Triangulating Causality Between Childhood Obesity and Neurobehavior: Twin and Longitudinal Evidence

Leonard Konstantin Kulisch, Kadri Arumae, Daniel A. Briley, Uku Vainik

Institute of Psychology, University of Tartu, 50409 Tartu, Estonia
Leipzig University, 04109 Leipzig, Germany
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
Institute of Genomics, University of Tartu, 50409 Tartu, Estonia
Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada

* Corresponding author: Uku Vainik
Email: uku.vainik@gmail.com

Author Contributions: LKK, UV designed research; LKK, UV, DB performed research; LKK analyzed data; and LKK, KA, UV wrote the paper.

Competing Interest Statement: The authors declare no conflict of interest.

Classification: Biological Sciences, Neuroscience.

Keywords: childhood obesity, causality, twin modeling, cross-lagged panel modeling, neurobehavior.

This PDF file includes:
Main Text
Figures 1 to 4

Abstract

Childhood obesity is a serious health concern that is not yet fully understood. Previous research has linked obesity with neurobehavioral factors such as behavior, cognition, and brain morphology. The causal directions of these relationships remain mostly untested. Here, we filled this gap by using the Adolescent Brain Cognitive Development study cohort comprising 11,875 children aged nine to ten. Cross-sectionally, body mass percentile correlated with measures of impulsivity, motivation, psychopathology, eating behavior, and cognitive tests (executive functioning, language, memory, perception, working memory). Obesity was associated with reduced cortical thickness in areas of the frontal and temporal lobe but with increased thickness in parietal and occipital brain areas. Similar although weaker patterns emerged for cortical surface area and volume. Effects for each neurobehavioral factor (personality/psychopathology,
eating behavior, cognition, cortical thickness, cortical surface area, and cortical volume) were then aggregated for causal analyses. Direction of Causation twin modeling was used to test the direction of each relationship. Findings were validated by longitudinal analyses. Twin modeling suggested causal effects of childhood obesity on eating behavior ($\beta=.26$), cognition ($\beta=.05$), cortical thickness ($\beta=.15$), and cortical surface area ($\beta=.07$). Personality/psychopathology ($\beta=.09$) and eating behavior ($\beta=.16$) appeared to causally influence childhood obesity. Longitudinal evidence broadly supported these findings. Results regarding cortical volume were inconsistent. In summary, childhood obesity had considerable causal effects on brain functioning and morphology, supporting the brain inflammation theory. The present study highlights the importance of physical health for brain development during childhood and may inform interventions aimed at preventing or reducing pediatric obesity.

Significance Statement

Childhood obesity has negative implications for child health and society. Existing literature suggests links between childhood obesity and aspects of brain functioning and morphology. The present study aimed to uncover the causal relationships driving these associations. Our results suggested directional links from personality and psychopathology to obesity, as well as from obesity to cognition, cortical thickness, and cortical surface area. Childhood obesity and eating behavior appeared to have a reciprocal relationship. In summary, results supported causal effects of obesity on various neurobehavioral factors. Therefore, individual levels of obesity may play a role for healthy brain development during childhood. Eating behavior and personality/psychopathology were identified as potential targets for interventions aimed at preventing or reducing childhood obesity.

Main Text

Introduction

Childhood obesity is a growing health issue with every fifth child in the U.S. having obesity and these numbers expected to rise (1). High body weight as indexed by body mass index (BMI) tends to persist into adulthood and is associated with individual health risks and increased financial burden to the health and labor system (2, 3). Since all food intake happens through behaviors, such as choosing and eating (4), it is hoped that examining the association between obesity and neurobehavioral factors like behavior, cognition, and brain structure could aid in designing interventions that prevent or reduce childhood obesity.

Many studies have found links between obesity and such neurobehavioral factors and obesity. Regarding self- and parent-reported traits, correlations have been found between pediatric weight status and mental health issues like depression (5) as well as various eating behaviors (6). Child and adolescent obesity have also been found to correlate with behavioral and self-reported measures of impulsivity (7), motivation, and cognitive functioning (8). Regarding brain morphology, associations between childhood obesity and cortical thickness have been found in diverse brain regions. Many studies have reported association to areas within the frontal lobe (9–14). Yet, other brain regions may also play a role (15). In participants with higher obesity, cortical surface area was observed to be increased in the left rostral middle frontal gyrus and the right superior frontal gyrus (10) while others found cortical volume to be altered in frontal and temporal brain regions (16–18). Some of these associations have already been replicated within the Adolescent Brain Cognitive Development (ABCD) study dataset (19–25) due to its open accessibility.

