
<td>Intervention</td>
<td>Comparison</td>
<td>Primary and secondary outcomes</td>
<td>Main results</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Talley (2009)<sup>29</sup></td>
<td>Tanzania</td>
<td>220</td>
<td>Children between 6 and 59 months of age and their mothers</td>
<td>Iron alloy pots</td>
<td>Aluminum / clay pots</td>
<td>Hemoglobin</td>
<td>Decrease in mean Hb concentrations of 0.2 g/dL in children 6 to 59 months of age and 0.6 g/dL in non-pregnant mothers in the intervention group; participants in the intervention group had lower iron levels than those in the control group.</td>
</tr>
<tr>
<td>Charles (2015)<sup>30</sup></td>
<td>Cambodia</td>
<td>248</td>
<td>Women</td>
<td>Iron ingot</td>
<td>No intervention</td>
<td>Hemoglobin; anemia</td>
<td>Mean Hb increase of 1.3 g/dL in the intervention group and 0.1 g/dL in the control; participants in the control group were about 4 times more likely to be anemic than those in the intervention groups.</td>
</tr>
<tr>
<td>Rappaport (2017)<sup>31</sup></td>
<td>Cambodia</td>
<td>326</td>
<td>Women between 18 and 49 years of age</td>
<td>Iron ingot</td>
<td>No intervention</td>
<td>Hemoglobin</td>
<td>Decrease in mean Hb of 0.3 g/dL in the intervention group and 0.2 g/dL in the control group; there was no effect of the intervention on the prevalence of anemia.</td>
</tr>
<tr>
<td>Arcanjo (2018)<sup>32*</sup></td>
<td>Brazil</td>
<td>151</td>
<td>Children between 4 and 5 years of age</td>
<td>Iron pots</td>
<td>Aluminum pots</td>
<td>Hemoglobin; anemia</td>
<td>Increase in Hb concentrations of 0.03 g/dL in the intervention group and a decrease of 0.2 g/dL in the control group; a reduction in the prevalence of anemia from 10.7% to 8.4% in the intervention group and from 13.2% to 11.8% in the control group.</td>
</tr>
<tr>
<td>Arcanjo (2020)<sup>33*</sup></td>
<td>Brazil</td>
<td>176</td>
<td>Children between 24 and 36 months of age</td>
<td>Sugar cane honey</td>
<td>Iron supplementation; no intervention</td>
<td>Hemoglobin; anemia</td>
<td>Increase of 0.5 g/dL in Hb levels in the intervention group and 0.74 g/dL decrease in the control group; prevalence of anemia fell from 36.8% to 15.8% in the intervention group, and rose from 16.7% to 25% in the control group.</td>
</tr>
</tbody>
</table>

*Studies conducted only with children.
Table 2. A summary of findings table for evaluating the quality of evidence-non-pharmacological measures compared to control for hemoglobin concentrations and prevalence of anemia according to GRADE.

<table>
<thead>
<tr>
<th>Certainty assessment</th>
<th>Summary of findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° of participants (studies) Follow up</td>
<td>Rate of events across studies (%)</td>
</tr>
<tr>
<td>Risk of bias</td>
<td>Inconsistency</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Hemoglobin concentrations</td>
<td></td>
</tr>
<tr>
<td>2022 (11 RCTs)</td>
<td>not serious</td>
</tr>
<tr>
<td>Prevalence of anemia</td>
<td></td>
</tr>
<tr>
<td>847 (5 RCTs)</td>
<td>not serious</td>
</tr>
</tbody>
</table>

\(^a\) In some studies, the interventions did not follow what had been proposed, due to difficulty in adherence by the populations studied, despite this, the mean consumption and use of the approached methods were considered adequate for the researchers who studied them.
Figure 1. PICOS Question.

P
Patients=General population

I
Intervention=Non-pharmacological measures

C
Comparison=Control; No intervention

O
Outcomes=Hb levels; Prevalence of anemia

S
Randomized controlled clinical trials

Descriptors: Anemia; Food; Food intake; Dietary intake; Randomized controlled trial
Figure 2. Search strategy according to the PRISMA protocol.22
Figure 3. Risk of bias in studies using the Cochrane Risk of Bias tool (RoB 2.0).
Figure 4. Effect for the overall and subgroup analysis of therapy with non-pharmacological measures on Hb levels.
Table 1: Effect for the overall and subgroup analysis of therapy with non-pharmacological measures on Hb levels in children.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Intervention</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean [g/dL]</td>
<td>95% CI</td>
<td>Mean [g/dL]</td>
<td>Mean [g/dL]</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetato 2019</td>
<td>0.5</td>
<td>1.87</td>
<td>0.1</td>
<td>1.26</td>
</tr>
<tr>
<td>Acetato 2020</td>
<td>0.5</td>
<td>1.17</td>
<td>0.14</td>
<td>0.96</td>
</tr>
<tr>
<td>Serrano-Díaz 2019</td>
<td>0.13</td>
<td>1.27</td>
<td>0.23</td>
<td>1.23</td>
</tr>
<tr>
<td>Serrano-Díaz 2019</td>
<td>0.85</td>
<td>2.85</td>
<td>0.23</td>
<td>2.85</td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>Test: Z = 4.49, CI [-0.29, 0.73], df = 2 (p = 0.0019), f = 0.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test for overall effect Z = 1.21 (p = 0.22)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5. Effect for the overall and subgroup analysis of therapy with non-pharmacological measures on Hb levels in children.
Figure 6. Effect for the overall and subgroup analysis of therapy with non-pharmacological measures on the prevalence of anemia.
Figure 7. Effect for the overall and subgroup analysis of therapy with non-pharmacological measures on the prevalence of anemia in children.