THE CEREBELLUM PLAYS MORE THAN ONE ROLE IN APPETITE CONTROL: EVIDENCE FROM TYPICAL AND PATHOLOGICAL POPULATIONS

Authors: Michelle Sader¹*, Gordon D. Waiter², Justin H. G. Williams¹

¹Translational Neuroscience, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

²Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, Institute of Medical Sciences, University of Aberdeen, United Kingdom

*Correspondence: Michelle Sader – m.sader.19@abdn.ac.uk; (+44) 01224 438365

ABSTRACT

Background: Dysregulated appetite control is characteristic of anorexia nervosa (AN) and obesity (OB). Studies using a broad range of methods suggest the cerebellum plays an important role in appetite control, and it is implicated in both AN and OB with reports of aberrant grey matter volume (GMV) compared to non-clinical populations. As functions of the cerebellum are anatomically segregated, specific localization of aberrant anatomy may indicate how it affects appetite control in different states.

Objective: To determine if there were consistencies in regions of cerebellar GMV changes affected in AN and OB, and across normative variation. Method: systematic review and meta-analysis using Ginger ALE. Results: Twenty publications were identified as either case-control studies (with total n=619) or regressed weight from normative data against brain volume (with total n=3,518). AN and OB analyses both showed consistently decreased GMV within the left cerebellum, but volume reduction was anterior for AN and posterior for OB, with minimal overlap. Analysis of the normative dataset identified a cluster in right posterior lobe. Discussion: These findings suggest that more than one area of the cerebellum is involved in control of eating behaviour and is differentially affected in normal variation and pathological conditions. Specifically, we hypothesise an association with sensorimotor and emotional learning in AN, but with executive function in OB.

Keywords: Meta-analysis, appetite regulation, cerebellum, obesity, anorexia, VBM
1.0 – INTRODUCTION

1.1 – IMPORTANCE OF STUDYING APPETITE CONTROL MECHANISMS

Appetite control has a complex and multifaceted nature, and problems with eating behaviour arise from a variety of genetic, cognitive and physiological factors. Irregular appetite patterns result in abnormal body weight for height (indexed by the Body Mass Index – BMI) as well as metabolic and mental health. However, it is unclear whether irregular appetite signaling elicits aberrant eating behaviour, or vice-versa, and the interactions between physiological signaling and eating behaviour require further investigation.

Obesity (OB) is a major public health concern pertaining to appetite dysregulation that is on the increase. Characterised by a BMI of >30, OB additionally constitutes as a major risk factor for conditions such as hypertension, diabetes, cardiovascular diseases and cancer. In the past 35 years, worldwide prevalence rates of obesity have nearly doubled. Currently, 15% of women and 11% of men were classified with OB, and approximately 42 million children under age 5 were classified as overweight or having excess weight (EW). It is therefore a priority for research to identify mechanisms that control appetite, and which may serve as a target for treatment.

At the opposite end of the BMI scale are individuals with anorexia nervosa (AN) who refrain from eating and harbour a pathological fear of weight gain and food consumption. AN is a complex multidimensional eating disorder characterised by a pathologically decreased weight relative to height and age, with lifetime prevalence reported to be as high as 4%. Recently, publications report an increase in reported cases of AN over time, although increased incidence may correlate with the use of more specified reporting protocols. While AN is relatively uncommon compared to other psychiatric disorders, the mortality rate is significantly greater, with reports of between 2-6%. While the risk of becoming anorexic is far lower than the risk of developing OB, AN serves as a vital example of the consequences of appetite dysregulation.
Whilst AN and OB may not technically be eating disorders at opposite ends of a singular spectrum, there are prominent behavioural, neuroanatomical, metabolic and genetic factors linking the two disorders. An intriguing possibility is whether common neurobiological mechanisms could be implicated in both OB and AN. Both conditions present dysregulation of appetite, with sufferers being prone to engaging in behaviours that further exacerbate a pathological increase or decrease in weight.

1.2 – A CEREBELLAR ROLE IN APPETITE CONTROL

The role of the cerebellum (displayed in Figure SI14) in appetite control15-17 receives surprisingly little attention in appetite-related research. Traditionally, the cerebellum was thought solely to serve motor coordination and somatic functions but is now known to play a variety of additional roles in functions such as the storage of procedural knowledge, conditioning behaviours, emotional regulation, and importantly for this study, control of appetite18-32. The cerebellum interacts with extensive signalling networks to the hypothalamus and insula, both of which contain specific networks relating to food intake30,33, via both neural and hormonal mechanisms30-32. Gut hormones secreted from the enteric nervous system, such as leptin and ghrelin interactively modulate regions of the brain associated with food intake control including the cerebellum, hypothalamus and brainstem34,35. In response to ghrelin, the cerebellum decreases in activation and inhibits appetite stimulating hormones such as cholecystokinin36-38.

Researchers have reported that cerebellar function is distinctly anatomically segregated. The cerebellum has been reported to additionally modulate appetite control through olfactory sensory circuits. When examining odour response, fMRI demonstrated differential cerebellar activity in OB subjects relative to controls39. Further connectivity studies between the prefrontal cortex and the cerebellum also provides key evidence that the cerebellum is involved in cognitive functionality20,40 as well as functions relevant to appetite control, including habit formation, reward-based learning, executive
control, working memory, homeostatic control and cravings. Investigation of cerebellar contributions to connectivity networks found that particular regions of the cerebellum are distinctly involved in different cognitive functions. Indeed, the cerebellum is implicated in five intrinsic connectivity networks, including the executive control network (Lobule VIIIB; Crus I and II), default-mode network (Lobule IX), salience network (Lobule VI), and sensorimotor network (Lobule VI).

