Title page

Full title: Population-level hypertension control rate in India: A systematic review and meta-analysis of community based non-interventional studies, 2001-2020

Authors’ names, academic degrees, and affiliations

Shaffi Fazaludeen Koya MBBS, MPH
Zarin Pilakkadavath MBBS, DNB, MRCGP[INT]
Tom Wilson MBBS, MD
Praseeda Chandran MBBS, MD
Serin Kuriakose, MBBS, DNB
Suni K Akbar MBBS, DNB
Althaf Ali MBBS, MD

1Boston University School of Public Health, Boston, Massachusetts, USA
2Boston University School of Medicine, Boston, Massachusetts, USA
3Department of Community Medicine, Government Medical College Manjeri, Kerala, India
4National Centre for Disease Control, New Delhi, Delhi, India
5KIMS Al-Shifa Specialty Hospital, Perinthalmanna, Kerala, India

Short title: Hypertension control in India- systematic review and meta-analysis

Name, email address, and complete address of corresponding author

Shaffi Fazaludeen Koya MBBS, MPH
715 Albany St, Boston University School of Public Health, Boston, Massachusetts, USA
fmshaffi@bu.edu

Words in main text: 2953

Figures: 3 Tables: 2 Supplement: One file

Key words: Hypertension control, risk factors, systematic review, meta-analysis, determinants

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Population-level hypertension control rate in India: A systematic review and meta-analysis of community based non-interventional studies, 2001-2020

Abstract

Background: Hypertension is a significant contributor to mortality in India. This systematic review and meta-analysis aimed to understand the overall hypertension control rate in India, differences across sex and regions, and changes over time.

Methods: Community-based, non-interventional studies published between 2001 and 2020 were searched in PubMed, Embase, and Web of Science. Modified New Castle-Ottawa scales was used to assess the risk of bias. We conducted a random-effects meta-analysis to provide summary estimates by including 29 studies that had a minimum sample size of 100 each. We also conducted subgroup analysis and meta-regression to explore changes in control rates over years and to explain the heterogeneity.

Results: The systematic review included 170,631 hypertensive patients. The overall control rate was 33.2% (95% CI-27.9,38.6) with substantial heterogeneity, I^2=99.1 % (95% CI-98.9,99.2; p <0.001). Subgroup analysis showed that hypertension control rates did not improve over the years (35.8% in 2011-2020 versus 29.6% in 2001-2010, p=0.23) and did not vary between males and females (34.2% for females and 28.2% for males, p=0.23). Control rates were significantly higher in the south region compared to other regions. Meta-regression model with sex, region, study period, and an interaction
term for region and period of the study explained 76.5% of heterogeneity. Very few studies analyzed relevant factors that are associated with adequate control.

Conclusion: Hypertension is adequately controlled only among one-third of patients in India. India needs more studies at community levels to understand the health system and socioeconomic factors that determine uncontrolled hypertension in India.

PROSPERO registration: CRD42021267973
Introduction

Hypertension is a major modifiable risk factor for cardiovascular diseases (CVD), making it one of the major contributors of premature death and morbidity.1,2 The overall age adjusted prevalence of hypertension has plateaued, but the absolute number has doubled due to an increasing trend in low-middle income countries (LMICs).3 Globally, only 21\% known hypertensive patients had their blood pressure under control.1 The prevalence of hypertension in India as per National Family Health Survey-5 (NFHS) was 23\% in adults aged 15 years and above,4 and is the most important risk factor of death and disability in India.5,6

Pharmacological intervention remains the mainstay of hypertension management, and medication adherence is a cost effective way to reduce mortality and complications.7 Close to 80\% of NCD patients in India seek medical care from the private sector, where there are no mechanisms to actively monitor drug adherence.8 Besides, the high out-of-pocket expenditure and lack of insurance coverage for out-patient services and drugs reduces access to anti-hypertensive medication, increasing the risk of uncontrolled hypertension.9

This study is aimed to systematically review the literature on hypertension control in the community level in India and provide sex- and region- specific pooled estimates of control rates. We also aimed at understanding whether control rate in India has improved after the launch of India’s NCD control program in 2010.
Methods

This systematic review was performed to according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations.10 Institutional review board approval was not required for this study since no patient identifiers were involved. The review is registered with the PROSPERO database (CRD42021267973).

