Full title: Changing patterns in reporting and sharing of review data in systematic reviews with meta-analysis: the REPRISE project

Short title: Changing patterns in reporting and sharing of review data in systematic reviews with meta-analysis

Phi-Yen Nguyen1, Raju Kanukula1, Joanne E McKenzie1, Zainab Alqaiddoom1, Sue E Brennan1, Neal R Haddaway2,3,4, Daniel G Hamilton5, Sathya Karunanathan5, Steve McDonald1, David Moher7,8, Shinichi Nakagawa9, David Nunan10, Peter Tugwell8,11,12, Vivian A Welch8,12, Matthew J Page1,*

1 School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
2 Leibniz-Centre for Agricultural Landscape Research (ZALF), Eberswalder Str 84, Müncheberg, Germany
3 Stockholm Environment Institute, Linnégatan 87D, Stockholm, Sweden
4 African Centre for Evidence, University of Johannesburg, Johannesburg, South Africa
5 School of BioSciences, University of Melbourne, Melbourne, Australia
6 Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
7 Centre for Journalology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
8 School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
9 Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
10 Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, Oxford University, Oxford, UK
11 Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
12 Bruyère Research Institute, Ottawa, Canada

*Corresponding author: Dr. Matthew Page, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004, Australia. Telephone: +61 9903 0248.

Email address: matthew.page@monash.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT (300 words)

Objectives: To examine changes in completeness of reporting and frequency of sharing review materials in systematic reviews (SRs) over time; and factors associated with these changes.

Methods: We examined a random sample of 300 SRs with meta-analysis indexed in PubMed, Science Citation Index, Social Sciences Citation Index, Scopus and Education Collection in November 2020. We compared the extent of complete reporting in these reviews against 110 SRs indexed in MEDLINE in February 2014. We examined associations between completeness of reporting and various factors (e.g. self-reported use of reporting guidelines, journal’s data sharing policies) by calculating risk ratios (RR) and 95% confidence intervals (CI).

Results: Among 300 SRs from 2020, authors of only 7% shared their review data file(s) and 1% shared analytic code. Compared to 2014 sample, reviews in 2020 were more likely to reference reporting guidelines in their manuscript (RR=2.8, 95% CI 2.1-3.8), report the full search strategy for at least one database (RR=1.3, 95% CI 1.1-1.6) and methods of data preparation for meta-analysis (RR=2.2, 95% CI 1.4-3.5). Among reviews in 2020, those for which authors mentioned using reporting guidelines reported review protocols, study screening processes and numbers of records retrieved for each database more frequently than those that did not mention reporting guidelines; however the 95% CIs for these associations included the null. Reviews published in journals that mandated either data sharing or inclusion of Data Availability Statements were more likely to share their review materials (e.g. data, code files) (RR=8.1, 95% CI 3.1-21.5).

Conclusion: There was a notable increase over time in self-reported use of a reporting guideline, but we were uncertain whether it was associated with improved reporting of SRs. Data sharing policies of journals potentially encourage sharing of review materials. Further studies are needed to explore other facilitators or barriers to complete reporting in SRs.
INTRODUCTION

Systematic reviews provide a design for identifying, critically appraising and synthesising all available evidence addressing a specific research question. A systematic review may also include meta-analyses, which is the statistical synthesis of results across studies to produce a reliable estimate of the true effect. The recognition of systematic reviews’ role in evidence-based clinical practice and policymaking is reflected in the 20-fold increase in the number of published systematic reviews between 2000-2019 (1).

To ensure systematic reviews are valuable to decision makers, authors should completely report the methods and results of their review. Complete reporting allows users to judge whether the chosen methods may have biased the review findings (e.g. if inclusion of studies is restricted to only those written in English). Incomplete reporting of the methods prevents such an assessment and can preclude attempts to replicate the findings.

Several meta-research studies have evaluated the completeness of methods and results reporting in systematic reviews and meta-analyses. Many of these have been narrow in scope, focusing on specific medical specialties, health topics (2–6) or selected journals (7,8). While other studies have examined a more diverse sample of reviews (9,10), the cohorts of reviews examined are no longer current.

To address incomplete reporting of methods and results in systematic reviews, several reporting guidelines have been developed. Reporting guidelines provide a structure for reporting a systematic review, along with recommendations of items to report (11). Key reporting guidelines for systematic reviews include the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement (12) and its extensions (13), the Methodological Expectations of Cochrane Intervention Reviews (MECIR) (14) and the Methodological Expectations of Campbell Collaboration Intervention Reviews (MECCIR) standards (15).

Evidence from studies examining adherence to PRISMA suggest that for some items (e.g. inclusion of a flow diagram) there was improvement after the introduction of the PRISMA statement in 2009, but that others (e.g. mention of a review protocol) remained infrequently reported (13). Similarly, improvements in the reporting of network meta-analysis (NMA) were observed after the introduction of the PRISMA-NMA extension (16); however, the authors concluded that the improvements could not be attributed solely to the availability of this extension. The extent to which adoption of reporting guidelines influences completeness of reporting remains unclear.

In addition to complete reporting of methods and results, advocates for greater transparency of systematic reviews (17,18) also recommend authors share systematic review data, analytic code used to generate meta-
analyses, and other materials used in the review (e.g. lists of citations screened, data collection templates). Access to the data files facilitates independent verification of findings and updating of reviews when new evidence becomes available (19). Infrequent sharing of data in systematic reviews in health research has been observed, but these findings may not generalise to all health topics (4) or across journals (10). Moreover, the types of data shared (e.g. unprocessed data extracted from reports, data included in meta-analyses) has not been examined.

Many journals and funders now require, or encourage, study data to be shared, and in journal article submissions, a statement provided regarding the availability of data (known as a Data Availability Statement) (20). Some studies have explored the impact of such data policies (often termed ‘open data policies’) on the frequency of data availability statements and data files among academic papers (21–24). However, none of these studies included systematic reviews, and therefore their findings may not be generalisable to reviews, which produce different types of data to that generated from clinical trials and laboratory experiments.

