Prosocial motivation for vaccination

J. Lucas Reddinger,¹²³ Gary Charness,³ and David Levine⁴

20 April 2022

Abstract Vaccination has both private and public benefits. We ask whether social preferences—concerns for the well-being of other people—influence one's decision regarding vaccination. We measure these social preferences for 549 online subjects: We give each subject $4 to play a public-good game and make contributions to public welfare. To the extent that one gets vaccinated out of concern for the health of others, contribution in this game is analogous to an individual's decision to obtain vaccination. We collect COVID-19 vaccination history separately to avoid experimenter-demand effects. We find a strong result: Contribution in the public-good game is associated with greater demand to voluntarily receive a first dose, and thus also to vaccinate earlier. Compared to a subject who contributes nothing, one who contributes the maximum ($4) is 48% more likely to obtain a first dose voluntarily in the four-month period that we study (April through August 2021). People who are more pro-social are indeed more likely to take a voluntary COVID-19 vaccination.

JEL Codes I12, D91, C90

Keywords social preferences, prosocial behavior, vaccination, behavioral public health, health policy, COVID-19, SARS-CoV-2, B1.617.2, public good, altruism, efficiency, equity, experimental economics

As much energy and as many resources as we can muster—and there are finite amounts of both—should be directed at reaching the [unvaccinated] population.

Krause, Gruber, and Offit, 30 November 2021

¹Corresponding author: 1725 State St., 339C Wimberly Hall, La Crosse, WI 54601; Ph. (608) 785-6653; reddinger@ucsb.edu.
²Menard Family Initiative, College of Business Administration, University of Wisconsin, La Crosse, 54601.
³Department of Economics, University of California, Santa Barbara, 93106.
⁴Haas School of Business, University of California, Berkeley, 94720.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1. Introduction

Insufficient vaccination continues to exacerbate the COVID-19 pandemic, both within the United States and worldwide. Vaccination of the unvaccinated is a top priority in public health (Krause, Gruber, and Offit 2021). Success in increasing vaccination requires overcoming vaccination hesitancy. While the strongest motivation for vaccination is most likely the direct benefits to one's own health, the decision to vaccinate could be influenced by a variety of pro-social concerns, such as helping one's community, even when many other people are not vaccinated (a preference for altruism). One may wish to vaccinate to help attain herd immunity (reflecting altruism, a desire for social efficiency, or some combination). Finally, one may wish to do one's fair share (a preference for equity) if many other people in their community are vaccinated.

Immunity to infectious disease is a public good (Althouse, Bergstrom, and Bergstrom 2010). When one vaccinates against COVID-19, one is less likely to become infected, and vaccination lowers transmission rates to others (Centers for Disease Control 2021). As with other public goods, a free-riding problem exists in vaccination. One has a high incentive to vaccinate if no one else is vaccinated against a prevalent infectious disease, but a much lower incentive if most other people are vaccinated. When immunized individuals are still susceptible to infection, broader vaccination reduces community transmission.

For example, prior to COVID-19, Loeb et al. (2010) find that vaccinating school children and adolescents for influenza protects non-immunized community members (attributed to decreased transmission in schools). Similarly, White (2021) finds that each flu vaccination among the general population of the United States generates $63 of benefits from reduced mortality and $87 of benefits from work hours gained. Turning to more recent evidence on COVID-19 vaccination, Oliu-Barton et al. (2022) estimate that French vaccination certificate regulations saved an average of €685 of economic output per vaccination.

The essential content of social preferences is that people deliberately sacrifice money or other resources to help (or hurt) others, to establish equity or efficiency, or to increase the economic surplus for the whole group. As one indicator of the importance of social preferences, Americans donated over $500 billion to charitable organizations in 2020. The fact that people do not simply maximize their own material payoffs has important consequences for public health.

Although subjects in laboratory experiments are frequently concerned with the payoffs of others, some question whether this behavior is generally present in the field. We implemented an incentivized public-good game to measure social preferences, endowing each online participant in anonymous groups of four with $4. Each person chose how much of their $4 to contribute to a public good, while retaining the remainder. We then doubled the group's total contribution and distributed it evenly to all participants. Thus, each player receives back half
of what they contributed, while providing benefits for the group. The socially-optimal choice would be for each person to contribute $4 to the pot, so that each person earns $8; however, free-riding is the dominant individual strategy to maximize material payoffs. To the extent that one gets vaccinated out of concern for the well-being of others, voluntary vaccination is analogous to this public-good game. One may (perhaps reasonably) believe that vaccination is not directly worthwhile, considering only one’s private benefits and costs; however, one certainly benefits from the vaccination of others.

