Survival rate of positive peritoneal cytology in endometrial cancer; a systematic review and meta-analysis

Running title: Survival rate of positive peritoneal cytology in endometrial cancer

Hamidreza Dehghan¹, Fariba Binesh², Mohammad Taghi Moravej¹*, Ali Zare Dehnavi³, Hojat Dehghanbanadaki³, Safiyehsadat Heydari⁴, Maryam Nikfard⁵, Mehrdad Mansouri¹

1. Consultation Center for Secondary Researches, Data Mining, and Knowledge Transfer in Health and Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran / Hamidreza.dehghan@gmail.com, ORCID: 0000-0002-6772-7170/mohammadmoravej.mm@gmail.com, ORCID: 0000-0003-2221-6614/mansory.mehrdad@yahoo.com, ORCID: 0000-0001-6903-8881

2. Department Of Pathology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran binesh44@yahoo.com/ ORCID: 0000-0002-4260-6137

3. School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. alizared9494@gmail.com, ORCID: 0000-0002-8584-6579/Dehghan.hojat@yahoo.com,

4. Ph.D. student of health information management, health information management research center, Kashan University of Medical Sciences, Kashan, Iran. / Email: safiyehsadat.heydari@gmail.com, ORCID: 0000-0003-1452-2259

5. School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran m.nikfard@gmail.com, 0000-0001-6053-3501

*Corresponding author: Mohammad Taghi Moravej, Consultation Center for Secondary Researches, Data Mining, and Knowledge Transfer in Health and Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Email: mohammadmoravej.mm@gmail.com

ORCID: 0000-0003-2221-6614

Tel: 0910 309 1067

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Survival rate of positive peritoneal cytology in endometrial cancer; a systematic review and meta-analysis

Abstract

Background: The impact of positive peritoneal cytology on survival rate of endometrial cancer patients in different stages and histopathology is still controversial. We performed a systematic review and meta-analysis to investigate the influence of positive peritoneal cytology (PPC) on survival rate of patients with endometrial carcinoma.

Methods: A systematic literature search of PubMed, Embase, Scopus, and Cochrane databases was conducted up to November 24, 2020. The quality of included studies was evaluated by Quality in prognosis study (QUIPS) tool.

Results: Initially, 3014 articles were found, of which 65 met the inclusion criteria for qualitative analysis and 27 studies on 75897 patients with endometrial cancer were included in the meta-analysis. PPC was associated with a lower overall survival in endometrial cancer (HR= 2.102; 95% CI:1.629- 2.711; P< 0.001). The findings also identified PPC as an independent prognostic factor for both disease-free survival (HR= 3.052; 95% CI: 2.348-2967; P< 0.001) and cancer specific survival (HR= 3.461; 95% CI: 2.280- 5.254; P< 0.001). In addition, we meta-analyzed the studies in 21 subgroups based on staging and histopathology of the endometrial cancer which all identified PPC as a non-prognostic factor for cancer of endometrium.

Conclusion: PPC is an independent prognostic factor for endometrial cancer survival rate in all staging and histopathologic subgroups.

Keywords: endometrial cancer; peritoneal cytology; prognosis; survival
Introduction

Endometrial cancer is considered the most common gynecological cancer in industrialized countries and the second most common in developing countries (1). Its incidence has increased steadily since 1990, with the highest growth rate for countries with a high sociodemographic index (SDI) (2). Despite the fact that approximately 75% of endometrial cancer cases are diagnosed in early stages, the annual estimated rate of endometrial cancer mortality is increasing rapidly at a rate of 1-2% (3,4). Most of the mortality occurs in advance disease, which highlights the importance of prognostic factors in endometrial carcinoma and early detection of cases (5).