In view of the research gaps outlined above, we aimed to:
(a) evaluate the completeness of reporting in systematic reviews in a cross-section of systematic reviews with meta-analysis published in 2020;
(b) evaluate the frequency of sharing review data, analytic code and other materials in the same cohort of reviews;
(c) compare reporting in these reviews with a sample of reviews published in 2014;
(d) investigate the impact of reporting guidelines on the completeness of reporting; and
(e) investigate the impact of data sharing policies of journals on the frequency of review data sharing.

METHODS

This study was conducted as one of a suite of studies in the REPRISE (REProducibility and Replicability In Syntheses of Evidence) project. The REPRISE project is investigating various aspects relating to the transparency, reproducibility and replicability of systematic reviews with meta-analysis of the effects of health, social, behavioural and educational interventions (25). Methods for all studies were pre-specified in the same protocol (25).

Identification and selection of articles
We included a random sample of systematic reviews with meta-analysis of the effects of a health, social, behavioural or educational intervention in our sample (see S1 Appendix for eligibility criteria). To be considered a “systematic review”, authors needed to have, at a minimum, clearly stated their review objective(s) or question(s); reported the source(s) (e.g. bibliographic databases) used to identify studies meeting the eligibility criteria; and reported conducting an assessment of the validity of the findings of the included studies, for example via an assessment of risk of bias or methodological quality. We did not exclude systematic reviews providing limited detail about the methods used. We only included systematic reviews that presented results for at least one pairwise meta-analysis of aggregate data. Systematic reviews with network meta-analyses were eligible if they included at least one direct (i.e. pairwise) comparison that fulfilled the above-mentioned criteria. Systematic reviews with only meta-analyses of individual participant data were excluded. Furthermore, only reviews written in English were included.

Using search strategies created by an information specialist (SM), we systematically searched PubMed, Science Citation Index (SCI) and Social Sciences Citation Index (SSCI) via Web of Science, Scopus via Elsevier and Education Collection via ProQuest for systematic reviews indexed from November 2nd to December 2nd, 2020. The last search was conducted on December 3rd, 2020. An example of the search strategy for PubMed was: (meta-analysis[PT] OR meta-analysis[TI] OR systematic[sb]) AND 2020/11/02:2020/12/02[EDAT]. Search strategies for all databases are available in S2 Appendix.

We used Endnote v9.3.3 for automatic deduplication of records, then randomly sorted unique records in Microsoft Excel using the RAND() function, and imported the first 2,000 records yielded from the search into Covidence (26) for screening. Two authors (MJP and either PN or RK) independently screened the titles and abstracts of the 2,000 records against the eligibility criteria. We retrieved the full text of all records deemed potentially eligible, and two authors (PN and either MJP or RK) independently evaluated them in random order against the eligibility criteria until we reached our target sample size of 300 systematic reviews. Any disagreement at each stage of screening was resolved via discussion or adjudication by the senior reviewer (MJP). A sample of 300 systematic reviews allowed us to estimate the percentage of reviews reporting a particular practice within a maximum Wald margin of error of 6%, assuming a prevalence of 50%; for a prevalence of less (or greater) than 50%, the margin of error will be smaller.

Data collection

Two authors (PN and either MJP, RK or ZA) collected data independently and in duplicate from all of the 300
systematic reviews using a standardised form created in REDCap v10.6.12, hosted at Monash University (27). Any disagreement in the data collected was resolved via discussion or adjudication by the senior reviewer (MJP). Prior to data collection, a pilot test of the data collection form was performed on a random sample of 10 systematic reviews in order to discuss any discrepancies and adjust the form as necessary. The full data collection form (S3 Appendix) includes a subset of items captured by Page et al. in their previous evaluations of completeness of reporting (9,10), along with additional items to capture some issues not previously examined. The wording of items in the data collection form was matched to that used in previous evaluations (9,10) to facilitate comparison.

The form consisted of three sections. The first section captured general characteristics of the review (e.g. journal name, funding source, conflicts of interest, type of intervention investigated). The country of the corresponding author were extracted using R code adapted from the easyPubMed package v2.13 (28,29). The interventions were classified as health, behavioural, social or educational interventions (see definitions in S3 Appendix).

The second section consisted of items characterising completeness of reporting and types of review materials being shared. For example, we recorded whether a full search strategy (i.e. including Boolean logic operators such as ‘AND’, ‘OR’, ‘NOT’ etc.) was described for each electronic database searched; whether summary statistics and effect estimates for each study included in the index meta-analysis (defined as the first meta-analysis whose results were mentioned in the Abstract, or if not applicable, the Results section) were reported; and whether data files and analytic code underlying the meta-analyses reported were publicly available and how to access them. To facilitate our analysis of the impact of reporting guidelines on completeness of reporting, we also recorded whether the authors self-reported using a reporting guideline, defined as any document specifying essential items to report in a systematic review (e.g. PRISMA, MECIR or MECCIR standards, etc.)

The final section captured the data sharing policy of the journal where the article was published. A data sharing policy refers to the journal’s requirements and expectations regarding public sharing of data and code used in the review. We examined each journal’s instructions to authors and submission guidelines to capture whether the journal has a mandatory requirement for authors to include a Data Availability Statement, or to share all data and code used in the review, or both (30). These requirements correspond to level I-II of the Transparency and Openness Promotion Guidelines for data transparency (31). We also recorded whether the study was published in an evidence synthesis journal, defined as a journal that published exclusively systematic reviews and their protocols (e.g. Cochrane Database of Systematic Reviews, The Campbell Library, JBI Evidence...
Synthesis or Obesity Reviews). All journal policy information was sought in August 2021.

We collected data from the main report of the systematic review, any supplementary file provided on the journal server or any cited repository, as well as the review protocol if the authors specified that the relevant information was contained therein. In the event of discrepancies between the protocol and the main report, we gave preference to data from the main report.