1.3 – THE CEREBELLUM: VOLUMETRIC STUDIES OF OVER- AND UNDEREATING

Across literature, researchers report that structural volume of the cerebellum is aberrant in those with OB and AN relative to controls, and altered volumes of the cerebellum has been associated with states of both overeating and undereating. Elevated BMI associated with excess weight (>25.5) or cases of OB (>30.0) has been associated with both increased and decreased concentrations of grey matter volume (GMV) in the cerebellum. A meta-analysis of neuroimaging studies (n=10) by Brooks et al. (2013) found decreased GMV within multiple brain regions, including the cerebellum of patients with OB. Discrepancies in volume were compared with lean control samples using voxel-based morphometry (VBM). When comparing controls without OB against individuals with OB, a pooled voxel-wise analysis indicated reductions of GMV in the left cerebellum in those with OB. The affected cerebellar region plays a role in the storage of procedurally learned knowledge, which may play a subsequent role in food consumption and emotional eating behaviours due to functional alterations in hypothalamic networks in states of excess weight. Additionally, prefronto-cerebellar circuits, implicated in cognition, emotion, executive function and error detection exhibit volume reduction in those with OB. Most recently, García-García et al. (2019) conducted a meta-analysis on 21 studies of participants with OB, and identified decreased volume within the bilateral posterior cerebellum which negatively correlated with BMI.

Recovery from obesity is also associated with changes in cerebellar volume. Prior to treatment in a multidisciplinary recovery program, T1-weighted images taken of patients with...
OB showed decreased concentrations of GM in the cerebellum compared with healthy controls. After recovery, post-test images revealed a significant increase in GMV and white matter volume (WMV) within the cerebellum. As such, cerebellar function is thought to be important in recovery from OB and is particularly subject to conditioning of eating behaviours in response to appetitive stimuli.

Similar to obesity, differences in cerebellar volume have been noted in both rat and human models of AN. Inducing starvation in rats catalyses significant loss of neuronal tissue within the cerebellum and appetitive centres such as the hypothalamus. Within human cases, cerebellar atrophy and cellular loss is associated with AN disease duration, persists post weight-recovery, and may play a role in maintaining a low body weight. Discrepancies in functional activity of the cerebellum are also present in AN, with those recovered or those with acute AN exhibiting both increased and decreased activation in the cerebellum and vermis. Most recently, reduction of the right cerebellum in individuals with AN was found in those with poor treatment success, and correlated with elevated presentation of alexithymia, or inability to express or identify emotional states. Unlike states of OB, those with AN may experience irreversible atrophy of the cerebellum, even upon weight recovery.

Findings from loss-of-function studies strengthen the theorised relationship between abnormal cerebellar structure and dysregulation of appetite. Clinical reports and lesion studies of the cerebellum show reports of reduced appetite and AN in both humans and rats. Findings from rat studies report substantial rates of pathological weight loss upon unilateral removal of cerebellar hemispheres. In a study by Colombel et al. (2002), cerebellectomised rats experienced a high mortality rate with 91.7% of deaths post-surgery due to starvation. In humans, Oya et al. (2014) reports a high proportion of cerebellar tumour detection with associated AN. Similarly, cerebellar degeneration associated with ataxia correlates with increased likelihood of being underweight or experiencing abnormal appetite patterns. Due to appetite disturbances emerging post cerebellar structural abnormalities, these studies indicate that cerebellar deficits could play a causative role in the loss of appetite.
1.4 – THE CEREBELLUM: NEUROBIOLOGICAL MECHANISMS AND APPETITE

Research reports that neurobiological mechanisms driving dysregulation of appetite control in both AN and OB, particularly dysregulated central dopaminergic and serotonergic signaling, are highly associated with one another. In AN, it is theorised that increased dopamine activity driven by the firing of orexin neurons contributes to its development. Animal models of activity-based AN further demonstrate that increased dopamine could exacerbate vulnerability to AN. Aberrant reward signaling in AN has been suggested to play a role in increased executive functioning related to the inhibition of homeostatic needs and drives. In contrast, individuals with OB may display decreased dopamine-mediated reward alongside increased serotonin driven by homeostatic responses to food consumption. It is hypothesized that decreased dopamine-related reward during consumption initiates a deficit in which individuals with OB will consume higher proportions of food to experience the usual ‘reward’ associated with food intake. Dopaminergic-related mechanisms driving both OB and AN have also been associated with behaviour resembling addiction in regard to eating behaviour. Therefore, whilst a variety of neurobiological drivers contribute to dysregulation of appetite, OB and AN may have impaired dopaminergic_serotonergic signaling in common, but in opposing directions.

Research has reported that the cerebellum participates in multiple neurobiological aspects of appetite control. The cerebellum is a focal point of research into the effects of cannabis, a drug with the well-known capacity to stimulate appetite, and has also been reported to participate in modulation of dopaminergic signalling. Recently, Low et al. (2021) used a reverse-translational approach to identify a cerebellar-based satiation network. In humans, food cues activate cerebellar output neurons to promote satiation through a reduction in phasic dopaminergic responses to food. As such, the cerebellum is likely implicated in altered neurobiological mechanisms associated with dysregulated appetite, such as those with AN or OB.
1.5 – THE CEREBELLUM: GENETIC FACTORS ASSOCIATED WITH APPETITE

Beyond neuroanatomical and neurobiological models of appetite dysregulation, disorders on the extremes of the standard BMI-measure such as AN and OB exhibit shared genetic and metabolic correlations\(^8\) to\(^8\)\(^5\). A recent study conducted by Bulik et al. (2019)\(^8\)\(^6\) analysed genetic associations between AN and 159 phenotypic traits, including those relating to body weight and metabolism. AN was found to be associated with genes for metabolic as well as anthropomorphic traits. Such results suggest that some genetic mechanisms implicated in healthy weight regulation may also be implicated in weight dysregulation. More so, negative genetic associations were unexpectedly identified between AN and OB, suggesting the two disorders may share premorbid metabolic factors that become apparent early in life, and may share genetically based metabolic factors that increase the likelihood of remission rates\(^8\)\(^6\).

