The Dawn is Coming —— the Description and Prediction of Omicron SARS-CoV-2 Epidemic Outbreak in Shanghai by Mathematical Modeling

Minghao Jiang¹,*, Guoyu Meng¹,*,#, Geng Wu²,*,#

¹Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine and School of Life Sciences and Biotechnology,
²Shanghai Jiao Tong University, 197 Ruijin Er Road, Shanghai 200025, China
³State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, The Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China

* equal contribution
corresponding authors

E-mail: guoyumeng@shsmu.edu.cn; geng.wu@sjtu.edu.cn

Tel: 0086 (0) 2164370045-610730
Fax: 0086 (0) 2164743206

KEYWORDS: SARS-CoV-2 Omicron, Shanghai outbreak, Prediction model

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The Omicron outbreak in Shanghai has been going on for more than a month although the lockdown of the city has been enforced. In this work, we present a simple and easy-to-use model to evaluate and forecast the spreading trend. After data fitting, we concluded that the maximum overall number infected in Shanghai will exceed 300,000 and the turning point will be in the coming days around April 13-15, 2022. Our model would provide us important parameters such as the average quarantine ratio, the detection interval from being infected to being tested positive, and the spreading coefficient. We found that it would take 1 to 2 days before the infected patients could be tested positive, which was responsible for the rapid Omicron spread in Shanghai. Furthermore, the quarantine ratio was greater than 1, indicating that the lockdown policy was effective, making quelling the epidemic possible. More importantly, our model could not only enable us to predict the spreading precisely, but also lay the theoretical foundation for better policy making in the prevention of Omicron spread.

Introduction

The SARS-CoV-2 Omicron variant, reported as a new variant of COVID-19 in November, 2021[1], has broken out in Shanghai recently. This variant carries mutations to help the virus to resist or escape immunity provided by COVID-19 vaccines[1-3]. To prevent the spread of infection, the local government of Shanghai municipal decided to enforce a lockdown on March 28. However, in the past week, there were still over 20,000 Omicron cases confirmed per day, including both diagnosed and asymptomatic.
The situation was quite severe when compared to other places across mainland China during the same period or that in Shanghai several months ago. Here, we propose a new mathematical model to evaluate the epidemic trend of Omicron spreading in Shanghai and make forecasts for the near future.

Materials and methods

Data used in modeling

The case numbers were collected manually from officially released reports (Table 1).

Mathematical modeling

First, a differential equation is deducted to describe the spreading of COVID-19 as following. Let us denote \(s(t) \) as the number of people whose nucleic acid tests are positive, then

\[
s(t) = p(t - \tau)
\]

in which \(p(t) \) is the total number of patients infected at time \(t \), and \(\tau \) is the time from being infected to being tested positive. Since the patients infected during the time \(\tau \) will not be recorded as nucleic acid positive, the diagnosed or recorded patients (\(s(t) \) above) at time \(t \) is equal to the number of infected population at time \(t - \tau \).

During the time \(dt \), the number of newly infected patients \(dp(t) \) is

\[
dp(t) = k \cdot f(t) \cdot dt
\]

Where \(k \) is the spreading coefficient representing the average number of people one unquarantined patient can infect in a unit interval, and \(f(t) \) is the number of
unquarantined patients at time t. $f(t)$ is equal to $p(t)$ subtracted by the number of quarantined patients $q(t)$:

$$f(t) = p(t) - q(t)$$

We further assume that $q(t)$ (including both nucleic acid positive patients and their close contacts) is proportional to $s(t)$, and let u be the average quarantine ratio:

$$q(t) = u \cdot s(t) = u \cdot p(t - \tau)$$

Therefore, we get the final differential equation:

$$\frac{dp(t)}{dt} = k \cdot f(t) = k \cdot [p(t) - q(t)] = k \cdot [p(t) - u \cdot p(t - \tau)]$$

In this equation, there are three unknown parameters: the spreading coefficient k, the average quarantine ratio u, and the detection interval τ. These parameters may vary during different periods, e.g., before or after the city lockdown. Using the number of reported cases during a particular time in Shanghai, these three parameters can be estimated by data fitting. As a next step, we could forecast the trend of Omicron spreading in Shanghai with these estimated parameters.