Data analysis

We summarised general and reporting characteristics of the included systematic reviews using descriptive statistics (e.g. frequency and percentage for categorical items, median and interquartile range for continuous items). We calculated risk ratios to quantify differences in the percentage of reviews meeting indicators of ‘completeness of reporting’ and ‘sharing of review materials’ between the following groups:

(a) reviews published in an evidence synthesis journal versus published elsewhere;

(b) reviews of health interventions published in 2020 versus a previously examined random sample of 110 systematic reviews of health interventions indexed in MEDLINE in February 2014, for which similar items were captured (9,10);

(c) reviews reporting use of a reporting guideline (e.g. PRISMA) versus not reporting use;

(d) reviews published in journals with versus without a data-sharing policy;

(e) reviews published in journals with versus without a policy that mandates either data sharing or declaration of data availability, irrespective of whether the policy applies universally for all studies or specifically for systematic reviews.

Risk ratios (RR) and Wald-type normal 95% confidence intervals (CI) were calculated using the epitool package v0.5-10.1 (R v4.0.3) (29). When the numerators were small (<5) in either group, or the outcome was very rare (<5%) in either group, we instead used penalised likelihood logistic regression (implemented via the logistf package v1.24 in R (32)). Penalised likelihood logistic regression has been shown to improve estimation of the risk ratio and its confidence interval for rare events or unbalanced samples (33,34). The odds ratios from these models can be interpreted as risk ratios when the events are rare in both groups (35). The RRIs and their 95% CIs were displayed using forest plots (implemented via the forestplot package v1.10.1 in R (36)). We define the equivalence range for all comparisons as 0.9 to 1.1 – any RR less than 0.9 or more than 1.1 is deemed as an important difference.
We conducted two post-hoc sensitivity analyses, the first by excluding Cochrane reviews because they were subjected to strict editorial processes to ensure adherence to methodological conduct and reporting standards, and the second by excluding reviews on COVID-19 due to concerns about short publication turnarounds, which could have an impact on reporting quality (37).

RESULTS

Results of the search

Our search retrieved 8,208 records. Out of the first 2,000 randomly sorted titles and abstracts that were screened, we considered 603 as potentially eligible and retrieved the full text for screening. We only needed to screen the first 436 randomly sorted full text reports to reach our target sample size of 300. The full search process was outlined in Fig. 1.

Fig. 1. PRISMA 2020 flow diagram of identification, screening and inclusion of systematic reviews

General characteristics of systematic reviews

Among the 2020 sample, half of the systematic reviews (n=300, 50%) were led by authors based in three countries – China (32%), the United States (10%) and United Kingdom (8%) (S4 Appendix). The reviews included a median of 12 studies (IQR 8-21), with 6 studies included in the index meta-analysis (IQR 4-10).

Most reviews (n=215, 72%) included a financial disclosure statement, of which 97 (32%) declared no funding. Most review authors (n=251, 84%) declared having no conflict of interest. Common softwares used for meta-analysis were Review Manager (n=189, 63%), Stata (n=73, 24%) and R (n=33, 11%).

The included reviews covered a wide range of topics. In nearly all reviews (n=294, 98%), the intervention was classified as a health intervention, and in 37 (12%) as a behavioural, social or educational intervention in 37 (12%) reviews (some reviews examined both types of interventions). Almost two-thirds of the reviews (n=198, 66%) examined the effects of non-pharmacological interventions. Out of 24 ICD-11 categories of diseases and conditions, our sample of reviews captured 23 categories. The top four categories (endocrine, nutritional or metabolic diseases, diseases of the digestive system, the musculoskeletal system, and the circulatory system) accounted for 46% of all systematic reviews.

The included systematic reviews were published across 224 journals. Five journals (accounting for 5% of all systematic reviews) specialised in evidence synthesis; 141 journals (accounting for 66% of all systematic
reviews) outline a data-sharing policy in the instruction page for authors (S5 Appendix).

The general characteristics of the 2014 sample have been described elsewhere (10). In brief, the 2014 sample consisted of 110 systematic reviews indexed in MEDLINE in February 2014, and was similar to the 2020 sample in many aspects, such as the sample size of each review (median=13 studies, IQR 7-23), size of the index meta-analysis (median=6 studies, IQR 3-11) and the prevalence of non-pharmacological reviews (n=55, 50%). Similar to the 2020 sample, the reviews in 2014 were published in a wide range of journals (n=63), addressed several clinical topics (19 ICD-10 categories) and were predominantly led by authors from China, the UK and Canada (n=55 combined, 50%).

Completeness of reporting of reviews and sharing of review materials in systematic reviews from 2020

Of the items we examined, the most frequently reported included declaration of review authors’ conflicts of interest (n=281, 94%), each of the components of the PICOS framework in the eligibility criteria (89-99%), meta-analysis model used (98%) and the effect estimates, together with the measures of precision, for each study included in the index meta-analysis (96%) (S4 Appendix).

A large number of items were reported in less than 50% of reviews. These include a registration record (38%) or protocol (4%) for the review, the interfaces used to search databases (e.g. Ovid, EBSCOhost) (37%), exact start and end dates of the search range (45%), search strategy for sources that are not bibliographic databases (17%), number of records retrieved for each database (42%), citation for at least one excluded article (22%), methods of data preparation (data conversion, calculation of missing statistics, etc.) (34%) and the heterogeneity variance estimator used for meta-analysis (21%).

In terms of sharing review materials, 20 systematic reviews (7%) made data files or analytic code underlying the meta-analysis publicly available, which included two reviews (1%) that shared analytic code. All of these reviews shared these data via supplementary files; two reviews additionally hosted data and analytic code in a public repository. The most commonly shared materials were data files used in analyses, such as RevMan (.rm5) files (n=12/20).