However, it is unclear if obesity may have causal associations with these neurobehavioral domains and aspects of brain morphology and, if so, what the direction of these associations may be. A recent study in adults showed that neurobehavioral correlates of obesity are largely heritable (26) and follow-up genetic analyses with two different methods suggest that obesity may...
cause variance in personality traits (27). In childhood, obesity is assumed to be causally influenced by eating, lifestyle, and socio-cultural behaviors and to have causal effects on cognitive abilities (28) and brain morphology (10, 18). Psychopathology is conceptualized to have a reciprocal relationship with child weight status (28). However, few studies have tested these causal assumptions. Longitudinal evidence suggests causal links from inhibitory control (29), reward responsiveness (30), prosociality (31), depression (32, 33), aggression (34), and psychopathology in general (35) to childhood obesity. BMI has additionally been found to influence internalizing problems (36) and depression (33) suggesting a reciprocal relationship between childhood obesity and depressive symptoms. Eating behaviors like emotional eating (37) and picky eating (38) were found to longitudinally influence childhood obesity. Longitudinal studies found a link from child weight status to academic attainment (39) but no evidence for any causal relations to intelligence (40). Cortical surface area predicted subsequent BMI changes during adolescence (41). An experimental study observing brain morphology changes following bariatric surgery found an effect of childhood obesity on cortical thickness (12). Genetically informed analyses revealed directional effects from polygenic scores for BMI to ADHD, heavy smoking (42), and overeating (43), as well as cortical volume (44). Schizophrenia and anorexia nervosa genetic propensity were identified to predict childhood obesity (42). Another genetically informed study found a reciprocal causal relationship between BMI and disordered eating (45).

In this study, we sought to triangulate causality in well-known correlates of childhood obesity. First, cross-sectional obesity-neurobehavior associations were validated using the large ABCD study dataset. We then applied twin and longitudinal designs to analyze these correlations from a causal perspective. Two causal inference methods with different assumptions on separate subsets of the data can aid in establishing robust causal effects (46).

Results

Background

The baseline, one-year and two-year follow-ups of the ABCD study (47) were used for data analysis. The study cohort includes 11875 children aged 9-10 years at baseline. After applying typical exclusion criteria to the available cases, the final sample comprised 7016 singletons and 2511 siblings (for exclusion criteria see Supplementary Table S1; for demographics see Supplementary Table S2). Singletons were participants with unique family-IDs. Siblings were participants who had the same family-ID as one other participant within study waves and had information about their respective relationship available. Singleton data were used for cross-sectional analyses of associations between childhood obesity and neurobehavioral indicators as well as longitudinal analyses of those relationships. Sibling data were the basis for behavior genetics analyses. The percentage of the sex- and age-specific 95th BMI percentile was calculated for each participant following guidelines for childhood obesity research (48). BMI is often used in research on obesity in adulthood, but the dependency of its distribution on sex and age during childhood renders it impractical for childhood obesity studies. For grouping of different neurobehavioral aspects, each variable of interest recorded in the ABCD study (subsequently called feature) was assigned to one of six neurobehavioral factors. These were personality/psychopathology, eating behavior, cognition, cortical thickness, cortical surface area, and cortical volume. All analyses are controlled for gender at birth, age, race, Hispanic ethnicity, handedness, puberty status and study site. Additionally, in analyses with brain morphology measures the individual mean or total of the respective measure was controlled for. This procedure was chosen to maintain consistency regarding controls for brain measures. Multiple control variables were correlated to childhood obesity (see Supplementary Figure S1). Brain morphology measures needed to successfully pass ABCD quality control. False discovery rate correction (49) was applied when screening for features within a neurobehavioral factor. See Supplementary Table S3 and https://nda.nih.gov/general-query.html for further information on the measures.
Personality/psychopathology and eating behavior factors

For an overview of the association between childhood obesity and personality/psychopathology, the features (i.e., items of personality and psychopathology tests) within the factor were summarized into their respective sum scales according to test manuals. In the subset of singletons, obesity was positively correlated to drive, reward responsiveness (50), social problems, somatic complaint, aggressive behavior, and being depressed (51). A negative correlation was found with sensation seeking (52). The strongest associations were between obesity and measures of psychopathology (Fig. 1).