Bulik\(^8\)\(^6\) interpreted the associations between AN and OB as suggesting the two disorders may serve as metabolic “mirror images” of one another.

Cerebellar tissues and pathways have recently been implicated in mediating the genetic risk for both OB and AN. Collated neuroanatomical and genetic evidence from AN-related studies theorise that cerebellar deficits occur early in development of the disorder and may explain body image disturbances in AN\(^8\)\(^2\)\(^7\)\(^9\)\(^0\). In OB, a multitude of genes have been associated with increased OB risk, predominantly the fat mass (FTO) and melanocortin-4 receptor genes. FTO is expressed in regions such as the hypothalamus, hippocampus and cerebellum\(^9\)\(^1\)\(^9\)\(^4\), and research suggests it is highly associated with OB outcome\(^9\)\(^5\)\(^9\)\(^6\).

1.6 – THE CEREBELLUM: COGNITIVE ASPECTS OF APPETITE CONTROL

In conjunction with neuroanatomical/biological and genetic evidence implicating the cerebellum in appetite control, research has reported that the cerebellum participates in behavioural and cognitive aspects of appetite control. Recent investigations into cerebellar functioning in appetite control unveiled an additional role for the cerebellum in the portion size effect (PSE), the phenomenon where more is eaten when large quantities of food are available.
English et al. (2019) measured traits of impulsivity such as loss-of-control (LOC) eating in association with regional brain activation and found that adolescent LOC participants showed increased activation of the left cerebellum when viewing pictures of food items with high energy density vs. foods with low energy density. This particular mechanism has been proposed to play a role in the PSE, appetite dysregulation and the development of obesity. Schmahmann et al. (2019) described associations between the posterior lobe and cognition and proposed “The Dysmetria of Thought” theory, arguing that the cerebellum could modulate cognition in a similar way to which it smooths and fine-tunes coordination of motor behaviour. Altogether, the cerebellum may function as a pivotal point of behavioural tuning in relation to appetite regulation, receiving multimodal inputs and establishing procedurally optimized behavioural modulation, similar to that observed in motor control and likely to occur in connection with the prefrontal cortex.

1.7 – AIMS OF STUDY

In view of the wide-ranging evidence implicating the cerebellum in both OB and AN, as well as suggesting a key role for the cerebellum in control of appetite, we propose that problems with control of appetite may be mediated by altered cerebellar structure. This systematic review aimed to examine cerebellar anatomy reported in literature across the weight range, including normative, non-clinical populations, and case-control literature of OB and AN studies. We generated two alternative hypotheses for this research. In the first case, we hypothesized that a specific area of the cerebellum, such as the posterior lobes implicated in executive control, would be associated with appetite control and that areas of the cerebellum affected in OB and AN respectively would be similar. Our alternative, competing hypothesis, was that the cerebellum would play more than one role in appetite control; the separate mechanisms areas would be affected differentially in OB and AN and changes in volume would be shown in distinctly different areas of the cerebellum.
2.0 – METHODOLOGY

2.1 – SELECTION OF LITERATURE

Literature was searched using SCOPUS, PubMed Central (PMC), and Web of Science using identical search criteria. SCOPUS identified 2147 publications involving cerebellar volume during OB [search criteria: (cerebell* AND obesity AND MRI)] and 801 publications regarding AN [(cerebell* AND anorexia AND MRI)]. PMC identified a further 4,259 publications relating to obesity, as well as 1,753 papers regarding anorexia. Lastly, 35 papers were identified through Web of Science regarding cerebellar characteristics during satiety and OB, and 28 papers selected for cases of AN. Initial inclusion criteria involved the presence of key phrases utilised in search. Exclusion criteria were as follows: 1.) Publications older than 10 years, as cerebellar imaging methods have significantly improved since early 201099-101; 2.) Animal studies, as brain regions of interest are incomparable; 3.) Publications not reporting case-control studies 4.) Inclusion of clinical groups or correlations unrelated to the scope of this study; 5.) Publications not utilising voxel-based morphometry (i.e., DTI or fMRI studies); 6.) Publications with results not reported in Talairach/MNI coordinates. Individual studies fitting search criteria were additionally collected from identified meta-analyses (n=5). Due to the limited amount of available literature, we were unable to correct for age and gender, and included a small number of individuals with bulimia nervosa (BN). In summary, 6 OB102-107 and 9 AN56,58,108-114 papers included coordinates and were selected for final analysis (Participant numbers: nOB=146 vs. nHC=167; nAN=176 & nBN=48 vs. nHC=191) (Table 1.; Figure 1.).