Changing patterns of reporting between 2014-2020

We compared 294 systematic reviews of health interventions from our present 2020 sample with 110 reviews in the 2014 sample. Compared to the 2014 reviews, systematic reviews indexed in 2020 more frequently cited a reporting guideline to guide their reporting (RR=2.8, 95% CI 2.1 to 3.8). In addition, systematic reviews in 2020 were more likely to report a full search strategy for at least one database (RR=1.3, 95% CI 1.1 to 1.6),
total number of records retrieved (RR=1.2, 95% CI 1.1 to 1.3) and data preparation methods (RR=2.2, 95% CI 1.4 to 3.5). Systematic reviews in 2020 also had a lower rate of sharing meta-analytic data or materials than those in 2014 (RR=0.2, 95% CI 0.1 to 0.4). For other reporting items, the estimated differences between the 2020 and 2014 were uncertain as the 95% CIs included the equivalence range (Fig. 2A-B).

Given the notable discrepancy in the number of Cochrane reviews between the 2014 and 2020 samples, we conducted a sensitivity analysis in which we excluded Cochrane reviews from both samples (8 reviews from 2020 sample and 32 reviews from 2014 sample). Three main changes were observed compared to the original analysis. Firstly, existing differences became more pronounced, as observed for citing a reporting guideline (RR=2.0, 95% CI 1.5 to 2.6), full search strategy for at least one database (RR=2.0, 95% CI 1.5 to 2.7) and data preparation method(s) (RR=2.1, 95% CI 1.2 to 3.6). Secondly, uncertainty was eliminated for some items, whose 95% CI now exceeded the equivalence range: non-Cochrane reviews in 2020 were more likely to report a protocol registration record (RR=4.5, 95% CI 2.2 to 9.2), funding source (RR=1.3, 95% CI 1.1 to 1.6) and dates of coverage for the databases (RR=1.3, 95% CI 1.1 to 1.6). Lastly, after excluding Cochrane reviews, the rate of sharing review data and code of reviews in 2020 became higher than those of 2014, although the association was uncertain (RR=2.2, 95% CI 0.4 to 12.0).

Fig. 2A. Frequency of reporting items between systematic reviews indexed in 2014 and 2020

Fig. 2B. Frequency of reporting items between systematic reviews indexed in 2014 and 2020 (ctn’d)

Impact of reporting guidelines on patterns of reporting in systematic reviews from 2020

Of the 300 reviews, 245 (82%) reported using a reporting guideline. Systematic reviews using a reporting guideline appeared to report more frequently a published or registered protocol (RR=1.3, 95% CI 0.9 to 2.0), methods used in study screening (RR=1.2, 95% CI 1.0 to 1.4) and number of records retrieved for each database (RR=1.4, 95% CI 0.9 to 2.2). The confidence intervals included and extended beyond the equivalence range, suggesting that there could be important differences.

For other items, however, evidence that reporting guidelines improved reporting was inconclusive, either because the confidence interval extended beyond the equivalence range in both directions, or the upper limits did not exceed 1.1 We conducted a sensitivity analysis by excluding systematic reviews on COVID-19 (n=6) from both groups, but no notable changes were observed (Fig. 3A-B).
Fig. 3A. Relationship between citation of a reporting guideline and reported items

Fig. 3B. Relationship between citation of a reporting guideline and reported items (ctn’d)

Impact of journals on patterns of reporting in systematic reviews from 2020

Only 14 systematic reviews from 2020 were published in specialist evidence synthesis journals, including eight Cochrane reviews. Compared to 286 systematic reviews from 2020 published in non-specialist evidence synthesis journals, these reviews were more likely to report a protocol (RR=1.8, 95% CI 1.2 to 2.5), a full search strategy for at least one database (RR=1.3, 95% CI 1.1 to 1.6), details of the screening process (RR=1.3, 95% CI 1.2 to 1.4) and ROB assessment processes (RR=1.4, 95% CI 1.1 to 1.8), ROB results for individual studies (RR=1.3, 95% CI 1.2 to 1.4) and data preparation methods (RR=2.2, 95% CI 1.5 to 3.3) (Fig. 4). In addition, these systematic reviews performed better in reporting items related to the search methods such as the interface used to search bibliographic databases (RR=2.2, 95% CI 1.6 to 3.0), search strategy for non-database sources (trial registers, Google Scholar, etc.) (RR=6.0, 95% CI 3.4 to 10.5), date of last search (RR=3.7, 95% CI 2.6 to 5.2) as well as extra details of search results such as citation for at least one excluded study (RR=3.3, 95% CI 2.1 to 5.2) and the number of retrieved records from each database (RR=1.8, 95% CI 1.2 to 2.5). They were also more likely to share relevant data and materials (RR=28.7, 95% CI 8.6 to 95.3).

Fig. 4. Relationship between journal type and reported items

A journal’s mandatory requirement for data sharing or declaration of data availability was associated with a larger percentage of data or materials being shared with the published systematic review (RR=8.1, 95% CI 3.1 to 21.5). A larger percentage was also observed for these specific types of material: unprocessed data collected from included studies (RR=3.9, 95% CI 1.1 to 14.1) and data files used in analysis (RR=14.6, 95% CI 3.6 to 60.0). Results for other types of materials, such as files showing data conversions, analytic code and citations of all screened studies, are inconclusive due to small sample size (Fig. 5). Similar findings were observed when comparing between journals with any data-sharing policy (mandatory or not) and journals without one (S1 Fig.).

Fig. 5. Relationship between journal’s data sharing requirements and reported items

DISCUSSION
Findings from our examination of 300 randomly selected systematic reviews indexed in 2020 indicate infrequent reporting of certain items, particularly the availability of a review protocol or registration entry, search strategy for all databases searched, methods of handling data (e.g. data conversions), and sharing of meta-analytic data. This aligns with previous evaluations (2,4,7,38). The scarcity of data and code availability is also echoed by other studies (6,8).