Results

The Omicron epidemic in Shanghai has begun since early March, 2022. Until March 12, the number of confirmed cases per day did not exceed 100 (Figure 1). Due to the surge in COVID-19 positives since mid-March, the Shanghai municipal government made the lockdown decision on March 28 to control the spread. So, we fitted the data of total number of reported cases before and after 28 March to figure out to what extent the more stringent policy could affect, and we found that the fitting
between the reported data and the curve calculated from our equation was quite close
(Figure 2). We found that, in order to fit the data better, it was needed to alter the
parameter \(\tau \) in the two scenarios: i) \(\tau = 2 \) (days) before the city lockdown and ii)
\(\tau = 1 \) (day) after the city lockdown. This can be construed as that the more stringent
quarantine policy after the city lockdown, with nucleic acid tests for all citizens once
or twice per day, reduced the detection interval \(\tau \).

In addition, we found that the spreading coefficient \(k \) decreased after the city
lockdown, from 1.63 to 1.49, approximately (Figure 2). Furthermore, in the early stage
of the epidemic, the quarantine ratio \(u \) was 1.32 > 1, which means that almost all the
patients tested positive as well as their close contacts are quarantined. In the later stage
of the epidemic, the quarantine ratio \(u \) got smaller, ~1.04. The reduced \(u \) may serve
as a sign of the arriving turning point. Since \(p(t) \), the cumulative number of confirmed
cases, is a non-decreasing function, its derivative, \(\frac{dp(t)}{dt} \), has to be greater than or equal
to 0. Therefore, \(u \) must be smaller than or equal to \(\frac{p(t)}{p(t-\tau)} \). At the beginning of the
epidemic, Omicron was spreading quickly, \(p(t) \) was much larger than \(p(t-\tau) \), so \(u \)
was relatively bigger. As a result of reaching the turning point, Omicron spreading has
slowed down, thus \(p(t) \) was not much different from \(p(t-\tau) \), \(\frac{p(t)}{p(t-\tau)} \) was close to
1, which made the quarantine ratio \(u \) smaller than that in the early stage of the
epidemic.

With the three parameters estimated, the trend of Omicron spreading in the near
future was predicted. We concluded that there will be more than 300,000 people
infected in Shanghai during this Omicron outbreak (Figure 3A). And the number of
confirmed cases per day will start to decrease around April 13 (Figure 3B), which is
the so-called turning point.

We found that the average detection interval τ was 1 or 2 days when fitting the
known data, which means that, there would be 1 to 2 days of delay from infection to
positive nucleic acid test, during which time the unnoticed patients were still infectious.
We believe that this is one of the reasons why Omicron spread rapidly. Furthermore,
the quarantine ratio u was found to be greater than 1, which means that most of the
infected and close contacts had been quarantined, indicating the lockdown and other
stringent policies were effective, making appearance of the turning point and quelling
the epidemic possible.

Moreover, the apparent R0 value, which is the number of people a patient could
infect, could be obtained by multiplying the spreading coefficient k and the detection
interval τ. After the lockdown, the value of R0 dropped from 3.27 to 1.49, providing
further supporting evidence for the positive effects of the lockdown.

Discussion

The sudden Omicron epidemic outbreak in Shanghai has brought panic to the
public, and great loss to business. In order to evaluate and forecast the spreading trend
based on available confirmed data, we proposed a novel mathematical model, which
took the government policies into account, which could provide us important
parameters describing the Omicron epidemic such as the spreading coefficient k, the
quarantine ratio u, and the detection interval τ. The predicted number of overall cases
and the expected time of turning point may help the government to make judgment on
the spreading and to revise the policies accordingly. Our model is easy to be applied to
describe other epidemic diseases, and can help the society to avoid panic and build up
confidence to fight with COVID-19. For example, the Guangzhou city was the latest
metropolitan city in China that declared city-wise lockdown on Apr 11. We believe that
our mathematical model presented in this report would help the public to have a better
grasp of the current pandemic spread, and would undoubtedly instill confidence and
calm that are urgently needed in the caught-up fight of COVID-19 in China.

Figure legends

Figure 1. The total number of confirmed cases in Shanghai since March1. The blue
points and curve represent the data before the official lockdown, and the red ones
represent the data after the lockdown.

Figure 2. Data fitting. The data were fitted separately before and after the lockdown.
The blue points and curve represented the reported number of total confirmed cases,
and the yellow ones represented the number calculated from our differential equation.
The parameters were rounded to 3 significant digits.