While conducting the OB literature search, publications were identified evaluating a correlation between BMI and GMV in non-clinical, normative populations that fell in line with remaining inclusion criteria (n=5). As authors within the normative subgroup predominantly conducted recruitment using community-based methods and data repositories, participant aggregation was much more streamlined and generated larger sample sizes than the OB and
AN literature. These papers were included in a separate normative dataset for analysis (participant number=3,518). With the inclusion of a third normative group, the total participant sample size of this meta-analysis was calculated to be n=5,068.
Table 1. Sociodemographic data for included studies

<table>
<thead>
<tr>
<th>Study</th>
<th>No. Subjects</th>
<th>Age, y (Mean ± SD)</th>
<th>BMI (Mean ± SD)</th>
<th>DOI months (Mean ± SD)</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>nAN</td>
<td>nHC</td>
<td>nBN</td>
<td>M:F Ratio</td>
<td>AN</td>
<td>HC</td>
</tr>
<tr>
<td>Amianto</td>
<td>17</td>
<td>14</td>
<td>13</td>
<td>0:44</td>
<td>20±4</td>
</tr>
<tr>
<td>Baghi</td>
<td>21</td>
<td>27</td>
<td>0</td>
<td>0:48</td>
<td>29±10</td>
</tr>
<tr>
<td>Bomba</td>
<td>11</td>
<td>8</td>
<td>0</td>
<td>0:19</td>
<td>13.6±2.77</td>
</tr>
<tr>
<td>Brooks</td>
<td>14</td>
<td>21</td>
<td>0</td>
<td>0:35</td>
<td>26±1.9</td>
</tr>
<tr>
<td>D’Agata</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>0:56</td>
<td>21±5</td>
</tr>
<tr>
<td>Fonville</td>
<td>31</td>
<td>31</td>
<td>0</td>
<td>N/A</td>
<td>23±10</td>
</tr>
<tr>
<td>Joos</td>
<td>12</td>
<td>18</td>
<td>17</td>
<td>0:47</td>
<td>25.0±4.8</td>
</tr>
<tr>
<td>Phillipou</td>
<td>26</td>
<td>27</td>
<td>0</td>
<td>0:53</td>
<td>22.8±7.67</td>
</tr>
<tr>
<td>Fuglset</td>
<td>23</td>
<td>28</td>
<td>0</td>
<td>0:53</td>
<td>17.4±2.2</td>
</tr>
<tr>
<td>OB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jauch-Chara</td>
<td>15</td>
<td>15</td>
<td>-</td>
<td>30:0</td>
<td>24.7±0.66</td>
</tr>
<tr>
<td>Mueller</td>
<td>27</td>
<td>16</td>
<td>-</td>
<td>22:21</td>
<td>26.4±5.4</td>
</tr>
<tr>
<td>Ou</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>1:1</td>
<td>9.1±0.9</td>
</tr>
<tr>
<td>Pannacciu</td>
<td>24</td>
<td>36</td>
<td>-</td>
<td>3:2</td>
<td>32±8</td>
</tr>
<tr>
<td>Shan</td>
<td>37</td>
<td>39</td>
<td>-</td>
<td>41:35</td>
<td>27.8±6.9</td>
</tr>
<tr>
<td>Wang</td>
<td>31</td>
<td>49</td>
<td>-</td>
<td>13:7</td>
<td>39.5±1.93</td>
</tr>
<tr>
<td>NOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janowitz</td>
<td>0</td>
<td>2344</td>
<td>-</td>
<td>1087:1.2</td>
<td>49.8±9.3;</td>
</tr>
<tr>
<td>Kurth</td>
<td>0</td>
<td>115</td>
<td>-</td>
<td>54:61</td>
<td>45.17±15.45</td>
</tr>
<tr>
<td>Masouleh</td>
<td>0</td>
<td>617</td>
<td>-</td>
<td>359:258</td>
<td>68.7±4.6</td>
</tr>
<tr>
<td>Weise2019a</td>
<td>0</td>
<td>136</td>
<td>-</td>
<td>11:23</td>
<td>29.60±3.17</td>
</tr>
<tr>
<td>Weise2019b</td>
<td>0</td>
<td>306</td>
<td>-</td>
<td>20:31</td>
<td>29.40±3.37</td>
</tr>
</tbody>
</table>

Table 1. Demographics for the publications pertaining to anorexia nervosa (AN), bulimia nervosa (BN), obesity (OB) and healthy controls (HC) cerebellar function, as well as a sample of normative publications (NOR) evaluating cerebellar volume across BMI.

*1Adult Sample Present; 0-yes; 0-no

*2Correction for family-wise error; 1-yes; 0-no

[Abbreviations: DOI – duration of illness; CPW – clusterwise corrected p; t_threshold – t threshold]
2.2 – VOXEL-BASED MORPHOMETRY AND ALE ANALYSIS

Cerebellar coordinates (values depicted in Tables S1-S2) were respectively incorporated into GingerALE, an Activation Likelihood Estimate (ALE) meta-analysis software using both Talairach and MNI space119. GingerALE converted coordinates obtained in Talairach Spaces to MNI spaces using the icbm2tal transform. P thresholds for individual analyses were conducted at the whole-brain level and corrected for family-wise error (FWE; 0.05) at 5,000 permutations and set to p< 0.01. Six analyses were conducted in total. Firstly, individual observations on respective AN (n=415) and OB (n=313) cohorts were conducted, with a third analysis investigating negative correlations between BMI and cerebellar volume within a normative data set (n=3,518). Evidence of overlap predicted by the logical overlay prompted three conjunction analysis to visualise combinatorial clusters within the AN/OB, AN/NOR, and OB/NOR datasets.

3.0 – RESULTS

3.1 – VOLUMETRIC REDUCTION IN OBESITY

ALE meta-analyses indicated a consistent decrease in cerebellar GMV for both AN and OB cohorts relative to HCs. Within OB studies, volume of the cerebellum was found to be decreased in the right cerebellar hemisphere, with no bilateral effect. The cluster comprised of 4.368 cm3 with a cluster centre of 54, -58, -44. Analysis revealed three peaks of significance all located in the posterior lobe (Table 2.). Specific cerebellar regions affected are Lobule VI and Crus I (Figure 2.). Across coordinates from all OB studies, no significant increases in cerebellar volume were found.
Table 2. Coordinates of significance in OB studies

<table>
<thead>
<tr>
<th>Region (OB<HC)</th>
<th>MNI Coordinates</th>
<th>Volume (cm³)</th>
<th>ALE Score</th>
<th>P</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>R CB, Posterior L.</td>
<td>54 -58 -44</td>
<td>4.37</td>
<td>0.02</td>
<td>8.55E-10</td>
<td>6.02</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>54 -62 -30</td>
<td></td>
<td>0.01</td>
<td>1.39E-06</td>
<td>4.69</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>36 -64 -32</td>
<td></td>
<td>0.01</td>
<td>1.44E-04</td>
<td>3.63</td>
</tr>
</tbody>
</table>

Table 2. Decreased cerebellar GMV in OB cases compared with HCs (OB < HC) including all OB studies (n = 6). Data is presented in order of significance, with the bolded coordinates comprising of the cluster centre.