On reporting of systematic reviews

There are two possible reasons why we observed few notable improvements in reporting between 2014 and 2020. Many items were already reported frequently in 2014 (e.g. reporting of competing interests, eligibility criteria, meta-analytic models, effect estimate for each study), leaving little opportunity for improvement. This is reflected by the observation that the greatest improvements were found in items that had been reported by less than 50% of the systematic reviews in 2014 (Fig. 2). Furthermore, Cochrane reviews made up a smaller proportion in our 2020 sample (n=8, 3%) compared to 2014 (n=32, 29%), suggesting a rise in popularity of systematic reviews being produced outside of the auspices of an organisation with editorial processes dedicated to ensuring complete reporting. Our sensitivity analysis, which excluded Cochrane reviews, yielded larger estimates of differences between 2014 and 2020 reviews, suggesting that the improvements between 2014 and 2020 are driven by changes in non-Cochrane reviews. This is highly possible given that Cochrane reviews, owing to their stringent reporting requirements, tend to have less room for improvement than non-Cochrane reviews.

More systematic reviews in 2020 than 2014 cited a reporting guideline yet citing a reporting guideline was not clearly associated with more complete reporting for most items evaluated. This challenges the assumption that referencing a reporting guideline means that the authors have consulted the guideline while reporting the review. In reality, however, several factors could have affected the authors’ decision to report (or not to report) certain items. Firstly, authors might not recognise that some items consist of multiple elements that need to be reported in details. For example, we observed among our sample a tendency to report the reviewer arrangement only for the study selection stage, not the subsequent data collection or ROB assessment stages. Secondly, inexperienced reviewers might only consult a reporting guideline at the point of writing up their review, only realising then that they have not recorded all details of the review processes (e.g. number of records excluded, data conversions performed). Thirdly, authors might not be aware of all statistical options available within meta-analytic softwares, and might incorrectly assume that readers can deduce the meta-analytic methods used simply from the name of the software and packages used.
In view of these findings, we recommend interviews be conducted with review authors to explore their understanding of reporting guidelines and identify challenges in reporting of reviews. There are certainly needs for development of tools that facilitate the reporting process. For example, a computer-based tool to break down the PRISMA reporting recommendations into digestible steps would be useful for first-time reviewers. Another example would be a guide specifying which details of the meta-analytic model to report on a forest plot, and how to accomplish that in various meta-analytic softwares. Lastly, this raises the discussion on whether a universal mechanism should be applied during peer review to verify that authors adhered to all items of the reporting guideline they cited, and how to effectively enforce this.

On data sharing in systematic reviews

Our study demonstrates that presence of a data sharing policy by the publishing journal had positive impacts on the frequency of sharing certain types of data necessary for replicating systematic reviews. The overall rate of data and code sharing, however, leaves much to be desired. While two-third of our reviews (66%) were subjected to some form of data policy by the journal in which their review was published, less than a third (32%) complied to the policy by including a Data Availability Statement or actually sharing any data files; only 7% shared at least one type of file. A meta-research study featuring a similar percentage of journals with open data policies (70%) found similar results (9% shared data or code, and 29% either shared data or included a Data Availability Statement (or both)) (39).

The low rate of data and code sharing can be attributed to several factors. Firstly, the larger number of non-Cochrane reviews in 2020 explains the less frequent availability of data and materials used for analysis in this later sample (compared to 2014), as authors of Cochrane reviews routinely share RevMan files containing meta-analysis data, which were rarely made available for other reviews. Secondly, there are motivational and technical barriers to data sharing that cannot be sufficiently addressed by data sharing policies (40). For example, while journals can encourage data sharing and suggest available options for data upload, reviewers may lack the technical expertise and time to prepare and annotate their files for public view. Moreover, concerns about data ownership, lack of incentives and fear of criticism can impede motivations to share review data. Some studies have explored these barriers in general academia (40,41), but we are uncertain whether researchers in evidence synthesis will face all of these barriers or even unidentified barriers unique to systematic reviews and meta-analyses. Future studies in the REPRISE project will explore systematic reviewers’ perspectives on barriers and incentives to reporting and data-sharing in order to address these questions (25).
Lastly, our findings also highlight the important role of supplementary files or public repositories for data sharing in systematic reviews. Supplementary files and public repositories enable authors to share data and materials necessary to validate the review process while keeping the main article concise and relevant to lay readers. For example, authors can outline in a separate file the database-specific search strategy, number of records retrieved and date of last search for each database consulted. We should endeavour to change the notion that this information is less important and make sharing of review data and materials via supplementary files or public repositories a standard practice for systematic reviews. In order to achieve this, concerted efforts are needed to standardise data structures, establish fair use guidelines and create a supportive environment for collaboration in the systematic review community.

Strengths and limitations

Although several other meta-research studies have explored completeness of reporting and the frequency of data sharing in systematic reviews (2–5,7,8), our study offers several methodological advantages. Our sample was obtained from several databases, and was not limited to a specific topic or journal. Our study captured not only the frequency of data sharing, but also the type of systematic review data, code and materials being shared. All stages of study screening and data collection were conducted by two authors independently, which minimised random and systematic errors and increased accuracy. Lastly, we directly compared our 2020 sample with a 2014 sample that was retrieved and evaluated using the same criteria (9,10), thus minimising the impact of methodological variations on temporal trends.

Nonetheless, our study was not without limitations. As a cross-sectional study, our results should be viewed as generating hypotheses rather than proving a causal association (e.g. between data sharing policies and actual sharing of systematic review data). Some items were reported by fewer than 50 reviews, such as sharing of data & materials, heterogeneity variance estimator used, and a search strategy for non-bibliographic sources. This leads to uncertainty in interpreting their risk ratios, as the 95% confidence intervals were either too wide or crossed the null value (or both). Future studies should be conducted specifically for systematic reviews reporting these items to ensure adequate power. Despite intending to include systematic reviews of the effects of health, social, behavioural and educational interventions, the vast majority of reviews evaluated the effects of a health intervention. Therefore, our findings are less generalizable to systematic reviews of the other types of interventions. Lastly, our findings do not necessarily generalise to systematic reviews indexed in databases other than the ones we searched or to systematic reviews written in languages other than English.
CONCLUSION

Improvements in completeness of reporting of systematic reviews were observed over time for a few items, especially for items that were infrequently reported in 2014. There was also an increase in self-reported use of a reporting guideline; however, citing a reporting guideline was not necessarily associated with improved reporting. Sharing of systematic review data, analytic code and other materials was infrequent. Data sharing policies could be an effective strategy to promote sharing of systematic review data and materials.