In a separate survey, we asked participants to report if they have been vaccinated and, if so, the date of their first dose. To avoid any contamination and potential experimenter-demand effects, we conducted the game and the COVID-19 vaccine survey in separate sessions about one month before the social-preference game, using a different researcher identity.

We sampled individuals who reported being unvaccinated during an earlier survey in April 2021. Participants then completed a COVID-19 survey in mid-August and incentivized games in September and October. To control for local factors such as availability of vaccines and social norms, we use national data to estimate the daily hazard rate of a first dose among the unvaccinated for each U.S. county from April 10th to August 13th. We model \(\min\{\text{demand, supply}\}\), including the daily number of doses available per capita in a state, daily county-by-day COVID-19 case rates, test positivity rates, vaccination rates, and a time trend. These public data account for substantial heterogeneity by obtaining county-by-day predicted first-dose demand.

Finally, we model the behavior of our participants. We assume that an unvaccinated individual’s demand for a first dose (their hazard rate of vaccination) is proportional to their pro-social preferences (as measured in the public-good game) and the hazard rate for a representative unvaccinated person in their county on each day. We separately model vaccination that participants attribute to a mandate at work or school, because pro-social preferences should have a lesser role in this case.

Our methodology is considerably different from previous studies. We measure social preferences from behavior in an incentivized public-good game, a relatively uncommon methodology in the vaccination literature. We are the first to completely separate social-preference elicitation from measurement of vaccination behavior, as we conduct these sessions a month apart under different researcher identities. We are the first to study the relationship between social preferences and vaccination behavior (as opposed to self-reported intent to vaccinate). We capture the vaccination behavior of our participants during the first four crucial months that the COVID-19 vaccines were available to the general public of the United States. Finally, participants who report having taken the vaccine due to a mandate at work or school likely have different motivation; our model permits these moti-

\(^5\) Lab-in-the-field studies in the economics literature use similar methods (Gneezy and Imas 2017).
vations to differ. In total, we use an innovative methodology to offer unique findings on the association between trait-level social preferences and actual COVID-19 vaccination in the field.

Our results are striking: Compared to a subject who contributes nothing, one who contributes the maximum ($4) is on average 48% more likely to obtain a first dose voluntarily in the four-month period that we study (April through August 2021). That is, pro-social preferences are strongly positively associated with voluntary vaccination.

While our evidence is consistent with the hypothesis that pro-social preferences increase voluntary vaccination against COVID-19, these results do not necessarily translate directly to policy advice. We return to this topic in our conclusion.

2. Prior literature

The literature on pro-social motivations comprises two strands—studies that investigate the association between pro-sociality and vaccination, and interventions that rely on pro-sociality to increase vaccination. Many studies use non-incentivized survey questions to measure pro-social preferences, while a few have incentivized games. These studies ask participants to report their intent to vaccinate against a real infectious disease. Böhm and Betsch (2022) offer a timely review of studies conducted prior to 2020, mainly concerning flu vaccines. Some of these studies find an association between pro-social preferences and vaccination, while others do not.

For example, Hershey et al. (1994) survey patients at a student health clinic about intent to vaccinate against a hypothetical influenza disease. While altruism, free-riding, and herding all motivate the intent to vaccinate, there is no evidence that stressing societal benefits of vaccination increases this intent. Betsch et al. (2017) test whether explaining the concept of herd immunity to participants increases their reported intent to vaccinate in fictitious scenarios. Contrary to the research hypothesis, this intervention increases reported intent to vaccinate among residents of Western countries, but not those of more-collectivist Eastern countries. Amin et al. (2017) find no association between intent to vaccinate and self-reported attitudes toward fairness and pro-sociality. Betsch and Böhm (2018) study the interaction of an intervention that explains the social benefits of vaccination with one's self-reported attitudes toward fairness and pro-sociality, finding no interactive effect. Böhm, Betsch, and Korn (2016) find marginal evidence that subjects with greater social preferences (as measured using dictator games) were more likely to choose to vaccinate overall. In the field, Milkman et al. (2022) find that text messages sent to encourage flu vaccination increase uptake. Message content that emphasizes the protection of others is beneficial; however, some messages without social concerns perform better, and other messages worse.

In the context of COVID-19, Pfattheicher, Petersen, and Böhm (2022) find that knowledge about the social
benefits of COVID-19 vaccination is associated with greater intent to vaccinate among respondents residing in the United Kingdom (U.K.). These authors also find that an intervention that explains the social benefits of vaccination increases self-reported intent to vaccinate. Freeman et al. (2021) conduct a study of COVID-19 vaccination intentions among 15,014 U.K. residents solicited from a variety of sources, including TV, radio, and mail campaigns. These authors find no effect of information provision regarding the societal benefits of COVID-19 vaccination. In fact, the authors find that providing strongly-hesitant respondents with information on the private benefit of vaccination increases stated intent to vaccinate for COVID-19, but that the addition of information about collective benefits reduces intent to vaccinate. These mixed results echo those from studies conducted pre-COVID-19.