[Abbreviations: L/R – Left/Right; CB - Cerebellum]

3.2 – VOLUMETRIC REDUCTION IN ANOREXIA NERVOSA

The AN GingerALE analysis revealed two significant clusters displaying bilateral reduction of volume within the cerebellum. The larger cluster was located within the left posterior lobe, contained a volume of 7.920 cm³ with a cluster centre of -28, -56, -36. The region of decreased volume contained an additional 6 peaks, with 4 of these occurring in the anterior lobe (*Table 3.*). The smaller cluster comprising of 5.888 cm³ was located in the right hemisphere, with all 4 peaks located in the anterior lobe. Identified regions of the cerebellum included include Crus I, left Lobule IV, and the L/R dentate (*Figure 3.*). No clusters indicating an increase in volume were found throughout all AN studies.
Table 3. Coordinates of significance in AN studies

<table>
<thead>
<tr>
<th>Region (AN<HC)</th>
<th>MNI Coordinates</th>
<th>Volume (cm³)</th>
<th>ALE score</th>
<th>P</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>L CB, Posterior L.</td>
<td>-28 -56 -36</td>
<td>7.29</td>
<td>0.011</td>
<td>1.26E-05</td>
<td>4.21</td>
</tr>
<tr>
<td>L CB, Anterior L.</td>
<td>-24 -54 -26</td>
<td>0.010</td>
<td>1.60E-05</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-36 -48 -36</td>
<td>0.010</td>
<td>4.85E-05</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-18 -58 34</td>
<td>0.010</td>
<td>6.63E-05</td>
<td>3.82</td>
<td></td>
</tr>
<tr>
<td>L CB, Anterior L.</td>
<td>-4 -52 -24</td>
<td>0.009</td>
<td>8.79E-05</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>L CB, Anterior L.</td>
<td>-30 -54 -16</td>
<td>0.009</td>
<td>9.14E-05</td>
<td>3.74</td>
<td></td>
</tr>
<tr>
<td>L CB, Anterior L.</td>
<td>-10 -56 -24</td>
<td>0.009</td>
<td>1.27E-04</td>
<td>3.65</td>
<td></td>
</tr>
<tr>
<td>R CB, Anterior L.</td>
<td>26 -56 -34</td>
<td>5.89</td>
<td>0.011</td>
<td>1.26E-05</td>
<td>4.21</td>
</tr>
<tr>
<td>R CB, Anterior L.</td>
<td>28 -50 -16</td>
<td>0.010</td>
<td>1.40E-05</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>R CB, Anterior L.</td>
<td>24 -50 -26</td>
<td>0.010</td>
<td>1.52E-05</td>
<td>4.17</td>
<td></td>
</tr>
<tr>
<td>R CB, Anterior L.</td>
<td>22 -62 -12</td>
<td>0.010</td>
<td>5.01E-05</td>
<td>3.89</td>
<td></td>
</tr>
<tr>
<td>R CB, Anterior L.</td>
<td>22 -62 -40</td>
<td>0.009</td>
<td>8.95E-05</td>
<td>3.75</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Decreased cerebellar GMV in AN cases compared with HCs (AN < HC) including all AN studies (n = 9). Data is presented in order of significance, with the bolded set of coordinates comprising of the cluster centre.

[Abbreviations: L/R – Left/Right; CB - Cerebellum]

3.3 –NORMATIVE ANALYSIS: CEREBELLUM GMV vs. BMI

Analysis of the normative dataset revealed two bilateral posterior clusters where cerebellum GMV negatively correlated with BMI. The first cluster had a volume of 8.296 cm³ with a cluster centre at 28, -70, -42, while the second cluster was 3.176 cm³ with a cluster centre of -32, -58, -46 (Table 4.; Figure 4.). The left hemisphere cluster comprised of less volume but contained a stronger association between BMI and cerebellum GMV, affecting regions such as left Crus I, Lobule VIIb and Lobule VIIIa/VIIIb. The larger, less significant cluster almost exclusively affected the right Lobule VI and Crus I.
Table 4. Clusters associated with BMI in normative populations
(NORMATIVE; CB GMV vs. BMI)

<table>
<thead>
<tr>
<th></th>
<th>Coordinates</th>
<th>Volume (cm³)</th>
<th>ALE score</th>
<th>P</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x y z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>28 -70 -42</td>
<td>8.30</td>
<td>0.022</td>
<td>7.48E-09</td>
<td>5.66</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>44 -72 -30</td>
<td></td>
<td>0.021</td>
<td>3.19E-08</td>
<td>5.41</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>28 -80 -24</td>
<td></td>
<td>0.014</td>
<td>9.86E-06</td>
<td>4.27</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>34 -78 -28</td>
<td></td>
<td>0.013</td>
<td>1.26E-05</td>
<td>4.21</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>18 -66 -30</td>
<td></td>
<td>0.012</td>
<td>3.80E-05</td>
<td>3.96</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>36 -72 -18</td>
<td></td>
<td>0.011</td>
<td>4.83E-05</td>
<td>3.90</td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-32 -58 -46</td>
<td>3.18</td>
<td>0.016</td>
<td>2.55E-06</td>
<td>4.60</td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-24 -46 -50</td>
<td></td>
<td>0.011</td>
<td>7.13E-05</td>
<td>3.80</td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-20 -60 -48</td>
<td></td>
<td>0.010</td>
<td>3.47E-04</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Table 4. Decreased cerebellar GMV in normative populations when correlated with BMI and weight class (n = 5 papers). Data is presented in order of significance, with the bolded set of coordinates representing the cluster centre.