Correlation analyses were conducted between the percentage of the sex- and age-specific 95th BMI percentile and the eating-specific items “overeating” and “doesn’t eat well” of the Child Behavior Checklist (51) which formed the eating behavior factor. Both eating-related and parent-report items had considerable correlations with obesity. A strong positive correlation was found with “overeating” and a weaker negative correlation with “doesn’t eat well” (Fig. 1). The feature “doesn’t eat well” was also represented in the somatic complaints score. In following analyses, eating-specific items were excluded from the personality/psychopathology factor.

Cognition

Cognitive test performance consistently showed negative correlations with obesity in the singleton subset. Exceptions were inhibitory control, perception speed, and pattern comparison (53) where no significant associations occurred. The obesity-cognition association was strongest for the Wechsler matrix reasoning task (54, Fig. 1).

[Insert Fig. 1]
Brain morphology factors

Analyses of singletons revealed positive associations of posterior cortical thickness in the occipital and parietal lobe. Moreover, a positive correlation was also found with the precentral region of interest within the frontal lobe. Negative associations between cortical thickness and obesity were found for most regions of interest within the frontal lobe as well as superior temporal and temporal pole regions within the temporal lobe. Higher correlations for the right compared to the left hemisphere were discovered in some frontal and parietal brain regions (Fig. 2).

Fewer meaningful associations were found for cortical surface area and volume. Surface area-obesity associations were present in the isthmus cingulate, lateral orbitofrontal, medial orbitofrontal, rostral middle frontal, insula, and temporal pole regions of interest (Fig. 2) while volume-obesity associations were found with the isthmus cingulate, rostral middle frontal, frontal pole, insula, posterior cingulate, superior temporal, and temporal pole regions of interest (Fig. 2). See Fig. 3 for mapped visualization of obesity-morphology correlations.

Poly-Phenotype Scores

Poly-phenotype scores (PPS, 26) were calculated to summarize the total association of each neurobehavioral factor with obesity. The method is adapted from polygenic scores and helps to reduce measurement noise as well as multiple testing of redundant measures (e.g., 55). PPSs are calculated by summing the products of each feature’s measure (i.e., personality/psychopathology/eating behavior item scores, cognitive test scores, and thickness in mm/surface area in mm²/volume in mm³ of cortical regions of interest) with its correlation with the sex- and age-specific 95th BMI percentile within a factor. The personality/psychopathology behavior factor used personality and psychopathology test items (without eating/weight-related items) and their specific correlation opposed to previously presented sum scales. To avoid overfitting, correlations were obtained from the singleton subset and applied to measures within the subset of siblings to generate six PPSs for each participant in the sibling subset. These PPSs informed preliminary correlation and twin modeling analyses. Ten-fold cross-validation within the singleton sample was later used to generate PPSs in an independent sample for longitudinal analysis (see Supplementary Table S3). Obesity-PPS correlations in the twin sample were $r=.09$, $p<.001$, $n=2469$ for personality/psychopathology, $r=.36$, $p<.001$, $n=2475$ for eating behavior, $r=.04$, $p=.02$, $n=2296$ for cognition, $r=.14$, $p<.001$, $n=2391$ for cortical thickness, $r=.06$, $p<.01$, $n=2391$ for cortical surface area, and $r=.07$, $p=.001$, $n=2391$ for cortical volume (for full correlation matrix see Supplementary Table S4). The coefficient for the personality/psychopathology factor containing mainly mental health items is very close to the meta-analytic estimate found for the childhood obesity-depression correlation of $r=.08$ (5). A meta-analysis investigating various eating behaviors detected effects between $r=|.08|$ and $r=|.22|$ with a lower estimate for emotional overeating ($r=.15$) than in the present study (6). In contrast, a previous meta-analysis of associations between childhood obesity and cognitive domains found a greater overall effect size ($r=|.24|$) than this analysis (8). A previous analysis of obesity-PPS correlations among 895 adults yielded a similar coefficient for personality ($r=.08$) but stronger associations between obesity and cognition ($r=.16$) as well as cortical thickness ($r=.26$, ref. 26).