Much of the evidence for social preferences in economics has come from simple games in laboratory experiments. There are concerns that laboratory measures of social preferences may not translate into consistent behaviors outside of the lab (Gneezy and List 2006; List 2006; Levitt and List 2007). At the same time, field behavior often matches experimental behavior (e.g., Falk and Heckman 2009; Bellemare, Bissonnette, and Kröger 2014). For example, Meier and Sprenger (2008) note that people who display more present bias in the lab also are more likely to carry large credit-card balances. Carpenter and Seki (2005) observe that conditional cooperation in a public-good game predicts group fishing productivity in Japan. Fehr and Leibbrandt (2008) show that public-good-game contributions and patience predict limits on common-pool resource extraction by Brazilian fishermen, and Barr and Zeitlin (2010) find that dictator-game allocations made by Ugandan teachers correlate with their actual (discretionary) teaching time. Carpenter and Myers (2010) find that dictator-game allocations by Vermont residents predict their willingness to volunteer to fight fires.

Thus, we ask whether the choices made in a simple game with modest stakes inform us to any degree about vaccination behavior.

3. Methodology

We focus solely on an individual’s first vaccine dose for simplicity. Because we can no longer observe behavior from that individual once they receive their first dose, we use a survival analysis. The hazard rate is the probability of receiving a first dose conditional on being unvaccinated. Given a relatively small sample of individuals, we control for the many influences that affect the demand (and supply) of a first dose.

We begin by modeling this hazard rate using public daily county data to account for heterogeneity across time and geography in factors affecting the supply of and demand of vaccines. A linear lasso procedure selects among candidate co-variates and predicts vaccine demand in U.S. county \(c \) in state \(s \) on day \(t \). This estimate is the daily
probability of receiving a first dose, conditional on never having received a dose. We use this estimated hazard rate as a control variable in our main regression.

Turning to our participant data, our model considers whether vaccination is voluntary or if the respondents said it was mandated by their employer or school. We use a proportional hazard model with two covariates—predicted hazard rate for each participant’s county c in state s on day t and each participant’s contribution in our public-good game. We then test our primary hypothesis that pro-social preferences, as measured in the public-good game, predict demand for a first dose of a COVID-19 vaccine.

3.1. Modeling the hazard of a first dose for each county-day

Our main control variation is the hazard rate of receiving a first dose, estimated for each county and date.

An individual faces costs in getting vaccinated; these include time spent finding an available vaccine dose and traveling to the clinic. If vaccine doses are extremely scarce, an individual may spend a considerable amount of time searching for an available appointment and may be willing to travel farther. At the margin, these costs likely translate to a lower first-dose hazard rate. To capture the effect of vaccine scarcity, we consider the number of vaccine doses that are available per person on any given day. The Centers for Disease Control (2022c) report the daily number of doses delivered to every state, as well as the number administered, both per capita. We consider the difference to be the number of doses available per capita, for which we take a seven-day moving average.

We also consider county-level factors that influence an individual’s private benefit from vaccination. This benefit increases with a higher local case rate, so we include the number of new cases per capita recorded in a county over the last seven days. Because limited testing can underestimate case rates, we also include the local percentage of tests reported positive over the last seven days. One’s decision may also be affected by salient data such as the worst cases and test-positivity rates experienced locally. For example, if there have been severe local rates, the consequences of high community transmission may be more salient. So, we also include the maximal test-positivity rates and cases per capita in that county. All county-level case and test positivity data come from the Centers for Disease Control (2022d).

One also incurs greater benefits from vaccination when fewer individuals in one’s community are vaccinated. To capture this, we include the proportion of county residents who have received a first dose and the proportion who have completed their vaccination series, both as seven-day moving averages. These county-level vaccination data come from the Centers for Disease Control (2022b). Due to differences with the B.1.617.2 (“Delta”) variant, we include an indicator of whether the variant had yet emerged in the U.S., as reported by the Centers for Disease Control (2022a). We also interact this indicator variable with previous variables, to capture differences in the
costs and benefits for this variant, and further include the variables above with a one-week lag. Public policy regarding testing, test reporting, vaccination, incentives, and mandates are all highly-politicized in the United States, so we include an indicator of whether the state governor is a member of the Republican party (Kaiser Family Foundation 2021). We also include a time trend. Finally, the regressand of interest is the hazard rate for a first dose in the county that day. We construct the probability that an adult becomes vaccinated, conditional on being an unvaccinated adult within county \(c \) in state \(s \) at time \(t \), as

\[
dose_hazard_rate_{c,s,t} := \frac{\text{vaccine_dose_adult_pct}_{c,s,t} - \text{vaccine_dose_adult_pct}_{c,s,t-7}}{1 - \text{vaccine_dose_adult_pct}_{c,s,t-7}},
\]

where \(\text{vaccine_dose_adult_pct}_{c,s,t} \) is a seven-day moving average of the percentage of adults receiving a first dose in county \(c \) on day \(t \), again from the Centers for Disease Control (2022b).