[Abbreviations: L/R – Left/Right; CB - Cerebellum]

3.4 – POOLED VOLUMETRIC REDUCTION AND CONJUNCTION ANALYSES

By pooling combinations of data (AN/OB, AN/NOR, OB/NOR) we showed that decreases in volume were largely distinct according to bodyweight condition as well as across BMI (Figure S2.). The OB cluster was exclusively located in the right hemisphere while AN clusters were located on both cerebellar hemispheres. However, logical overlays on MANGO delineated some inter-condition overlap which prompted three conjunction analyses (Figure 5.). No overlap or combinatorial clusters falling within our significance threshold were found in the AN/OB conjunction analysis. The AN/NOR conjunction analysis revealed two small, yet statistically significant regions of overlap. The larger cluster was located in the right Lobule VI with a volume of 0.440 cm³ and centre coordinates of 24, -64, -40. The smaller, secondary cluster was comprised of 0.072 cm³ and was slightly more anteriorly located, affecting the left Lobule VIIIa and Crus I (Figure 6.1.; Table 5.). The OB/NOR conjunction analysis also revealed two regions of overlapping structural reduction. The primary cluster was 0.224 cm³ with a cluster centre of 34, -66, -36, and located within right Crus I. The smaller secondary
cluster remained in right Crus I and was only 0.016 cm3(40, -68, -32). In contrast to AN/NOR findings, overlap in cerebellum GMV reduction was strictly unilateral and was specific to right posterior cerebellum (Figure 6.2.; Table 5).

Table 5. Clusters of significance in both AN and OB cohorts

<table>
<thead>
<tr>
<th>Study</th>
<th>MNI Coordinates</th>
<th>Volume (cm3)</th>
<th>Volume Breakdown (%)</th>
<th>ALE score</th>
</tr>
</thead>
<tbody>
<tr>
<td>R CB, Posterior L.</td>
<td>24, -64, -40</td>
<td>0.440</td>
<td>96.4% Posterior; 3.6% Anterior</td>
<td>0.0069</td>
</tr>
<tr>
<td>L CB, Posterior L.</td>
<td>-30, -56, -40</td>
<td>0.072</td>
<td>100% Posterior</td>
<td>0.0044</td>
</tr>
</tbody>
</table>

(Conj. AN/NOR)

<table>
<thead>
<tr>
<th>Study</th>
<th>MNI Coordinates</th>
<th>Volume Breakdown (%)</th>
<th>ALE score</th>
</tr>
</thead>
<tbody>
<tr>
<td>R CB, Posterior L.</td>
<td>34, -66, -36</td>
<td>100% Posterior</td>
<td>0.0052</td>
</tr>
<tr>
<td>R CB, Posterior L.</td>
<td>40, -68, -32</td>
<td>100% Posterior</td>
<td>0.003</td>
</tr>
</tbody>
</table>

(Conj. OB/NOR)

Table 5. Decreased cerebellar GMV in both AN cases and negative normative correlations (AN & NOR) including all 14 studies (nNOR = 5; nAN = 9).

[Abbreviations: L/R – Left/Right; CB – Cerebellum; Conj. – Conjunction analysis].

4.0 – DISCUSSION

4.1 – GROUP DIFFERENCES AND SIMILARITIES: OB vs. AN vs. HC

Compiling data from OB and AN publications confirms cerebellar volume to be significantly decreased at both extremes of the spectrum of bodyweight disorders. However, results of the analyses indicate distinct condition-related differences in affected regions. Reduced GMV in Crus I was present in OB and normative data, while reduction in Lobule VI was evident in AN and NOR data, with the dentate nucleus being exclusively affected in AN. Outside of eating disorders, the volume of the cerebellum is also associated with normal variation of typical appetite and weight, and affected regions overlapped with cerebellar reduction seen in OB and AN cohorts. The differential involvement of these two cortico-cerebellar circuits in the two clinical groups leads us to hypothesise that the cerebellum serves both executive function and sensory-motor learning in appetite control, and these functions are differentially affected in
OB and AN. Our understanding of these regional functions may provide insight as to how the cerebellum contributes to the two disorders in different ways.

Reduction of cerebellar volume in those with OB suggests impaired executive- and memory-related functions. Crus I and II, structurally reduced in those with OB relative to controls, demonstrates more connections to the prefrontal cortex than other cerebellar regions120,121 and falls within the executive control network (ECN)122. In typical populations, this network plays roles in executive function and verbal working memory123,124. Recently, Shen \textit{et al.} (2020)125 evaluated the neuroanatomy of functional nodes within the ECN and found involvement of the bilateral Crus in both the left and right ECNs125, corroborating findings reported by Habas \textit{et al.} (2009)20. Crus I has also been shown to communicate with the hippocampus during sequence-based navigation in relation to goal-directed behaviour126. In OB, the cerebellum may communicate with the prefrontal cortex to serve inhibition control, with this process having been previously implicated in the PSE97. Likewise, OB has been associated with impaired working memory127-129. Impaired executive functions such as impulsivity, reduced working memory and motivational control have also been noted in those with ADHD, and increased rates of OB in ADHD are well recognized130-132. Linking these functions further, prefrontal control-related working memory training as an intervention strategy in OB individuals has been shown to increase self-efficacy of food-regulation133. Thus, low Crus 1 volume may contribute to poorer executive function, adversely affecting regulation of appetite in states of excess consumption.