The importance of numerous prognostic factors has been thoroughly investigated, and multiple prognostic factors have been identified, including age, parity, tumor grade, and cancer stage (6,7). Of these factors, tumor stage is the most powerful prognostic parameter and can provide a useful tool for predicting patients’ outcomes and facilitating recommendation of proper treatment options (3,8,9). Endometrial cancer staging was previously done clinically until 1988, when the International Federation of Gynecology and Obstetrics (FIGO) introduced a surgical staging system (10). In 2009, the FIGO staging system for endometrial cancer was revised, and peritoneal cytology was removed as a staging criteria (7,11). Despite the omission of peritoneal cytology from the staging system, several studies have shown contradictory results, and positive peritoneal cytology has been found useful for evaluation of prognosis and prediction of survival rate (12–14).

Despite all previous investigations, the role of positive peritoneal cytology in endometrial cancer staging is still a matter of debate, and excluding positive peritoneal cytology from the staging system may mislead prognosis estimations in these patients, resulting in under treatment and an
increasing mortality rate (11). In this study, we have systematically reviewed and meta-analyzed the existing literature on the effect of positive peritoneal cytology on the survival rate of patients with endometrial cancer to clarify the clinical importance of PPC in endometrial carcinoma.

Materials and methods

Protocol registration

This systematic review and meta-analysis was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (15). Furthermore, the study protocol has been registered in PROSPERO with the code of CRD42018103587 and published in detail previously (16).

Search strategy and screening

Initially, on October 30, 2018, we searched PubMed, Embase, Scopus, and Cochrane databases for all original studies without time and language limitations. Following the initial search, an alarm was set in each database to notify us about new manuscripts, and new studies were reviewed before the final analysis (November 24, 2020). The following terms were used for searching the databases: endometrial cancer, endometrial carcinoma, endometrial neoplasm, endometrial tumor, peritoneal washing, peritoneal lavages, peritoneal irrigations, peritoneal cytology, peritoneal lavage cytology, positive peritoneal washing, and positive peritoneal cytology. Two investigators independently assessed the title, abstract, and full-text of the retrieved papers, and any disagreements were resolved with a third investigator. Then, the included articles were surveyed for data extraction. In the cases where the full text or required
data for conducting the systematic review and meta-analysis was missing, up to three emails were sent to the corresponding author of these papers at two-week intervals, and they were asked for the missing data.

Inclusion and exclusion criteria

The inclusion criteria for study selection were: all original studies on endometrial cancer patients who underwent peritoneal washing cytology and were also assessed for the survival. Papers which the full text of the manuscript was not provided were excluded. Studies with incomplete or missing medical data which failed to meet the requirements for our checklist were also excluded.

Data extraction and measured outcomes

Two authors independently extracted data from the included papers using the pre-designed data extraction form, and disagreements were discussed and resolved through consultation with a third investigator. The data extraction check list consisted of the following items: bibliographic data (article title, paper’s first author name, publication year, journal name, year of publication, country, and type of study), study population characteristics (number of patients, age, tumor grade and stage, histopathology findings, and type of treatment), number of positive peritoneal cytology, hazard ratio (HR) and its dispersion for overall survival (OS), disease-free survival (DFS), and cancer specific survival (CSS).

The main measured outcomes were overall survival (OS), defined as the time which begins at diagnosis and up to the time of death due to any cause, disease free survival (DFS), defined as the time from diagnosis to recurrence of the disease, and cancer specific survival (CSS), defined as the time from diagnosis of the disease to death from that disease.
Quality assessment

The Quality in prognosis study (QUIPS) tool (17,18) was used to evaluate the quality of included studies and to measure the bias of the papers.

Statistical analysis

STATA 16 was used for statistical analyses. The logarithm of HR and standard error of logarithm of HR were calculated, and forest plots were generated using fixed-effects model when there was no substantial heterogeneity ($I^2 < 50\%$); otherwise random-effect model was used. Heterogeneity was assessed through Cochran's Q test and I square index. The funnel plot and Egger test was used to measure publication bias. Subgroup analysis was performed based on the staging method (FIGO 1988, FIGO 2009), the studied stage (low stage, high stage, and all stages together), and the investigated histology (Type 1 histology, Type 2 histology, and all histologies together).