We employ a linear lasso to select among the variables described above, which are also listed in Table 1. We use the resulting model to predict \(\hat{dose_hazard_rate}_{c,s,t} \) for every county on every day. We merge these predictions to our participants by county-day. We use approximated geolocation of each participant’s zip code, some of which span multiple counties. If multiple counties match, we use the county with the largest share of residential addresses in the given zip code, according to data from Housing and Urban Development (2021). The inclusion of these predicted hazard rates absorbs a substantial amount of variance from our regressions of vaccination behavior reported by our participants.

3.2. Modeling the hazard rate of vaccination in our sample

We now analyze the timing of first doses in our participant sample. We consider two possible causes of vaccination for any individual: voluntary or compelled by a mandate. Suppose an individual decides on April 1st to wait to take her first dose voluntarily. In June, her employer gives her two weeks to take a first dose to retain employment; she complies. In this sense, she was at risk for both non-mandated and mandated vaccination, until she took her first dose under pressure. Had she not been vaccinated under a mandate, she may have vaccinated voluntarily regardless in August, but we cannot observe this counterfactual behavior. More formally, each individual’s behavior is characterized by two choices—the time at which she would take a first dose without a mandate, and the time at which she would take a first dose under a mandate. We observe only the first of these events (or neither).

We base our statistical approach on our hypothesis. Because we are primarily interested in pro-social moti-
Table 1: Variables used in the linear lasso to predict dose_hazard_rate_{c,s,t}

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time trend</td>
<td>Indicator of BI.617.2 ("Delta") variant having emerged in the U.S.</td>
</tr>
<tr>
<td>Indicator of state governor being Republican</td>
<td>Vaccine doses available per capita<sup>a</sup></td>
</tr>
<tr>
<td>Cases per capita<sup>b,c</sup></td>
<td>Percentage of tests positive<sup>b,c</sup></td>
</tr>
<tr>
<td>Maximum cases per capita to date in the county<sup>c</sup></td>
<td>Maximum test positivity rate to date in the county<sup>c</sup></td>
</tr>
<tr>
<td>Percent of residents having received a first dose<sup>a,c</sup></td>
<td>Percent of residents having completed series<sup>a,c,d</sup></td>
</tr>
</tbody>
</table>

^a Seven-day moving average.

^b Seven-day change.

^c These variables were additionally included with a one-week lag; they are also included as interacted with the indicator of whether Delta had yet emerged in the U.S.

^d Having received one dose of the Johnson & Johnson’s Janssen JNJ-78436735 vaccine or two doses of either the Pfizer-BioNTech BNT162b2 or Moderna mRNA-1273 vaccine.

To this end, we focus on voluntary vaccination. With our first approach—analysis of the cause-specific hazard—we consider individual behavior in a hypothetical world without any vaccination mandates. This approach is appropriate to investigate whether pro-social preferences are associated with an individual's decision to vaccinate in the absence of a mandate.

To this end, we use a Cox proportional-hazards model and censor individuals who become vaccinated due to a mandate (Pintilie 2007). We specify first-dose hazard not attributed to a mandate as

\[h(t_j, x) = h_0(t_j) \exp \left(\alpha \text{contribution}_i + \beta \text{dose}_\text{hazard}_\text{rate}_{c,s,t} \right), \]

where \(h_0(t_j) \) is the baseline hazard (the hazard given covariate values of zero), \(\text{contribution}_i \in \{0, \frac{1}{2}, \ldots, 4\} \) is the contribution of individual \(i \) in the public-good game, and \(\text{dose}_\text{hazard}_\text{rate}_{c,s,t} \) is the predicted first-dose hazard in that county that day (as described in the previous section). We asked respondents to report the date of their first dose in bins of roughly 10 days with midpoints \(\{t_j\} \) to facilitate responses to our survey.

We do not apply the Cox regression to vaccination attributed to a mandate. This method would only be appropriate to investigate vaccination attributed to a mandate in a hypothetical world without voluntary vaccination. Our primary approach of studying the cause-specific (non-mandated) first-dose hazard assumes that the competing event—vaccination due to a mandate—is completely uninformative. However, individuals who attribute their vaccination to a mandate may possess characteristics that would also inform their decision of when to
vaccinate without mandate. In Appendix Section C, we present similar results with a competing-hazards model (Fine and Gray 1999).