Structural reduction of the cerebellum in those with AN suggests impairments in sensorimotor, salience and emotional functions. With respect to volume reduction of the dentate nucleus, this region is highly connected to the hypothalamus and thought to interact with the lateral hypothalamic area (LHA), ventromedial nucleus (VMN), dorsomedial nucleus (DMN), and paraventricular nucleus (PVN) to modulate forelimb movements in food grasping behaviour134. Lobule VI, most predominantly affected in AN data, has recently been recognised as serving a number of cognitive functions involving the salience network124,135-137. Roles of this network
involve autonomic and interoceptive processing in response to various forms of salience such as emotion, reward, and homeostatic regulation138-140.

Previous structural, functional, and tractography141 studies have visualised cerebellar circuits involving Lobule VI in relation to sensorimotor, salience and limbic roles. Primate studies using synaptic tracers demonstrated connections between the motor cortex and Lobules V, VI, VIII/VIIb as well as the dentate nucleus142. In humans, FMRI studies investigating functional aspects of this cerebellar domain show consistent BOLD response in emotional and social tasks. For instance, bold response is significantly elevated in Lobule VI when viewing emotional vs. neutral stimuli143,144. Lobule VI has also demonstrated increased BOLD activity in tasks involving social interactions and environmental learning145. During resting-state, individuals with AN demonstrate reduced functional connectivity within Lobule VI compared to non-clinical controls. Regarding structural abnormality of Lobule VI in AN, a recent meta-analysis by Zhang \textit{et al.} (2018)146 revealed associations between AN and structural reduction of the bilateral cerebellum. Cerebellar lesion studies report impairments in cognition by interrupting communication and modulation of association cortices135,136. As such, decreased cerebellar GMV within Lobule VI may contribute to characteristic symptoms of AN such as food aversion and pathological habit formation. Considering the fact that Lobule VI is part of the salience network20, cerebellar reduction in this region may be responsible for maintenance of low BMI states, or go on to exacerbate AN-induced restriction.

Computational models support the notion that the circuits implicated in AN involving the cerebellum are important for Pavlovian conditioning and emotional learning147-151. Such studies utilise active inference and predictive coding, which minimise prediction errors by encoding expected outcomes to causes of sensory stimuli. Recently, Friston and Herreros (2016)152 utilised predictive coding to establish a cerebellar role in eyeblink and delay conditioning. Moreover, they were able to replicate conditioning impairments seen in cerebellum lesion-deficit literature by removing cerebellar afferents from their scheme. In addition to learning via conditioning, the identified circuitry also accounts for perceptual
inference, such as startle responses, and spontaneous behaviour. The concordance of cerebellar activity in regards to both cognitive and motor conditioning suggests this mechanism may play a similar role in the development of AN. In contrast to inhibition and impulse control being affected in OB, it may be hypothesised that anticipatory sensorimotor learning is affected in AN, whereby food stimuli may become associated with an anticipated weight gain (and associated negative cognitions), and consequently becomes aversive to the individual. Alternatively, patients may fail to attend to appetite control through a feeling of satiation, and fail to modulate their portion size normally. In sum, decreased volume of Lobule VI seen in AN could reflect impairments in modulation and learning patterns of response to salient sensory stimuli.

Volumetric correlations among non-clinical populations not only revealed a correlation between cerebellum volume reduction and increased BMI, but also identified additional regions to those identified in clinical data. Linear regression analyses identified a variety of regions with reduced volume within both the left and right cerebellar hemispheres while regions affected in case-control data appear more localised. These associations suggest that GMV in the cerebellum is reduced in sub-clinical weight disorders as well as in states of clinically disordered bodyweight. Furthermore, the implication of additional cerebellar regions suggests that the main sources of variation among healthy controls may be quite different to those driving differences between clinical cases and controls. Combinatorial structural reduction within Lobule VI and Crus I in non-clinical controls may reflect dual recruitment of sensorimotor and executive function. While there is insufficient literature to comment on the neurocorrelates of being underweight within a typical population, those who are not considered obese, but rather overweight or with increased BMI, may present with decreased inhibition control and impaired associative learning seen in both conditions of dysregulated appetite analysed in this study.

Pooling the respective OB, AN and normative ALE analyses into a singular dataset and implementing conjunction analyses revealed a few common regions of interest. While there
was no significant overlap in effect between AN and OB data, small clusters were found when comparing the AN/NOR and OB/NOR data respectively. For the AN/normative data there were two small regions of volumetric decrease located in the right Lobule VI and bilateral Crus I, suggesting a common role of executive and sensorimotor function. Conjunction analyses between OB and normative data were localised to right Crus I suggesting a prominent executive role. The low volume of combinatorial clusters may reflect a lack of consistency across clinical studies, as input coordinates from normative variation papers consisted of much larger samples than those in our utilised case-control literature.

4.2 – LIMITATIONS

4.2.1 – Number of Studies

Our review was potentially limited by low numbers of studies used for some individual analyses. While there is no definitive instruction on the minimum number of studies needed to conduct an ALE meta-analysis, the GingerALE (2.0) manual mentions that a minimum of 20-30 coordinates per experiment, as seen in our analyses, is sufficient to produce significant and valid clusters for simple paradigms. Later on, Eickhoff et al. (2016)153 recommended approximately 15-17 studies for reliability of analysis results, which were not present in our study. A method of counteracting potentially unreliable results from smaller studies in the future would be to analyse findings derived from smaller analyses alongside larger datasets to confirm results. Alternatively, GingerALE meta-analyses with smaller sample sizes could implement a meta-analytic connectivity model (MACM) to observe regions demonstrating consistent structural alterations as seen in Barron (2012)154. Lastly we did not separate between age groups due to availability of literature.