Acknowledgement: Not applicable

Funding: This research is funded by an Australian Research Council Discovery Early Career Researcher Award (DE200101618), held by MJP. JEM is supported by a National Health and Medical Research Council Career Development Fellowship (APP1143429). DM is supported in part by a University Research Chair, University of Ottawa. NRH is funded by an Alexander von Humboldt Experienced Researcher Fellowship. DGH is supported by an Australian Commonwealth Government Research Training Program Scholarship. RK is supported by a Monash Graduate Scholarship and a Monash International Tuition Scholarship. The funders had no role in the study design, decision to publish, or preparation of the manuscript.

Data availability statement: All datasets and analytic code can be found on the Open Science Framework (DOI: 10.17605/OSF.IO/JSP9T).

Author contributions

PYN: Data Curation, Formal Analysis, Investigation, Methodology, Writing – Original Draft Preparation
RK, ZA: Investigation, Writing – Review & Editing
JEM: Conceptualization, Supervision, Validation, Writing – Review & Editing
SEB, NRH, DGH, SK, SM, DM, SN, DN, PT, VAW: Writing – Review & Editing
MJP: Conceptualization, Funding Acquisition, Methodology, Supervision, Writing – Review & Editing
REFERENCE

18. Wolfenden L, Grimshaw J, Williams CM, Yoong SL. Time to consider sharing data extracted from trials included in systematic reviews. Syst Rev [Internet]. 2016 Nov 3 [cited 2021 Dec 26];5(1). Available from: /pmc/articles/PMC5096003/

Supporting Information

S1 Appendix: Eligibility criteria for study inclusion
S2 Appendix: Search strategy
S3 Appendix: Data extraction form
S4 Appendix: Descriptive characteristics of systematic reviews indexed in 2020
S5 Appendix: List of journals and their policies
S6 Appendix: Comparison between reviews of health interventions in 2014 vs 2020
S1 Fig: Relationship between journal's presence of a data sharing policy and reported items
Records identified (n=8,208)
- PubMed (n=3,158)
- SCI and SSCI via WoS (n=3,020)
- Scopus via Elsevier (n=2,000)
- Education Collection via ProQuest (n=30)

Records removed before screening (n=1,916)
- Duplicate records removed (n=1,916)
- Records marked as ineligible by automation tools (n=0)
- Records removed for other reasons (n=0)

Randomly sorted records screened* (n=2,000)

Reports sought for retrieval (n=603)

Randomly sorted reports assessed for eligibility** (n=436)

Reports excluded (n=136)
- No pairwise meta-analysis of aggregate data (n=67)
- No between-group comparison of the effects of a health, social, behavioural or educational intervention applied to humans (n=37)
- No assessment of the validity of the findings of the included studies (n=19)
- Not written in English (n=10)
- No list of databases or other sources used to identify studies (n=3)

Systematic reviews included (n=300)

*There were 6,292 unique records after duplicates were removed, but we only needed to screen the first 2,000 randomly sorted records to reach our target sample size.

**We only needed to screen the first 436 of the 603 full text reports retrieved to reach our target sample size.
Figure 2. Frequency of reporting items between systematic reviews published in 2014 and 2020

(A) Reported item

<table>
<thead>
<tr>
<th>Reported item</th>
<th>Equivalence range</th>
<th>2020 (A)</th>
<th>2014 (B)</th>
<th>Risk ratio (95% CI)</th>
<th>Percentage of reviews reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citation of a reporting guideline</td>
<td></td>
<td>242/294 (82)</td>
<td>32/110 (29)</td>
<td>2.8 (2.1, 3.8)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Funding source</td>
<td></td>
<td>234/286 (82)</td>
<td>32/78 (41)</td>
<td>2.0 (1.5, 2.6)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Conflict of interest</td>
<td></td>
<td>210/294 (71)</td>
<td>72/110 (65)</td>
<td>1.1 (0.9, 1.3)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Protocol / registration record</td>
<td></td>
<td>204/286 (71)</td>
<td>42/78 (54)</td>
<td>1.3 (1.1, 1.6)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Eligibility criteria - Outcomes</td>
<td></td>
<td>276/294 (94)</td>
<td>103/110 (94)</td>
<td>1.0 (0.9, 1.1)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Eligibility criteria - Study design</td>
<td></td>
<td>268/286 (94)</td>
<td>71/78 (91)</td>
<td>1.0 (1.0, 1.1)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Dates of coverage of databases</td>
<td></td>
<td>123/294 (42)</td>
<td>38/110 (35)</td>
<td>1.2 (0.9, 1.6)</td>
<td>(A) (B)</td>
</tr>
<tr>
<td>Search strategy - Databases</td>
<td></td>
<td>115/286 (40)</td>
<td>7/78 (9)</td>
<td>4.5 (2.2, 9.2)</td>
<td>(A) (B)</td>
</tr>
</tbody>
</table>

(B) Percentage of reviews reporting

<table>
<thead>
<tr>
<th>Percentage of reviews reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>>80</td>
</tr>
</tbody>
</table>

Legend

- Original analysis
- Sensitivity analysis
- (excluding Cochrane reviews)

Figure
Figure 2. Frequency of reporting items between systematic reviews published in 2014 and 2020