4. Results

4.1. Description of the sample

We initially recruited U.S. residents from Prolific's participant pool from the 7th through the 27th of April, 2021, using a single-question survey asking their vaccination status. Prolific is a marketing firm that maintains a pool of survey respondents. We oversampled participants who had already self-identified with Prolific as Black, Latinx, Hispanic, a parent, or politically conservative; we sought these characteristics for a separate study.

We conducted Session I August 12th–13th, 2021. We asked questions about participants' COVID-19 vaccination history, receiving 601 responses. We conducted Session II from September 11th to October 13th, 2021. We collected 549 responses in Session II, run under a different co-author's profile to avoid any experimenter-demand effects from Session I. Participants played the public-good game during Session II and our software randomly matched them with other participants. The participants' choices determined payments in the game, which we made within 24 hours of participation.

Of our 549 participants, three did not indicate whether they had been vaccinated. Of the remainder, 306 reported being unvaccinated and 240 reported being vaccinated. Of the vaccinated respondents, seven were either unsure of the date or did not report one. Our analysis thus generally reports on the 539 respondents who participated in the public-good game, who also provided their vaccination status and the approximate date of their first COVID-19 dose if vaccinated.

Figure 1 depicts the vaccination timing, as well as some participant characteristics. Our respondents are younger than the general population of the United States. Most of our participants have at least some college education; many have a college degree. Roughly one-third of our sample identifies as Republican, one-third Democrat, and one-third either "Independent" or "other." 15.4% of vaccinated subjects (37 of 240) attributed their vaccination to a mandate at work, at school, for travel, or to attend social events or restaurants.7

Recall that in the public-good game, we gave participants a $4 bonus from which they could contribute any

6The University of California, Santa Barbara, Human Subjects Committee exempted our Protocol 60-20-0658. The American Economic Association registered the experiment as AEARCTR-0008216. Informed consent was obtained from all participants.

7The party breakdown of mandatory vaccination is interesting: 25.5% of vaccinated Republicans, but only 11.4% of Democrats and 14.5% of the remainder, said they vaccinated due to a mandate. We also ask unvaccinated respondents whether they would take the vaccine if it were mandatory, but we do not use these speculative responses in our analyses. With that caution in mind, when asked if they would comply with a vaccination mandate, 53.1% of Democrats responded "Yes", while only 22.7% of Republicans and 26.6% of others stated they would comply.
Figure 1: Participant characteristics

Contribution in game ($)
- Mean: 2
- Median: 2
- SD: 1.48
- Min: 0
- Max: 4

Years of age
- Mean: 36.38
- Median: 34
- SD: 11.62
- Min: 18
- Max: 74

Years of education
- Mean: 14.87
- Median: 15
- SD: 2.14
- Min: 10
- Max: 20

Political identity
- Republican: 33.6
- Democrat: 30.9
- Other: 35.5

Number of participants by date of first vaccine dose
- April 10-30: 82
- May 1-10: 32
- May 11-20: 22
- May 21-31: 13
- June 1-10: 16
- June 11-20: 14
- June 21-30: 8
- July 1-10: 6
- July 11-20: 8
- July 21-31: 16
- August 1-10: 13
- August 11-13: 3
- No dose: 313

*These subjects reported having taken no dose as of August 12-13.

Notes: Responses collected Aug 12-13. Excluded are 3 subjects unsure when in May they took their first dose, 1 unsure when in June, 3 unsure of the month, and 3 who didn't report vaccination status.
amount to a pot that doubled and was then split equally among their group of four randomly-chosen participants. The mean and median contribution was $2; Figure 1 provides more detail.8

4.2. Inference

We now consider our primary hypothesis that contribution in the public-good game, our measure of pro-social preferences, is positively associated with vaccination. We consider results from the Cox model, with regression results shown in Table 2 and Figure 2. Recall that this approach focuses on vaccination not attributed to a mandate, in a hypothetical world without any vaccination mandates. An additional dollar contribution in this game is associated with a 12% greater daily hazard of vaccination not attributed to a mandate. Table 2 shows that an individual contributing the full $4 in the game is 1.48 times more likely to vaccinate (not due to a mandate) at any time (Column 1, $p = 0.024$; Column 2, $p = 0.020$) than one contributing nothing. This provides strong support for our hypothesis that pro-social preferences predict voluntary vaccination.9

5. Conclusion

We ask whether social preferences—concerns for the well-being of other people— influence one’s decision regarding vaccination. Our sample consisted of unvaccinated U.S. residents as of April 2021, and we collected vaccination history through August 2021. People who are more pro-social in the game are more likely to get a voluntary vaccination (and to get it earlier). Compared to a subject who contributes nothing, one who contributes the maximum ($4) is 48% more likely to obtain a first dose voluntarily in the four-month period that

8Many experiments find initial contributions average 40–60% of the social optimum (Ledyard 1995).