4.2.2 – Specificity of Findings

While the results of the analysis are indeed replicable and robust via use of the MNI-based coordinate system, there are other limitations to consider. The research question posed by this review – to determine if areas of the cerebellum are involved in different disorders of
appetite control were the same or distinct – drove a literature search that was limited to papers mentioning the cerebellum. Therefore, we did not review studies that did not mention the cerebellum and so our study cannot state that it is implicated consistently in all MRI studies of eating disorders. This has been addressed by other meta-analytic reviews; which have consistently implicated the cerebellum in OB, but the picture is less clear in AN in which there are fewer studies overall. Nevertheless, Seitz et al. (2016)155 do report cerebellar deficits to predict outcome in AN after reviewing 29 studies covering 849 patients.

\textbf{4.2.3 – Causality and Direction of Effects}

Further, we are unable to take into account the direction of causation in found associations in this study. One of the key limitations of most neuroimaging studies is their capacity to determine causality. The studies reviewed here are only able to demonstrate associations between volume abnormalities and condition, and it is unclear whether reduced volumes are a cause or subsequent effect. Whilst we hypothesise that low cerebellar volumes are trait effects that affect eating behaviour, our data does not exclude the possibility that altered eating behaviour affects cerebellar volumes. In OB, it seems reasonable to postulate that GMV reduction and therefore executive impairment may result in overeating. In AN however, our suggested mechanism is based on increased rather than decreased associative learning and therefore increased rather than decreased volume of the cerebellum. Resolution of this issue may lie in decreased utility of cerebellar modulatory (dampening) mechanisms in AN, thereby resulting in unmodulated associative learning.

\textbf{4.2.4 – Bulimia}

We included BN patients as an additional clinical category to increase study power. Although we excluded the vast majority of BN patients, approximately 20\% of clinical AN data consisted of those with BN which we were unable to remove. Theoretically including this group may have resulted in volume reduction not linked to states relating to those with AN. Nevertheless, our study still focuses on reduced modulation and volume in eating disorders, which is clearly the case for bulimic individuals. Finally, because of the limited literature
available, we confined our analysis to changes in GMV. Future research would benefit from utilising more specified imaging technology catered to WMV alterations, such as diffusion tensor- and weighted- imaging.

CONCLUSION

While theories proposing cerebellar functions in emotional, cognition and conditioning behaviours are now receiving wide acceptance, a role in appetite control is rarely discussed. In this review, we found utility in exploring differences and similarities in states at opposite ends of the bodyweight dimension, and collated evidence from many sources, with a focus on structural neuroimaging. Altogether, the results of our ALE analyses support the concept that the cerebellum is highly associated with dysregulated appetite, eating disorders and bodyweight, in both pathological and non-pathological states. We found that cerebellar associations with bodyweight issues differ according to the type of problem, perhaps suggesting different psychopathological mechanisms contributing to eating behaviour between non-clinical and pathological populations, including OB and AN. We hypothesise that whilst poor executive function is associated with OB, poorly modulated sensorimotor learning is associated with AN. Utilising our knowledge of the emotional, cognitive, and appetitive functions of the cerebellum will assist in identifying novel remedial approaches to manage disorders of appetite-regulation as well as increase efficacy of interventions provided to clinical populations.

ACKNOWLEDGEMENTS
I would like to extend my sincere gratitude to the Northwood Charitable Trust for funding my PhD studentship.

FUNDING
The studentship driving this research has been awarded by the Northwood Charitable Trust (RG15207).
CONFLICT OF INTEREST

The authors have no conflicts of interest to report.

REFERENCES:

FIGURES:

Figure 1. Flowchart depicting the identification, screening, and acquisition of data.
Figure 2. Cerebellar volume reduction of OB patients compared to HCs, spanning the entire cerebellum with a range of $z=0$ to $z=-55$ and $y=-30$ to $y=-85$ in both axial (2.1) and coronal (2.2) orientations. [Abbreviations: L – left; R – right; VI – lobule 6]
Figure 3. Cerebellar volume reduction of AN patients compared to HCs, spanning the entire cerebellum with a range of $z=0$-$z=-55$ and $y=0$-$y=-85$ in axial (3.1) and coronal (3.2) orientations. [Abbreviations: L – left; R – right; I-IV – lobule 1-4; V – lobule 5; VI – lobule 6; VIIIa – lobule 8a]
Figure 4. Volume reduction within a normative sample analysis (green) spanning the entire cerebellum with a range of $z=0-z=-55$ and $y=30-y=-85$ in axial (4.1) and coronal (4.2) orientations. [Abbreviations: L – left; R – right; VI – lobule 6; VIIb – lobule 7b; VIIIA/b – lobule 8a/b]
Figure 5. FWE-corrected overlay clusters (purple) visualising decreases in volume from AN (blue) OB (red) and normative (green) data. Regions of the cerebellum where AN and normative data overlap are shown as yellow, while an overlap in OB and normative data are displayed as orange. Very minimal clinical overlap (purple) was present. Figures 5A/B, C/D and D/E depict the logical overlays in axial, coronal and sagittal orientations respectively.
Figure 6. Subsequent conjunction analysis combining respective AN and normative data (6.1) as well as OB and normative data (6.2) to visualise affected regions of overlap. Confirm an overlap in volumetric decrease in both AN and normative subjects, as well as OB and normative subjects (p < 0.05). Subfigures 6A/B, C/D and D/E depict the combinatorial clusters in axial, coronal and saggital orientations respectively. No clinical overlap was identified. [Abbreviations: VI – lobule 6; VIIIa – lobule 8a]