Figure 3. Epidemic trend forecast. (A) The forecasted total number of confirmed cases,
with the predicted data points colored in blue. (B) The reported daily increased number
of cases (red) and those for upcoming days predicted by our model (blue).
Table 1. The number of COVID-19 cases in Shanghai

<table>
<thead>
<tr>
<th>Date</th>
<th>Daily infected (*)</th>
<th>Total infected (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3.2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>14</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>28</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>38</td>
<td>75</td>
</tr>
<tr>
<td>3.9</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>3.10</td>
<td>9</td>
<td>65</td>
</tr>
<tr>
<td>3.11</td>
<td>202</td>
<td>169</td>
</tr>
<tr>
<td>3.12</td>
<td>713</td>
<td>9</td>
</tr>
<tr>
<td>3.13</td>
<td>915</td>
<td>202</td>
</tr>
<tr>
<td>3.14</td>
<td>1073</td>
<td>158</td>
</tr>
<tr>
<td>3.15</td>
<td>1333</td>
<td>260</td>
</tr>
<tr>
<td>3.16</td>
<td>1707</td>
<td>374</td>
</tr>
<tr>
<td>3.17</td>
<td>2216</td>
<td>509</td>
</tr>
<tr>
<td>3.18</td>
<td>2974</td>
<td>758</td>
</tr>
<tr>
<td>3.19</td>
<td>387</td>
<td>896</td>
</tr>
<tr>
<td>3.20</td>
<td>4851</td>
<td>981</td>
</tr>
<tr>
<td>3.21</td>
<td>5834</td>
<td>983</td>
</tr>
<tr>
<td>3.22</td>
<td>7443</td>
<td>1609</td>
</tr>
<tr>
<td>3.23</td>
<td>9712</td>
<td>2269</td>
</tr>
<tr>
<td>3.24</td>
<td>12390</td>
<td>2678</td>
</tr>
<tr>
<td>3.25</td>
<td>15890</td>
<td>3500</td>
</tr>
<tr>
<td>3.26</td>
<td>20367</td>
<td>4477</td>
</tr>
<tr>
<td>3.27</td>
<td>26349</td>
<td>5982</td>
</tr>
<tr>
<td>3.28</td>
<td>32002</td>
<td>5653</td>
</tr>
<tr>
<td>3.29</td>
<td>36504</td>
<td>4502</td>
</tr>
<tr>
<td>3.30</td>
<td>42815</td>
<td>6311</td>
</tr>
<tr>
<td>3.31</td>
<td>51041</td>
<td>8226</td>
</tr>
<tr>
<td>3.32</td>
<td>60047</td>
<td>9006</td>
</tr>
<tr>
<td>3.33</td>
<td>73401</td>
<td>13354</td>
</tr>
<tr>
<td>3.34</td>
<td>90478</td>
<td>17077</td>
</tr>
<tr>
<td>3.35</td>
<td>110460</td>
<td>19982</td>
</tr>
<tr>
<td>Daily infected (*)</td>
<td>Total infected (*)</td>
<td>Date</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>------</td>
</tr>
<tr>
<td>21222</td>
<td>131682</td>
<td>4.7</td>
</tr>
<tr>
<td>23624</td>
<td>155306</td>
<td>4.8</td>
</tr>
<tr>
<td>24943</td>
<td>180249</td>
<td>4.9</td>
</tr>
<tr>
<td>26087</td>
<td>206336</td>
<td>4.10</td>
</tr>
</tbody>
</table>

Acknowledgements

This work was supported by research grants 81970132, 81770142, 81800144, 81800642, 82100153 and 82104582 from National Natural Science Foundation of China, a research grant 20JC1410600 from Shanghai Science and Technology Committee, Shanghai Guangci Translational Medical Research Development Foundation, a research grant 20152504 from “Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support”, “The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institute of Higher Learning”, Samuel Waxman Cancer Research Foundation. We thanks Professor Zhu Chen, Shanghai Institute of Hematology, for his kind support of this work.

Author contributions

Conceived and designed the experiments: GM and GW. Performed the experiments: MJ. Analyzed the data, preparation of figures manuscripts and wrote the paper: MJ, GM, GW. Project supervision: GM. All authors read and approved the final manuscript.

Compliance with ethics guidelines

Conflict of interest
This article does not contain any studies with human or animal subjects. The authors declare no competing interests.

References

The number of COVID-19 cases detected in Shanghai

![Graph showing the number of confirmed cases with and without lockdown measures.](image-url)
The number of COVID-19 cases detected in Shanghai before lockdown

\[k = 1.63, \ u = 1.32 \]

The number of COVID-19 cases detected in Shanghai after lockdown

\[k = 1.49, \ u = 1.04 \]
A. The predicted number of COVID-19 cases in Shanghai

B. Daily reported number of cases