9Robustness checks are presented in Appendix Section B. All analysis was conducted using Stata 17. See Reddinger, Charness, and Levine (2022) for data and source code.
we study (April through August 2021).

Whether policy-makers can harness pro-social preferences to increase vaccination remains an open question. Prior experimental evidence on hypothetical vaccination finds mixed success (see Section 2). However, vaccination in the field differs from hypothetical vaccination, and COVID-19 vaccination is particularly hampered by politics and misinformation. We separately consider how our findings may inform efforts to increase vaccination for influenza and COVID-19.

Influenza vaccination, like COVID-19 vaccination, confers less protection to the elderly compared to younger people, while the disease poses far greater health risks to the elderly (Centers for Disease Control 2021; Diaz-Granados et al. 2014). Epidemiologists have suggested that vaccinating school children would yield greater social benefits than vaccinating the elderly (Medlock and Galvani 2009; Galvani, Reluga, and Chapman 2007). Many public schools in the U.S. offer flu vaccine clinics, for which parental consent must first be obtained. As one example of a simple intervention, when obtaining informed consent, clinic administrators could provide parents with information sheets that emphasize how vaccination of their own children saves the lives of elders in their community—perhaps a child’s own grandparents. Milkman et al. (2022) find an increase in flu vaccination after sending text messages that stress the protection of others; such policies and interventions that harness pro-social motives should be further developed.
Similar interventions suggest less potential upside for COVID-19 vaccination promotion. Many pro-social individuals have already vaccinated for COVID-19 (as seen in our study); further, many of the holdouts are likely more galvanized against vaccination for COVID-19 than for the flu. Field interventions involving pro-social motivators might be worthwhile to test; however, by April 2022 (when we are writing), those unvaccinated for COVID-19 may be more concerned with personal risks than public benefits (e.g., Freeman et al. 2021).

Monetary incentives have the possibility to increase vaccination, but policy-makers ought to consider potential adverse effects. Low monetary incentives can crowd-out pro-social behavior (Gneezy and Rustichini 2000). Low financial incentives may reduce the “warm glow” felt by individuals who vaccinate out of concern for others. Further, low monetary incentives may also lead individuals to believe that social benefits are lower than they really are, also potentially decreasing pro-social vaccination. Evidence typically supports the effectiveness of monetary incentives, but not always.¹⁰

Our study finds marginally-significant evidence that vaccination attributed to a mandate is associated with weaker pro-social preferences (see Appendix Section C). We would expect individuals with weaker pro-social preferences to respond more strongly to private incentives, including workplace and school mandates. However, even if this weak result holds, it does not imply that mandates will necessarily be effective. Additional widespread mandates may reduce the warm glow felt by individuals who vaccinate out of concern for others. However, Karaivanov et al. (2021) find evidence that COVID-19 vaccination mandates are very effective overall, limiting such a concern. Schmelz and Bowles (2021) note that the implementation of mandates may increase COVID-19 vaccination hesitancy. Indeed, mandatory policies can foster mistrust and backlash (Falk and Kosfeld 2006).

Given the challenges with existing approaches to increase COVID-19 vaccination uptake, policy-makers and researchers may yet experiment with means to harness pro-social motives, but ought also address individuals’ beliefs regarding private benefits and risks. To the extent that pro-social motivation has been exhausted for COVID-19 vaccination, carrots such as incentives and sticks such as mandates have proven fruitful. Beyond COVID-19, pro-social motives have considerable potential as a useful tool to increase vaccination for many infectious diseases, such as seasonal influenza.

¹⁰Campos-Mercade et al. (2021) find that a $24-equivalent incentive increased vaccination by 4.2 p.p. (baseline 71.6%) in Sweden. Barber and West (2022) find that Ohio’s conditional cash lotteries increased the vaccination rate by 0.7 p.p. (baseline 46.5%). But Chang et al. (2021) find no effect of a $10 or $50 incentive among Medicaid plan members in California who delayed vaccination. Further, Serra-Garcia and Szech (2021) find that low monetary incentives ($10–$20) decrease vaccination, while high incentives ($100) increase vaccination. Clearly the success of monetary incentive programs depends on many factors, including the targeted population and the level of monetary incentives.
Acknowledgments and funding sources
The Center on the Economics and Demography of Aging (NIH 2P30AG012839), University of California, Berkeley, provided funding.

Author contributions
Reddinger: Conceptualization, methodology, formal analysis, writing, project administration, software, validation, investigation, data curation, visualization. Charness: Conceptualization, methodology, formal analysis, writing, project administration. Levine: Conceptualization, methodology, formal analysis, writing, project administration, funding acquisition.