Search strategy

We searched PubMed, Web of Science, and Embase. The search strategy (see Supplement (S1) used a combination of MeSH and non-MeSH terms for ‘hypertension’ and ‘control’. We included Indian studies published between 1 January 2001 and 31 December 2020.

Study eligibility

We included all community-based studies in our review. Qualitative studies, hospital-based studies, interventional trials, commentaries, and reviews were excluded. Studies that used convenient sampling and those that did not provide the number of known cases of hypertension were excluded.

Data extraction
After excluding duplicates, two authors (SFK and ZP) screened all the titles and
abstracts using Rayyan online collaborative systematic review platform(Figure 1).11
Each full text article was read by at least two authors following the inclusion criteria. We
excluded 121 articles due to the following reasons: missing data, wrong article type,
wrong population, wrong period, intervention studies, or full paper not available. Of the
37 articles in the review a subset of 29 articles were included in the meta-analysis.
(Supplement, S2) We excluded eight studies from the meta-analysis with sample size
less than 100.

Two authors reviewed independently and extracted the following relevant information
from each paper: authors, published year, study/data collection year, state,
geographical area covered(rural/urban), sample size (sex-disaggregated), definitions of
hypertension and control, total hypertension cases and percentage (disaggregated
across sex and rural/urban), control rates (number and percentage, disaggregated
numbers and percentages across sex), and reported difference in control rates across
rural/urban, education levels, income status (rich/poor), and antihypertension
medication status. Disagreements between reviewers were sorted out through
discussions and pending discrepancies were resolved by the lead reviewer.

Figure 1: PRISMA chart

Definitions used
In all the studies, authors used the criteria of systolic blood pressure (SBP) less than 140 mmHg and diastolic blood pressure (DBP) less than 90 mmHg to define control as per JNC 7.12

Study quality

We used adapted versions of Newcastle-Ottawa scales13 to assess the study quality on a scale of zero to six, across the following criteria: selection, comparability, completeness, and statistical test. After one of the reviewers scored each paper the lead reviewer reviewed them again to decide on the score and classification. Studies that scored four or more were classified “low risk of bias” and others were classified “high risk of bias”. The median score was four, five studies got a full score of six, and one study received zero. There were 19 “low risk of bias” studies and 18 “high risk of bias” studies. (Figure S3). The detailed method used for scoring and the score for each paper are shown in the supplement (S4).

Statistical analysis

We described the study characteristics as numbers and proportions and reported hypertension control rates in percentages. We also summarized the reported difference in control rates across sex, geography (rural/urban), education levels, income status,
and by antihypertension medication status. Statistically significant differences reported using p-value or confidence intervals were considered. Meta-analysis was conducted using ‘metafor’ and ‘meta’ packages in R software. We assumed a normal distribution and used the untransformed (raw) proportion of patients with hypertension under control as the summary effect size statistic for analysis. Since the studies came from different regions of the country having different population characteristics, we anticipated heterogeneity and therefore decided to use random effect model \textit{a priori}.

We used multiple methods to examine heterogeneity in our data. First, we created forest plot to visually inspect the data. Second, we looked at the total amount of systematic differences in effects across studies calculated as the between-study variance (heterogeneity, measured as τ^2 (tau-squared)) and standard deviation (τ). We used the DerSimonian-Laird estimator14 to calculate the heterogeneity variance (τ^2) and Jackson method15 to calculate its 95% Confidence Intervals (CI) with Knapp-Hartung adjustments.16 Third, we estimated the l^2 statistic (with 95% CIs)17 which is the ratio of observed heterogeneity (between-study variance) and the total observed variance (sum of within-study variance due to sampling error and between-study variance). Finally, we conducted a formal χ^2 test with a Cochran’s Q statistic, to test if all studies share the common effect size.18 All statistical tests were two sided and p-value was fixed at 0.05.