Results

Study selection

A total of 3014 articles were identified during the initial search in four databases. After removing the duplicates, a total of 2142 articles were obtained, of which 138 reached the full-text assessment stage. Of these, 59 articles were excluded regarding eligibility criteria, and 21 articles were not included due to unavailability of full-texts (Figure 1). Finally, 65 papers were included for qualitative analysis which were retrospective observational studies and were published from 1981 to 2020 (7,9,11,14,19–77). The details of these studies are also presented in Appendix 1.
Characteristics of included studies

Of these 65 studies, 27 papers met the criteria for meta-analysis, which included an overall number of 75897 patients. Of the 27 papers, 16 studies (11,13,21,22,24,35,36,43,49,54,58,62,68,70,73,77) included OS data, 18 had DFS data(14,21,62,64,68,70,72,74,77,78,25,36,39,43,44,49,53,58), and 7 had CSS(7)(19)(33)(44)(45)(64)(73). The quality assessment (QUIPS) of included studies is summarized in table 1.

<table>
<thead>
<tr>
<th>QUIPS</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary Study participation</td>
<td>21</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Study Attrition Summary</td>
<td>22</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Prognostic Factor Measurement Summary</td>
<td>23</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Outcome Measurement Summary</td>
<td>23</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Study Confounding Summary</td>
<td>14</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Statistical Analysis and Presentation Summary</td>
<td>26</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Quantitative analysis

Results of the meta-analysis on the overall survival rate for 16 papers are shown in Figure 2. Figures 3 and 4 present the results of meta-analysis on DFS and CSS, respectively. The findings of these analyses can be summarized as follows:

OS: HR: 2.102(CI (95%):1.629-2.711, P: 0.000, Z: 6.913)

DFS: HR: 3.052(CI (95%):2.348-2.967, P: 0.000, Z: 8.342)

CSS: HR: 3.461(CI (95%):2.280-5.254, P: 0.000, Z: 5.831)
Subgroup Meta-analysis

We also analyzed the outcome of endometrial cancer patients in different subgroups based on staging system and histopathology. The details of subgroups’ analysis findings are reported in table 2. The results of subgroup analysis indicated that of the total 21 subgroups, 12 had low heterogeneity (<50%), 7 had moderate heterogeneity (75%–50%), and 2 showed high heterogeneity (>75%). Detailed results of the subgroup analysis are available in Appendix 2. Concerning the results of subgroup analysis, 1) heterogeneity considerably reduced in subgroups compared to the main group, and 2) the absence of some subgroups in this category was due to less than two articles in that subgroup (Table 2).
Table 2. Summary of subgroup analysis