<table>
<thead>
<tr>
<th>Reported item</th>
<th>Equivalence range</th>
<th>2020 (A)</th>
<th>2014 (B)</th>
<th>Risk ratio (95% CI)</th>
<th>Percentage of reviews reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening method</td>
<td></td>
<td>228/294 (78)</td>
<td>85/110 (77)</td>
<td>1.0 (0.9, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td>Data collection method</td>
<td></td>
<td>220/286 (77)</td>
<td>53/78 (68)</td>
<td>1.1 (1.0, 1.3)</td>
<td>(B)</td>
</tr>
<tr>
<td>ROB assessment method</td>
<td></td>
<td>227/294 (77)</td>
<td>84/110 (76)</td>
<td>1.0 (0.9, 1.1)</td>
<td>(B)</td>
</tr>
<tr>
<td>ROB assessment method</td>
<td></td>
<td>219/286 (77)</td>
<td>53/78 (68)</td>
<td>1.1 (1.0, 1.3)</td>
<td>(B)</td>
</tr>
<tr>
<td>Total records retrieved</td>
<td></td>
<td>181/294 (62)</td>
<td>63/95 (66)</td>
<td>0.9 (0.8, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td>Total records retrieved</td>
<td></td>
<td>173/286 (60)</td>
<td>35/63 (56)</td>
<td>1.1 (0.9, 1.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>Meta-analysis model (e.g. fixed-effects, random-effects)</td>
<td></td>
<td>284/294 (98)</td>
<td>106/110 (96)</td>
<td>1.0 (1.0, 1.1)</td>
<td>(B)</td>
</tr>
<tr>
<td>Effect estimate and measure of precision per study</td>
<td></td>
<td>281/286 (98)</td>
<td>74/78 (95)</td>
<td>1.0 (1.0, 1.1)</td>
<td>(B)</td>
</tr>
<tr>
<td>Summary statistics per study</td>
<td></td>
<td>211/294 (72)</td>
<td>79/110 (72)</td>
<td>1.0 (0.9, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td>Summary statistics per study</td>
<td></td>
<td>203/286 (71)</td>
<td>50/78 (64)</td>
<td>1.1 (0.9, 1.3)</td>
<td>(B)</td>
</tr>
<tr>
<td>Data preparation method</td>
<td></td>
<td>282/294 (96)</td>
<td>101/110 (92)</td>
<td>1.0 (1.0, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td>Data preparation method</td>
<td></td>
<td>274/286 (96)</td>
<td>69/78 (88)</td>
<td>1.1 (1.0, 1.2)</td>
<td>(B)</td>
</tr>
<tr>
<td>Sharing of data and materials</td>
<td></td>
<td>100/294 (34)</td>
<td>17/110 (15)</td>
<td>2.2 (1.4, 3.5)</td>
<td>(A)</td>
</tr>
<tr>
<td>Sharing of data and materials</td>
<td></td>
<td>92/286 (32)</td>
<td>12/78 (15)</td>
<td>2.1 (1.2, 3.6)</td>
<td>(A)</td>
</tr>
<tr>
<td>Sharing of data and materials</td>
<td></td>
<td>19/294 (6)</td>
<td>33/110 (30)</td>
<td>0.2 (0.1, 0.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>Sharing of data and materials</td>
<td></td>
<td>11/286 (4)</td>
<td>1/78 (1)</td>
<td>2.2 (0.4, 12.0)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Legend
- Original analysis
- Sensitivity analysis
- <50%
- 50-80%
- >80%
- (excluding Cochrane reviews)
Figure 3. Relationship between citation of a reporting guideline and reported items

- **Equivalence range**
- **Reported item**
 - Funding source
 - Conflict of interest
 - Protocol / registration record
 - Eligibility criteria - Participants
 - Eligibility criteria - Intervention
 - Eligibility criteria - Comparator
 - Eligibility criteria - Outcomes
 - Eligibility criteria - Study design
 - Interface used to search databases
 - Dates of coverage of databases
 - Date of last search
 - Search strategy - Databases
 - Search strategy - Trial register / other sources

- **No. of studies (%)**
 - Guideline (A)
 - No guideline (B)
 - Risk ratio (95% CI)
 - Percentage of reviews reporting

- **Legend**
 - Original analysis
 - Sensitivity analysis (excluding reviews of COVID-19)
 - >50%
 - 50-80%
 - <50%
Figure 3. Relationship between citation of a reporting guideline and reported items