References

https://www.kff.org/other/state-indicator/state-political-parties/.

https://doi.org/10.3386/w29563.

Meier, Stephan, and Charles Sprenger. 2008. “Charging myopically ahead: Evidence on present-biased preferences and credit card borrowing.” Technical report. Citeseer. https://doi.org/10.1101/2022.04.21.22274110; this version posted April 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

https://doi.org/10.17605/OSF.IO/K6WE2.

Appendix A Additional results

Figure 3 graphically summarizes all of the participant data used in our analyses—the date of one’s first vaccine dose, one’s contribution in the public-good game, and whether one vaccinated due to a mandate.

Figure 3: Participant counts by first-dose date and public-good contribution

Appendix B Robustness checks

We report a variety of other standard errors for the Cox regressions in Table 3, finding no significant differences. Analysis of Schoenfeld residuals test the proportional hazards assumption. We test whether proportionality of hazards varies with time by inspecting Schoenfeld residuals for the model in Column 2 of Table 2, shown in Figure 4. We find no significant effect of time on hazard proportionality ($\chi^2 = 0.66, p = 0.72$).

Appendix C Competing hazards

Because vaccination attributed to a mandate and vaccination not attributed to a mandate are likely informative of each other, we also consider the subhazard distribution model of competing hazards from Fine and Gray (1999) (see also Kalbfleisch and Prentice 2002). With this model, once an individual experiences the competing event, she is not entirely removed from the risk set for the primary event of interest. For example, if an individual was not mandated by an employer to become vaccinated, they may have eventually chosen to do so on their own accord. Then removing them entirely from the risk set of non-mandated vaccination will bias our estimates. Note that we may analyze non-mandated vaccination as the primary event of interest with mandated vaccination as the competing event; we may also analyze mandated vaccination with non-mandated vaccination competing.

For each competing event type $k \in \{1, 2\}$—non-mandated and mandated vaccination, respectively—we model
Table 3: Standard error comparison of Cox regressions of vaccination hazard (not attributed to a mandate)

<table>
<thead>
<tr>
<th></th>
<th>Huber-White</th>
<th>Clumped on U.S. state</th>
<th>Jackknife</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Contribution in</td>
<td>1.121*</td>
<td>1.127*</td>
<td>1.121*</td>
</tr>
<tr>
<td>public-good game ($)</td>
<td>(0.0562)</td>
<td>(0.0576)</td>
<td>(0.0582)</td>
</tr>
<tr>
<td></td>
<td>1.121*</td>
<td>1.127*</td>
<td>1.121*</td>
</tr>
<tr>
<td>Predicted county-by-day</td>
<td>1.049</td>
<td>1.049</td>
<td>1.049</td>
</tr>
<tr>
<td>first-dose hazard rate</td>
<td>(0.0535)</td>
<td>(0.0535)</td>
<td>(0.0539)</td>
</tr>
<tr>
<td></td>
<td>1.049</td>
<td>1.049</td>
<td>1.049</td>
</tr>
</tbody>
</table>

| Subjects | 539 | 539 | 539 |
| N subject-date observations | 5482 | 5482 | 5482 |

Notes: Coefficients exponentiated (hazard ratios). Standard errors in parentheses. All standard errors clustered on subject, except Columns 3–4, which are clustered on U.S. state. Efron method used for ties. Vaccination attributed to a mandate is censored.

* $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$, **** $p < 0.001$.

Figure 4: Schoenfeld residuals for the Cox regressions

Vaccination not attributed to a mandate

![Schoenfeld residuals plot](image)

Vaccination not attributed to a mandate

![Schoenfeld residuals plot](image)
Table 4: Competing hazards regressions

<table>
<thead>
<tr>
<th></th>
<th>(1) Not due to a mandate</th>
<th>(2) Due to a mandate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution in public-good game ($)</td>
<td>1.125$^{+}$ (0.0553)</td>
<td>0.834$^{+}$ (0.0852)</td>
</tr>
<tr>
<td>Predicted county-by-day first-dose hazard rate</td>
<td>1.026 (0.0473)</td>
<td>1.106$^{+}$ (0.0559)</td>
</tr>
<tr>
<td>Subjects</td>
<td>539</td>
<td>539</td>
</tr>
<tr>
<td>N subject-date observations</td>
<td>5482</td>
<td>5482</td>
</tr>
</tbody>
</table>

Notes: Coefficients exponentiated (hazard ratios). Jackknife standard errors in parentheses.

1 Vaccination attributed to a mandate is competing.
2 Vaccination not attributed to a mandate is competing.

$p < 0.10$, $^{*} p < 0.05$, $^{**} p < 0.01$, $^{***} p < 0.001$.