Direction of Causation

Direction of Causation (DoC) twin modeling was conducted to investigate the causal paths building the observed obesity-PPS correlations. In DoC, the relationships of heritability variance components of two phenotypes are structurally modeled (56). Specifically, DoC builds on the ACE heritability model which decomposes observed traits into additive genetic (A), common environment (C), and unique environment (E) variance components by comparing mono- and
dizygotic twin pairs (non-twin siblings were treated equal to dizygotic twins, ref. 57). The heritability of obesity was 89.5% with the remaining 10.5% being due to unique experiences of a co-twin. PPS heritability varied between 6.6% (eating behavior) and 57.5% (cortical thickness, see Supplementary Tables S5-6).

If one trait has a causal influence another trait, then the A, C, and E variance components of this first trait should be proportionally represented in the variance of the second. In this way, DoC models can be specified for obesity causally influencing PPS, or PPS causally influencing obesity. A reciprocal model can be defined by allowing both causal paths. Removing any causal paths leads to the Cholesky model where observed correlations are driven by a third variable (56).

For each obesity-PPS association, the best-fitting model was chosen by comparing model fit with regards to model complexity using Chi-squared and Akaike information criterion (see Supplementary Table S7). For both, lower values indicate better model fit. Obesity was found to have unidirectional causal effects on cognition ($\beta = .05$, CI=[.00, .09], n pairs=1056), cortical thickness ($\beta = .15$, CI=[.11, .20], n pairs=1138), and cortical surface area ($\beta = .07$, CI=[.03, .11], n pairs=1138). Contrarily, the personality/psychopathology ($\beta = .09$, CI=[.05, .12], n pairs=1213) and cortical volume ($\beta = .07$, CI=[.04, .11], n pairs=1138) PPS were found to have unidirectional causal effects on obesity. The reciprocal causation model was found the be best fitting for eating behavior ($\beta_{\text{Obesity-to-PPS}} = .26$, CI_{\text{Obesity-to-PPS}}=[.20, .32], $\beta_{\text{PPS-to-Obesity}} = .16$, CI_{\text{PPS-to-Obesity}}=[.11, .20], n pairs=1218).

Cross-Lagged Panel Models

To validate DoC results, longitudinal analyses using cross-lagged panel models (CLPM) were performed. Traditional CLPMs (58) were calculated for all six PPSs using baseline and two-year follow-up measures. Random-intercept CLPMs (59, 60) were applied where PPSs could be calculated for baseline, one-year and two-year follow-up (i.e., personality/psychopathology and eating behavior). The methodological advantage of Random-intercept CLPMs lays in the estimation of latent variables to account for stable interindividual trait differences (59). However, this method requires at least three observation waves. Due to varying availability of measures per study wave, PPSs for CLPM may not be fully congruent with PPSs for DoC (see Supplementary Table S3).

CLPMs estimate autoregressive paths which reflect stability of each measured trait over time (i.e., a paths) by structural modeling. Moreover, paths from previous measures of one trait to later measures of another trait are modeled. CLPMs refer to these as causal paths or c paths. However, they may not truly reflect causality (61): CLPMs test the ability of one trait’s past levels to predict later levels of another trait, but such relationships can be driven by unobserved third variables as well as causal influences.