<table>
<thead>
<tr>
<th>Reported item</th>
<th>Equivalence range</th>
<th>No. of studies (%)</th>
<th>Guideline (A)</th>
<th>No guideline (B)</th>
<th>Risk ratio (95% CI)</th>
<th>Percentage of reviews reporting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening method</td>
<td></td>
<td>233/300 (78)</td>
<td>195/245 (80)</td>
<td>38/55 (69)</td>
<td>1.2 (1.0, 1.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>Data collection method</td>
<td></td>
<td>228/293 (78)</td>
<td>191/239 (80)</td>
<td>37/54 (69)</td>
<td>1.2 (1.0, 1.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>ROB assessment method</td>
<td></td>
<td>222/300 (78)</td>
<td>182/245 (74)</td>
<td>47/55 (85)</td>
<td>0.9 (0.8, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td>ROB assessment per study</td>
<td></td>
<td>185/300 (62)</td>
<td>154/245 (63)</td>
<td>31/55 (56)</td>
<td>1.1 (0.9, 1.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>Total records retrieved</td>
<td></td>
<td>178/293 (61)</td>
<td>148/239 (62)</td>
<td>30/54 (56)</td>
<td>1.1 (0.9, 1.4)</td>
<td>(A)</td>
</tr>
<tr>
<td>Records retrieved per database</td>
<td></td>
<td>231/300 (77)</td>
<td>190/245 (78)</td>
<td>41/55 (75)</td>
<td>1.0 (0.9, 1.2)</td>
<td>(A)</td>
</tr>
<tr>
<td>Citing at least 1 excluded articles</td>
<td></td>
<td>224/293 (78)</td>
<td>184/239 (77)</td>
<td>40/54 (74)</td>
<td>1.0 (0.9, 1.2)</td>
<td>(A)</td>
</tr>
<tr>
<td>Data preparation methods</td>
<td></td>
<td>300/300 (100)</td>
<td>245/245 (100)</td>
<td>55/55 (100)</td>
<td>1.0 (1.0, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td>Meta-analysis model (e.g. fixed-effects, random-effects)</td>
<td></td>
<td>293/293 (100)</td>
<td>239/239 (100)</td>
<td>54/54 (100)</td>
<td>1.0 (1.0, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td>Meta-analysis method (e.g. Mantel-Haenszel, inverse variance)</td>
<td></td>
<td>126/300 (42)</td>
<td>109/245 (44)</td>
<td>17/55 (31)</td>
<td>1.4 (0.9, 2.2)</td>
<td>(A)</td>
</tr>
<tr>
<td>Heterogeneity variance estimator (e.g. DerSimonian Laird)</td>
<td></td>
<td>123/293 (42)</td>
<td>106/239 (44)</td>
<td>17/54 (31)</td>
<td>1.4 (0.9, 2.1)</td>
<td>(A)</td>
</tr>
<tr>
<td>Summary statistics per study</td>
<td></td>
<td>65/300 (22)</td>
<td>56/245 (23)</td>
<td>9/55 (16)</td>
<td>1.4 (0.7, 2.6)</td>
<td>(A)</td>
</tr>
<tr>
<td>Effect estimate and measure of precision per study</td>
<td></td>
<td>62/293 (21)</td>
<td>54/239 (23)</td>
<td>8/54 (15)</td>
<td>1.5 (0.8, 3.0)</td>
<td>(A)</td>
</tr>
<tr>
<td>Sharing of data and materials</td>
<td></td>
<td>101/300 (34)</td>
<td>85/245 (35)</td>
<td>16/55 (29)</td>
<td>1.2 (0.8, 1.9)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100/293 (34)</td>
<td>84/239 (35)</td>
<td>16/54 (30)</td>
<td>1.2 (0.8, 1.9)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>294/300 (98)</td>
<td>240/245 (98)</td>
<td>54/55 (98)</td>
<td>1.0 (1.0, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>287/293 (98)</td>
<td>234/239 (98)</td>
<td>53/54 (98)</td>
<td>1.0 (1.0, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>218/300 (73)</td>
<td>179/245 (73)</td>
<td>39/55 (71)</td>
<td>1.0 (0.9, 1.2)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213/293 (73)</td>
<td>174/239 (73)</td>
<td>39/54 (72)</td>
<td>1.0 (0.8, 1.2)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/235 (21)</td>
<td>45/197 (22)</td>
<td>5/36 (13)</td>
<td>1.8 (0.7, 4.8)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/229 (22)</td>
<td>45/192 (23)</td>
<td>5/37 (14)</td>
<td>1.8 (0.7, 4.8)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215/300 (72)</td>
<td>174/245 (71)</td>
<td>41/55 (75)</td>
<td>1.0 (0.8, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>208/293 (71)</td>
<td>168/239 (70)</td>
<td>40/54 (74)</td>
<td>0.9 (0.8, 1.1)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288/300 (96)</td>
<td>234/245 (96)</td>
<td>54/55 (98)</td>
<td>1.0 (0.9, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>281/293 (96)</td>
<td>226/239 (95)</td>
<td>53/54 (98)</td>
<td>1.0 (0.9, 1.0)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/300 (7)</td>
<td>18/245 (7)</td>
<td>2/55 (4)</td>
<td>1.7 (0.4, 6.8)</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20/293 (7)</td>
<td>18/239 (8)</td>
<td>2/54 (4)</td>
<td>1.7 (0.4, 6.8)</td>
<td>(A)</td>
</tr>
</tbody>
</table>

Legend: [-] Original analysis [-] Sensitivity analysis (excluding reviews of COVID-19) [>][<] 50%
Figure
Figure

<table>
<thead>
<tr>
<th>Reported item</th>
<th>No. of studies (%)</th>
<th>Equivalence range</th>
<th>Mandatory requirement</th>
<th>No mandatory requirement</th>
<th>Risk ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All search strategies</td>
<td>81/300 (27)</td>
<td></td>
<td>27/74 (36)</td>
<td>54/226 (24)</td>
<td>1.5 (1.0, 2.2)</td>
</tr>
<tr>
<td>Sharing of other data/material</td>
<td>20/300 (7)</td>
<td></td>
<td>14/74 (19)</td>
<td>8/226 (3)</td>
<td>8.1 (3.1, 21.5)</td>
</tr>
<tr>
<td>Unprocessed extracted data</td>
<td>9/300 (3)</td>
<td></td>
<td>5/74 (7)</td>
<td>4/226 (2)</td>
<td>3.9 (1.1, 14.1)</td>
</tr>
<tr>
<td>Data conversions performed</td>
<td>1/300 (0)</td>
<td></td>
<td>1/74 (1)</td>
<td>0/226 (0)</td>
<td>9.2 (0.4, 231.9)</td>
</tr>
<tr>
<td>Data used in analysis</td>
<td>12/300 (4)</td>
<td></td>
<td>10/74 (14)</td>
<td>2/226 (1)</td>
<td>14.6 (3.6, 60.0)</td>
</tr>
<tr>
<td>Analytic code</td>
<td>2/300 (1)</td>
<td></td>
<td>1/74 (1)</td>
<td>1/226 (0)</td>
<td>3.1 (0.3, 30.3)</td>
</tr>
<tr>
<td>Citations of included & excluded studies</td>
<td>2/300 (1)</td>
<td></td>
<td>1/74 (1)</td>
<td>1/226 (0)</td>
<td>3.1 (0.3, 30.3)</td>
</tr>
<tr>
<td>Metadata of shared files</td>
<td>1/300 (0)</td>
<td></td>
<td>1/74 (1)</td>
<td>0/226 (0)</td>
<td>9.2 (0.4, 231.9)</td>
</tr>
</tbody>
</table>

Note: Mandatory requirements refer to a mandatory instruction for sharing of data and materials, or in the absence of such data, a Data Availability Statement stating why data was not shared and whether data is available upon request.