Results

Study characteristics
Table 1 shows the overall features of the studies included in the review. The systematic review includes 37 studies (35 cross-sectional and two cohort studies). The total sample was 870,659 (80% females) including 170,631 hypertensive patients. The mean hypertension prevalence across studies was 35.6% (SD= 14.6) which did not vary between males and females.

Table 1: Characteristics of studies

Sixteen studies (43%) reported data for the period 2001-2010 while the remaining 21 studies had data for the period 2011-2020. Forty one percent studies had data only from rural areas, and five studies (14%) reported a higher prevalence of hypertension in urban areas compared to rural areas. 16 studies (43%) were from southern states in India, most studies (n=34, 92%) had both males and females, and fourteen (38%) studies reported a higher prevalence of hypertension in males.

Reporting of control rates

There were 12 studies (32%) that reported poorer control rates among males than females while only three studies showed females to have a poorer control rate than males. Four studies (11%) reported poorer control rates among rural patients while two studies showed there was no difference in control rate between rural and urban patients. Two studies showed poorer control in the low socioeconomic group. Only one study reported on difference in control rates
based on medication status which showed no difference between the groups. One study showed poorer control in the less educated group while three studies found no difference across educational levels.

Meta-analysis

We calculated the summary effect size as the weighted average of the observed control rates in 29 studies, using the random effects model. The inverse of the total variance of the study was used to weigh each study. The output revealed that τ^2 is 0.02 (95% CI=0.01, 0.05), $\tau= 12.7\%$ (95% CI= 9.9,22.2), I^2 is 99.1% (95% CI=98.9,99.2), and the Q-statistic (df=28) is 3003.9 ($p<0.0001$), all of which suggested high heterogeneity in the effect sizes. To identify outliers and influential studies causing heterogeneity, we used a diagnostic Baujat plot (Supplement S5) which showed two studies with studentized residuals (z-values) greater than two. To further investigate, we performed a set of leave-one-out diagnostic tests (Supplement S6) to calculate the summary values of hypertension control rates by excluding one study each at a time from the analysis. However, the results and subsequent visualization or residuals (Supplement S7) did not show any significant difference in control rates with the exclusion of the two studies. So, we decided against removing any studies from the model.

Overall hypertension control rate
The overall random effects model with Hartung-Knapp adjustment shows that the mean rate of hypertension control in India during 2001-2011 was 33.2% (95% CI= 27.9, 38.6). In comparison, a post-hoc estimate of the fixed effect model shows a pooled control rate of 17.0% (95% CI=16.8%, 17.2%) lower than our estimates using random effects model. The wide difference between the models also substantiates our decision to use random-effects model. Our 95% prediction interval 6.7% - 59.8% is wide reflecting high levels of heterogeneity. (Figure 2)

Figure 2: Forest plot 1

We conducted subgroup analysis as described below to understand the heterogeneity and the results are summarized as forest plot (Figure 3) and table (Supplement S8).

Change in control rate over time

To test if the hypertension rates have improved over time, we conducted a subgroup analysis to compare studies conducted in the first ten years (2001-2010) with those conducted in the second ten years (2011-2020). We computed the summary effects for each subgroup under the random effects model. Since systematic reasons like differences in population across states can still produce different values of the within-group \(\tau^2 \) values, we applied separate estimates of \(\tau^2 \) for each subgroup, effectively resulting in an independent meta-analysis of the subgroups. We found that the control
rates have improved over the years (35.8% in 2011-2020 versus 29.6% in 2001-2010), but the improvement was not statistically significant (p=0.23). There was significant heterogeneity ($\tau^2 = 0.01$, p<0.001).