Using the preferred random-intercept CLPM, meaningful c paths were found from childhood obesity to eating behavior ($\beta = .11$, CI=[.03, .19], n=3497) and from personality/psychopathology to childhood obesity ($\beta = .04$, CI=[.02, .07], n=3482). Traditional CLPMs found c paths from obesity to all neurobehavioral factors: personality/psychopathology ($\beta = .07$, CI=[.04, .10], n=3416), eating behavior ($\beta = .22$, CI=[.18, .26], n=3442), cognition ($\beta = .04$, CI=[.08, .01], n=2952), cortical thickness ($\beta = .08$, CI=[.05, .11], n=3215), cortical surface area ($\beta = .02$, CI=[.01, .03], n=3215), and cortical volume ($\beta = .02$, CI=[.00, .03], n=3215). C paths also emerged from personality/psychopathology ($\beta = .03$, CI=[.01, .05], n=3416) and eating behavior ($\beta = .05$, CI=[.02, .08], n=3442) to obesity. Complete CLPM path estimates are shown in Supplementary Table S8.

The directional relationships found in DoC twin modeling were fully replicated except causal effects of cortical volume and eating behavior (only traditional CLPM) on childhood obesity. Additional longitudinal paths emerged from childhood obesity to personality/psychopathology (only traditional CLPM) and cortical volume (Fig. 4). The negative longitudinal childhood obesity-cognition-effect implies that higher percentage of the sex- and age-
specific 95th BMI percentile at age nine to ten is associated with higher cognitive test scores at age eleven to twelve.

[Insert Fig. 4]
Discussion

The purpose of the present study was to use multiple causal inference methods to understand associations between childhood obesity and neurobehavioral factors. Replicating previous cross-sectional findings, childhood obesity at age nine to ten was found to be associated to measures of personality/psychopathology, eating behavior, cognition, cortical thickness, cortical surface area, and cortical volume. Regarding the direction of these relationships, the data supported causal influences of obesity on eating behavior, cognition, cortical thickness, and cortical surface area across analysis methods. Personality/psychopathology showed consistent causal and longitudinal effects on obesity. A reciprocal relationship may drive the associations between obesity and eating behavior. However, a random-intercept CLPM found only longitudinal effects from obesity to eating behavior. Both reciprocal obesity-eating behavior models (i.e., DoC and traditional CLPM) implied the latter to be the stronger path, too. For the association between obesity and personality/psychopathology, only the methodologically weaker traditional CLPM suggested a reciprocal relationship. Conflicting findings leave the relationship between obesity and cortical volume unclear.

Together, the results of this multi-method study in a large sample highlight the importance of obesity as a driving force behind individual differences in brain functioning and morphology during childhood.

In recent studies, deficits in cognitive abilities of obese adults are attributed to an obesity associated inflammation in the brain (62). Even though less pronounced, this effect can be partly observed in children too (63). The beginning inflammation in brains of obese children may explain the small effect from obesity to cognition in children aged 9-10. Obesity-triggered inflammation may explain accelerated brain aging in obese adults. This results in neurodegeneration which can be observed in cortical thinning. Albeit the effect being most pronounced in adulthood, similar degeneration processes may drive the effect of obesity on cortical thickness and surface area in the present study (64). Reduced cortical thickness or surface area in frontal brain areas associated with executive functioning could mediate effects of obesity on several tests of cognition.

However, a longitudinal correlation from increased obesity to better cognitive functioning was observed using a traditional CLPM. The previous negative association disappeared at age 11-12. Changes in the association between obesity and intelligence across childhood were previously described implying that negative effects of obesity can potentially be compensated in certain developmental periods (65). However, the positive effect could not be replicated across methods. Further research is necessary to map this effect.

On the other hand, potential self- and parent-reported contributors to childhood obesity (i.e., eating behavior, psychopathology, impulsivity, and motivation) were identified. Of them, strongest effects could be summarized as increased approach behavior (sensation-seeking, drive, reward responsiveness), which may lead to unhealthy food choices that maximize short term satisfaction (66). Besides food quality, also food quantity could be affected. The reduced ability to stop eating when hunger is satisfied may lead to overeating (67). The other domain seems to be stress-related psychopathology. Children with increased mental health problems may attempt to regulate adverse emotions by stress eating, which may contribute to weight gain (68). Current evidence favors focusing on interventions aiding reducing stress and/or try to manage increased sensation seeking.

Eating behavior was another causal contributor to obesity, which seems trivial. On the other hand, the reverse effect of obesity on eating behavior was even stronger. While rarely considered, such association is consistent with the model, where obesity increases fat free mass which in turn increases food intake, which then maintains obesity (69). Fat-free mass and food intake have been linked in adolescents (70), and genetic obesity predicts future childhood eating behaviors (43). Therefore, studies intervening on eating behaviors should also consider reverse causality.