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Articles number</th>
<th>Sample size</th>
<th>HR</th>
<th>I²</th>
<th>Heterogeneity P value</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIGO 1988</td>
<td>4</td>
<td>732</td>
<td>1.97</td>
<td>42.7%</td>
<td>0.155</td>
<td>1.23-3.16</td>
</tr>
<tr>
<td>FIGO 2009</td>
<td>12</td>
<td>44530</td>
<td>2.36</td>
<td>61.6%</td>
<td>0.003</td>
<td>1.80-3.10</td>
</tr>
<tr>
<td>Type 1 histology</td>
<td>7</td>
<td>43123</td>
<td>2.03</td>
<td>60.0%</td>
<td>0.020</td>
<td>1.37-2.99</td>
</tr>
<tr>
<td>Type 2 histology</td>
<td>3</td>
<td>472</td>
<td>2.73</td>
<td>20.7%</td>
<td>0.283</td>
<td>1.56-4.77</td>
</tr>
<tr>
<td>All histologies together</td>
<td>7</td>
<td>18518</td>
<td>2.15</td>
<td>50.5%</td>
<td>0.059</td>
<td>1.60-2.89</td>
</tr>
<tr>
<td>Low stages</td>
<td>7</td>
<td>43575</td>
<td>1.80</td>
<td>54.3%</td>
<td>0.041</td>
<td>1.33-2.44</td>
</tr>
<tr>
<td>High stages</td>
<td>3</td>
<td>338</td>
<td>1.92</td>
<td>47.6%</td>
<td>0.149</td>
<td>1.22-3.01</td>
</tr>
<tr>
<td>All stages together</td>
<td>8</td>
<td>2257</td>
<td>3.28</td>
<td>0.0%</td>
<td>0.546</td>
<td>2.42-4.43</td>
</tr>
<tr>
<td>Disease free survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988 staging</td>
<td>3</td>
<td>422</td>
<td>1.59</td>
<td>0.0%</td>
<td>0.553</td>
<td>1.10-2.30</td>
</tr>
<tr>
<td>2009 staging</td>
<td>15</td>
<td>6222</td>
<td>3.50</td>
<td>23.7%</td>
<td>0.198</td>
<td>2.71-4.51</td>
</tr>
<tr>
<td>Type 1 histology</td>
<td>6</td>
<td>3424</td>
<td>2.79</td>
<td>18.1%</td>
<td>0.296</td>
<td>1.90-4.12</td>
</tr>
<tr>
<td>Type 2 histology</td>
<td>4</td>
<td>514</td>
<td>5.04</td>
<td>0.0%</td>
<td>0.418</td>
<td>2.82-9.01</td>
</tr>
<tr>
<td>All histologies together</td>
<td>9</td>
<td>2971</td>
<td>3.22</td>
<td>66.3%</td>
<td>0.003</td>
<td>2.12-4.89</td>
</tr>
<tr>
<td>Low stages</td>
<td>8</td>
<td>3751</td>
<td>4.52</td>
<td>59.2%</td>
<td>0.016</td>
<td>2.61-7.81</td>
</tr>
<tr>
<td>High stages</td>
<td>4</td>
<td>530</td>
<td>1.87</td>
<td>0.0%</td>
<td>0.658</td>
<td>1.36-2.57</td>
</tr>
<tr>
<td>All stages together</td>
<td>9</td>
<td>3536</td>
<td>3.33</td>
<td>0.0%</td>
<td>0.858</td>
<td>2.43-4.56</td>
</tr>
<tr>
<td>Cancer specific survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009 staging</td>
<td>6</td>
<td>17613</td>
<td>3.39</td>
<td>84.6%</td>
<td>0.000</td>
<td>2.17-5.27</td>
</tr>
<tr>
<td>Type 1 histology</td>
<td>4</td>
<td>27618</td>
<td>2.62</td>
<td>37.0%</td>
<td>0.190</td>
<td>1.78-3.86</td>
</tr>
<tr>
<td>All histologies together</td>
<td>4</td>
<td>15945</td>
<td>4.02</td>
<td>48.6%</td>
<td>0.120</td>
<td>2.83-5.72</td>
</tr>
<tr>
<td>Low stages</td>
<td>4</td>
<td>42193</td>
<td>3.31</td>
<td>89.6%</td>
<td>0.000</td>
<td>1.79-6.12</td>
</tr>
<tr>
<td>All stages together</td>
<td>2</td>
<td>1045</td>
<td>4.38</td>
<td>70.9%</td>
<td>0.064</td>
<td>1.68-11.40</td>
</tr>
</tbody>
</table>

CC-BY 4.0 International license
It is made available under a CC-BY 4.0 International license.
Discussion:

Through this systematic review and meta-analysis, we demonstrated that positive peritoneal cytology can be used as an independent prognostic factor for endometrial cancer and it’s time to change back FIGO endometrial cancer staging. To guarantee our findings we also surveyed the prognostic value of PPC in endometrial carcinoma in 21 subgroups (based on tumor staging or histopathology), which all identified PPC as an independent prognostic factor for cancer of the endometrium.

Owing to rising technological and diagnostic technique advancements, the cancer staging system has been shown to be ever-changing, and endometrial cancers are no exception. FIGO staging for endometrial cancer was based on clinical evaluation until 1988, when it switched to pathological findings (7). In 2009, the system was also updated, with the removal of PC being one of the most significant changes (7). Many studies with extremely varied findings on the prognostic value of PPC in endometrial cancer have been published over a period of nearly 50 years (79). However, the prognostic value of PPC is still a matter of debate. Our findings in this systematic review and meta-analysis on 50 years of studies may be the end of this debate.