Figure 3: Forest plot 2

Male-female difference

We pooled data from 20 studies that had sex-segregated data on hypertension control and conducted meta-analysis of 68,928 known hypertensive females and 12,269 known hypertensive males. The results show that females had better control rates than males, but the difference was not statistically significant (34.2% [95% CI=26.6, 41.9] for females versus 28.2% [95%CI=21.0, 35.4] for males). Substantial heterogeneity remained ($\tau^2 = 0.01$, p< 0.001) The control rates of females improved by 11% points between 2001-2010 and 2011-2020 whereas the control rates for males improved only by 7% points during the same period. However, these changes were not statistically significant.

Regional and inter-state differences

In the subgroup analysis for regions, we avoided studies with data from multiple regions and analyzed 12,938 known hypertensive patients from 24 studies (13 studies from south, 4 each from north and east, and 3 from west). Control rates were significantly
higher in south (39.3%) compared to north (25.8%), east (20.7%), and west (32.9%) regions.

Meta-regression

Finally, we conducted meta-regression\(^{55,56}\) using a mixed effects model using the formula:

\[
\hat{\theta}_k = \theta + \beta x_k + \varepsilon_k + \zeta_k
\]

where \(\hat{\theta}_k\) is the observed effect-size with \(k\) studies, \(\theta\) is the intercept, \(\beta\) is the regression coefficient, \(\varepsilon_k\) is the sampling error through which the effect size of a study deviates from its true effect, and \(\zeta_k\) is the heterogeneity. We built a multiple regression model by hierarchical addition of the following predictors: region, period of study (2001-'10 vs 2011-'20), and sex after excluding studies involving multiple regions. The model accounted for 52% of heterogeneity and showed significantly higher rate of control in south India. The model also showed that when adjusted for regional and sex differences, the rate of control improved by 14.7% points from 2001-2010 to 2011-2020 (\(p< 0.01\)) (Table 2). When an interaction term (region * period of study) was included (not shown) in the model, the model explained 76.5% of heterogeneity.

Table 2: Meta-regression table

Sensitivity analysis
We conducted two sensitivity analyses. The first analysis was done by avoiding four studies with only elderly population. In the second sensitivity analysis, we included only “low risk of bias” studies. The resultant models did not differ in overall control rates from the original model.

Publication bias

With prevalence as the outcome measure we do not expect publication bias arising from study design related significance level. The funnel plot asymmetry (Supplement, S9) and the subsequent Egger’s regression test result (t=5.6, p<0.0001) may not be explained by publication bias but rather by the high level of heterogeneity and quality of studies themselves.

Discussion

To our understanding this is the first meta-analysis that examined the changes in population-level hypertension control rates in India over the years. We compared the control rates in one decade preceding and one decade succeeding the launch of India’s national program for NCDs. There are four key findings from our study.