The results are limited by the use of the percentage of the sex- and age-specific 95th BMI percentile as a proxy for obesity and the assumption of obesity being continuous while the
majority of participants were not obese. We explored relative fat mass as an alternative obesity indicator but discarded due to lack of additional information (see ref. 71). The PPS method limits the results by ignoring causal relationships of individual features within a factor, but this was offset by gain in statistical power. DoC results are influenced by measurement reliability in a way that DoC tends to model the more reliable variable to have causal effects on the less reliable variable. Reliability could be lower for behavioral (e.g., 72) and cognitive factors (e.g., 73) which could contribute to the finding that obesity had causal effects on eating behavior and cognition. Personality/psychopathology and cognitive test results can be compromised by intrapersonal components like response bias or motivation which are irrelevant for the directly observed measures of childhood obesity and brain morphology. At the same time, previous analyses showed that explicitly modeling reliability did not change DoC conclusions (27). Future studies using different causal inference methods should build complementary evidence (27).

In summary, the present study provides evidence that childhood obesity may influence rather than be influenced by the various aspects of brain functioning and morphology that have been found to differ between children with and without obesity. Therefore, obesity may play an important role in brain development during childhood. The present findings are hoped to inspire further investigation of the underlaying mechanisms behind these associations and development of more effective obesity interventions.

Materials and Methods

Data were provided by the ABCD study. Demographic information is presented in Supplementary Table S2. A commented analysis script is available at https://osf.io/zgda4/ for detailed data analysis procedure insight and replication. Analysis software information is noted in Supplementary Table S9.

Acknowledgments

Uku Vainik has been funded by Estonian Research Council's personal research funding start-up grant PSG759.
References

42. C. Hübel, et al., Genetic correlations of psychiatric traits with body composition and glycemic traits are sex- and age-dependent. Nat. Commun. 10, 5765 (2019).
Figure 1. Associations between percentage of the sex- and age-specific 95th BMI percentile and (A) personality scales, psychopathology scales, as well as eating-specific items of the Child Behavior Checklist, and (B) cognitive test scores. Impulsivity, motivation and prosociality were self-reported, psychopathology (including eating items) parent-reported. Error bars represent 95% confidence intervals. EB, eating behavior; EF, executive functioning; FDR, false discovery rate; Lang, Language; Perc, perception; PS, prosociality; WM, working memory.
Figure 2. Associations between percentage of the sex- and age-specific 95th BMI percentile and (A) cortical thickness, (B) cortical surface area, and (C) cortical volume. Error bars represent 95% confidence intervals. FDR, false discovery rate; I, insula.
Figure 3. Mapped associations between percentage of the sex- and age-specific 95th BMI percentile and (A) cortical thickness, (B) cortical surface area, (C) and cortical volume.
Figure 4. Causal and longitudinal path coefficients for Direction of Causation (DoC), traditional cross-lagged panel models (CLPM) and random-intercept cross-lagged panel models (RI-CLPM). Only best fitting model plotted for DoC. Error bars represent 95% confidence intervals. PPS, poly-phenotype score.
Figure A: Correlation coefficients (r) for impulsivity and psychopathology.
- Negative Urgency
- Positive Urgency
- Lack of Perseverance
- Lack of Planning
- Sensation Seeking
- Drive
- Reward Responsiveness
- Inhibition
- Prosociality
- Social Problems
- Somatic Complaints
- Aggressive Behavior
- Depressed
- Rule-Breaking Behavior
- Anxious/Depressed
- Thought Problems
- Attention Problems
- Overeating
- Doesn't Eat Well

Figure B: Correlation coefficients (r) for executive function (EF), language (Lang), memory, perception (Perc) and working memory (WM).
- Inhibitory Control
- Card Sorting
- Matrix Reasoning
- Picture Vocabulary
- Reading Recognition
- Learning
- Long-term
- Short-term
- Picture Sequence
- Speed
- Accuracy
- Pattern Comparison
- List Sorting