A study by Hirai et al. in 2001 evaluated the persistence of PPC on days 7 and 14 after peritoneal washing in patients with endometrial cancer with PPC. It was observed that only 5 out of 50 patients still had PPC on the 14th day. Although their findings questioned the prognostic value of PPC, they acknowledge that the prognostic role of PPC in endometrial cancer cannot be ignored (80).

In 2001, another study was carried out by Gu¨rkan Arikan et al. in which, 24 patients with endometrial cancer and negative peritoneal cytology who underwent total abdominal
hysterectomy were investigated and also some in vitro simulations were performed. The findings showed that cancerous cells in the peritoneal fluid were viable and were capable of implanting in the endometrial matrix (81).

The mechanisms of cancer cells migration and implantation seem to be taken into account. As it is evident from the terms used, the word “migration” indicates the movement of cells from one point to another which is different from the word “shedding”, and the positivity of PC can be intermittent (as three patients in Hirai’s study had negative PC on day 7 and PPC on day 14, while the author did not provide any convincing reason for this. However, it might be explained by cell migration or possibly cell alteration due to remaining in the peritoneal fluid). Furthermore, several studies have showed that tubal ligation during surgery can reduce the mortality rate in endometrial cancer patient.

Two other similar systematic reviews and meta-analyses have been conducted in years, and their findings are in line with ours (73)(82). However, in the present study, we examined the prognostic value of PC in EC patients with more enrolled articles, which was achieved by broadening the search strategy and minimizing inclusion and exclusion criteria with no time and language restrictions to increase the sensitivity of the search (by accepting the reduction of its specificity) and minimize selective reporting bias.

According to the results of the current study, 19 articles in total had concluded that PPC could not be considered as an independent prognostic factor. One of these studies which was carried out by Aiqin Wang et al. (2017) had the largest sample size among the reviewed articles (3415 patients, of whom 127 had PPC). They suggested that PPC, while being associated with other prognostic factors such as age and muscle invasion, could not be regarded as an independent
prognostic factor, although it was identified that the risk of disease recurrence was significantly higher in patients with PPC compared to those with negative PC ($\chi^2 = 7.970, P = 0.005$).

There are a few limitations to our study that should be stated. Lack of considering the effects of treatment options on prognosis is one of them which can be reduced in future surveys with examining the patients in the same stages. Another drawback was that all studies included in our investigation were observational and retrospective type. Despite the mentioned limitations, the consistency of the subgroup analysis results enables us to consider the prognostic value of peritoneal cytology more confidently. Overall, it appears that more research with a larger sample size and higher quality is required to determine the prognostic value of peritoneal cytology. However, until more research is done, based on table 2 and the fact that the homogeneity of articles was acceptable in most subgroups, and all results in subgroups analysis were based on the positive effect of PC on the patient prognosis, as well as findings of previous systematic reviews on the subject, our findings suggest that PPC could be considered as an independent prognostic factor in patients with endometrial cancer. Therefore, it is recommended to be considered in the next FIGO Staging System for Endometrial Cancer to provide the patients with the necessary and sufficient treatments.

Declarations

Funding

None

Competing interest

The authors declare no competing interest
References:

endometrial carcinoma: a comparative study on prediction of survival and stage
distribution according to histologic subtype. J Gynecol Oncol [Internet]. 2014 Jan [cited

8. Werner HMJ, Trovik J, Marcickiewicz J, Tingulstad S, Staff AC, Amant F, et al. Revision
of FIGO surgical staging in 2009 for endometrial cancer validates to improve risk

1988 and 2009 staging systems for endometrial carcinoma. Med Oncol [Internet]. 2012
Dec [cited 2022 Feb 1];29(4):2955–62. Available from:

[Internet]. 2011 Jun [cited 2022 Feb 1];54(2):215–8. Available from:
https://journals.lww.com/clinicalobgyn/Fulltext/2011/06000/Revised_FIGO_Staging_Syst
em_for_Endometrial_Cancer.4.aspx