The hazard of the corresponding subdistribution as

$$
\gamma_k(t_j, x) = \gamma_{0k}(t_j) \exp \left(\alpha \text{contribution}_i + \beta \text{dose}_c \text{hazard rate}_{c, s, t} \right),
$$

where $\gamma_{0k}(t_j)$ is the baseline hazard of the sub-distribution of event type k. This estimation is similar to the Cox model, except that people who experience a competing event are underweighted instead of being removed entirely from the risk set.

Results from the Cox and competing hazards regressions can jointly reveal how counterfactual events may bias our estimates. For example, suppose that greater contribution in the public-good game is associated with greater voluntary first-dose hazard and also with greater mandated first-dose hazard. When we observe an individual with a high public-good-game contribution who becomes vaccinated without a mandate, we cannot observe what she would have done had she waited to vaccinate and then been given a mandate. Because the competing event (mandated vaccination) also has a positive association with contribution, we would underestimate the effect of pro-social preferences on mandated vaccination. We would also simultaneously underestimate the effect of pro-social preferences on mandated vaccination. These relationships depend on whether the effect of pro-social preferences has the same or the opposing direction regarding the risk of each event type. However, note that because we do not observe counterfactuals, we cannot completely eliminate bias.

Subsection C.1 Results

Column 1 of Table 4 shows results for vaccination not attributed to a mandate, treating vaccination attributed to a mandate as a competing event (and thus underweighting it). Likewise, Column 2 presents results on mandated vaccination with non-mandated vaccination competing. Figure 5 depicts the results for both types of events. An additional dollar contribution in the public-good game is associated with 12.5% greater daily hazard of vaccination not attributed to a mandate. The regression for vaccination attributed to a mandate is slightly underpowered; our intent was to study voluntary vaccination.

Comparing the Cox and competing hazards results, we find that the Cox regressions are fairly unbiased from the censored individuals who vaccinate due to a mandate. Further, mandated vaccination generally lags non-mandated vaccination, as shown in Figure 5. As a result, censoring mandated vaccination has little impact on the Cox regression. We conclude that an additional dollar of public-good contribution is associated with 1.125 times higher hazard of non-mandated vaccination. Therefore, an individual who contributed the maximal amount of $4 has a 50% greater hazard of voluntary vaccination relative to an individual who contributed nothing.
Figure 5: Regressions of competing vaccination events, non-mandated and mandated

Non-mandated vaccination, competing with mandated
Conditional on county-by-day predicted hazard rate

Mandated vaccination, competing with non-mandated
Conditional on county-by-day predicted hazard rate
Appendix D Experimental instructions

Subsection D.1 Session I

This survey was administered using the Prolific.com account of Lucas Reddinger (UCSB affiliation). Respondents were given the contact information of Gary Charness (with a UCSB email address) in the consent form.

We titled our survey “Survey about COVID-19 vaccination.” Before giving informed consent, respondents were shown this information about the survey:

• 15 multiple-choice questions about your reasons for taking or not taking a COVID-19 vaccine.
• 15 multiple-choice demographic questions.
• Estimated 5 minutes to complete.
• $1.00 payment.
• This survey is completely anonymous.

We solicited the following: COVID-19 vaccination status; if vaccinated, type of vaccine received; if applicable, intent to receive the second dose; if applicable, intent to receive a first dose; if applicable, date of first dose. We also asked, “Did you get vaccinated because it would be mandatory or required for you somehow? (Choose all that apply.) □ Yes, for work; □ Yes, for school; □ Yes, for travel; □ Yes, for social events or restaurants; □ No, none of these.”

Subsection D.2 Session II

This survey was administered using the Prolific.com account of David Levine (UC Berkeley affiliation). Respondents were given the contact information of David Levine (with a UC Berkeley email address) in the consent form.

We titled our survey “Survey about decision-making.” Subjects earned $1 for participating, in addition to any bonus that resulted from the games. Bonus payments were promised (and paid) within 24 hours.

Respondents were shown a series of slides that explained our public-good game. Three example slides from the series are shown in Figure 6. Respondents were then shown these instructions:

You will be matched with three other participants who each made their own decision of how much to put in the pot.

Each person’s bonus is determined by the decisions of all four participants.

□ Put nothing into the pot. Keep all $4 to myself.
□ Put $0.50 into the pot. Keep $3.50 to myself.
□ Put $1.00 into the pot. Keep $3.00 to myself.
□ Put $1.50 into the pot. Keep $2.50 to myself.
□ Put $2.00 into the pot. Keep $2.00 to myself.
□ Put $2.50 into the pot. Keep $1.50 to myself.
□ Put $3.00 into the pot. Keep $1.00 to myself.
□ Put $3.50 into the pot. Keep $0.50 to myself.
□ Put $4.00 into the pot. Keep nothing to myself.
Figure 6: Three example instructional slides used in Session II