11. Seagle BLL, Alexander AL, Lantsman T, Shahabi S. Prognosis and treatment of positive
peritoneal cytology in early endometrial cancer: matched cohort analyses from the

cytology is an independent risk-factor in early stage endometrial cancer. Gynecol Oncol
[Internet]. 2013 Jan [cited 2022 Feb 1];128(1):77–82. Available from:

https://eurekamag.com/research/004/648/004648457.php

criteria for endometrial cancer. J Turkish-German Gynecol Assoc [Internet]. 2017 Sep 1 [cited 2022 Mar 9];18(3):110–5. Available from:

78. Santala M, Talvensaari-Mattila A, research AK-A, 2003 undefined. Peritoneal cytology and preoperative serum CA 125 level are important prognostic indicators of overall survival in advanced endometrial cancer. europepmc.org [Internet]. [cited 2022 Apr 17]; Available from: https://europepmc.org/article/med/12926169

carcinoma cells disseminated at hysteroscopy functionally viable? Gynecol Oncol
[Internet]. 2001 [cited 2022 Mar 9];83(2):221–6. Available from:

82. Lee B, Suh DH, Kim K, No JH, Kim YB. Influence of positive peritoneal cytology on
prognostic factors and survival in early-stage endometrial cancer: a systematic review and
Figure 1. PRISMA flow diagram. Start date: Oct 30, 2018; End date: Nov 24, 2020.
<table>
<thead>
<tr>
<th>First author's name</th>
<th>Haz. Ratio (95% CI)</th>
<th>%</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nita Puskaritansod</td>
<td>1.75 (0.84, 3.65)</td>
<td></td>
<td>6.01</td>
</tr>
<tr>
<td>Incim Eletrikoglu</td>
<td>2.57 (1.05, 5.39)</td>
<td></td>
<td>4.62</td>
</tr>
<tr>
<td>Anna V. Hauksara</td>
<td>1.31 (0.62, 2.74)</td>
<td></td>
<td>5.93</td>
</tr>
<tr>
<td>S. A. Scott</td>
<td>1.32 (0.47, 3.76)</td>
<td></td>
<td>3.70</td>
</tr>
<tr>
<td>T. Kasamatsu</td>
<td>1.82 (0.86, 3.88)</td>
<td></td>
<td>3.06</td>
</tr>
<tr>
<td>Xiaohai Tang</td>
<td>3.82 (1.52, 17.62)</td>
<td></td>
<td>6.50</td>
</tr>
<tr>
<td>Ken Tanaka</td>
<td>7.80 (2.63, 24.06)</td>
<td></td>
<td>2.43</td>
</tr>
<tr>
<td>S. A. Mifrem</td>
<td>2.90 (1.70, 4.81)</td>
<td></td>
<td>0.74</td>
</tr>
<tr>
<td>Brandon Luke Lezegle</td>
<td>1.70 (1.42, 2.04)</td>
<td></td>
<td>14.50</td>
</tr>
<tr>
<td>Keisei Tote</td>
<td>4.96 (1.34, 18.33)</td>
<td></td>
<td>2.56</td>
</tr>
<tr>
<td>Xiaozhu Zhang</td>
<td>3.38 (2.71, 8.11)</td>
<td></td>
<td>5.94</td>
</tr>
<tr>
<td>Laura J. Havilpeisky</td>
<td>1.65 (1.02, 2.65)</td>
<td></td>
<td>9.37</td>
</tr>
<tr>
<td>Koji Matsuue</td>
<td>1.14 (1.16, 1.72)</td>
<td></td>
<td>14.26</td>
</tr>
<tr>
<td>Yangyang Dong</td>
<td>2.80 (1.00, 7.20)</td>
<td></td>
<td>4.00</td>
</tr>
<tr>
<td>Enrico Vizca</td>
<td>4.65 (2.25, 9.62)</td>
<td></td>
<td>6.10</td>
</tr>
<tr>
<td>Overall D.L. (I² = 56.1%, p = 0.003)</td>
<td>2.24 (1.76, 2.81)</td>
<td></td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 2. Forest Plot of the articles analyzing OS
Figure 3. Forest Plot of the articles analyzing DFS
Figure 4. Forest Plot of the articles analyzing CSS