First, only one-third of known hypertensive patients in India have adequate blood pressure control and there is no significant improvement in overall control rates over the years despite the launch of a national program to control NCD in 2010. The only
previously published meta-analysis of community-level hypertension control in India with data from 1950 to 2013 showed a control rate of 10.7% for rural India and 20.2% for urban India.59 Though the control rate that we report is substantially higher, the low rate of 33.2% is still a concern. This is especially true considering that only 50% of patients in 15–49-year age group in India knew their hypertension status as per the NFHS-4 data (2015-16).54 The recently concluded NFHS-5 (2019-20) reported hypertension prevalence to be 23.9% and 21.3% among men and women up from 19% and 17% respectively from the previous round.4 India’s NCD program needs serious evaluation to see how far is it meeting its public health objectives to control hypertension.60 Interrupted supply of medicines, inadequate health education and low health literacy can have a synergistic effect leading to incomplete treatment or non-compliance. India also started a multi-partner initiative, the India hypertension control initiative in 2017, to strengthen the public health measures to control hypertension. A recent study analyzing the initial cohort from four Indian states showed significant improvement in blood pressure control (59.8% in follow up versus 26.3% at baseline), more so in the primary care settings that shows that better blood pressure control can be achieved through scalable public health programs.61 Comparing with recent literature, a recent cross-sectional study of 1.1 million adults across 44 LMICs including India showed that the control rate for hypertension was only 10.3%.62 A systematic review and meta-analysis from Nepal showed a hypertension control rate of 38% among treated hypertensives with only marginal improvement over years.63 The most recent data from Pakistan shows that only half of diagnosed hypertensive patients are treated and only 12.5% are controlled.64
Second, significant regional differences exist in the hypertension control, even when limited by the fewer number of studies in west and north India compared to south. South India showed better control rates even after adjusting for sex. Kerala and Tamil Nadu reported the highest rates of control, after excluding the very high rates reported by one study each from Punjab and Andhra Pradesh. The difference in health system capacity to detect and treat hypertension varies across the country as much as the level of awareness about the disease, its prevention, and control vary. Treatment adherence and access to medicine are key determinants of adequate control. Veena et. al reported that among those with controlled hypertension, 23.7% subjects monitored blood pressure 2-4 times a year while 67.30% never monitored their blood pressure.35 Adherence to medications was examined in only one study46 in our review that showed significant association with control rate. In addition, we found only one study29 (conducted among elderly) that compared control status based on medication status, while no study was found to examine the access to antihypertensive medicines. A recent study had shown that low availability of generic medicines in public and private sector and high costs are major barriers to antihypertensive control including in India.65 Another study reported that around 70% of the estimated proportion of adults with hypertension did not receive antihypertensive drugs in 2018.66

Three, very few studies reported lifestyle and risk factors associated with poor control. Among them, Tripathy et. al45 reported that uncontrolled hypertension was more frequent among obese patients, patients with sedentary lifestyle, and diabetic patients.
Thankappan et al.\(^4\) also found poor blood pressure control among diabetics and obese patients. Diet and smoking were reported as predictors in one study\(^4\) while greater percent body fat was the only factor reported in another,\(^2\) while good family support to self-care was reported by a third study.\(^4\)

Finally, very few studies had data on key social determinants of hypertension control like income, wealth, and caste. Data on income or wealth and education were unavailable in 89% of studies, while no studies had data on caste differences on hypertension control. A recent study (not included in our review) showed 13 percent point gap in control rate between the rich and the poor and clear disadvantage for scheduled castes, tribes and backward communities.\(^6\) The previous meta-analysis from India reported significant differences in rural and urban on awareness and control levels while no significant difference was noted for percentage treated.\(^6\) In our review we found two studies that reported no difference between urban and rural population while four studies reported rural populations to have poorer control.

Limitations

We included only studies published until 31 December 2020. There may be studies that have been conducted during 2011-2020 that are published after 2020.

Conclusion

India needs far more studies at the community level to understand the epidemiology of hypertension control, especially in north and west India. Well-designed studies that
ensure quality of data will help us to better understand the differences in control rates across regions. Studies should examine relevant health-system, socio-economic, and lifestyle factors that determine adequate control levels so that policies and programs can be designed to address the key determinants of uncontrolled hypertension in India.
Acknowledgments: None

Sources of Funding: None

Disclosures: None to declare
Tables

Table 1: Summary characteristics of studies included in the systematic review

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>2001-2010, N = 8</th>
<th>2011-2020, N = 29</th>
<th>Overall, N = 37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>8 (100%)</td>
<td>26 (90%)</td>
<td>34 (92%)</td>
</tr>
<tr>
<td>Female</td>
<td>-</td>
<td>2 (7%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Male</td>
<td>-</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 years and above</td>
<td>-</td>
<td>3 (10%)</td>
<td>3 (8.1%)</td>
</tr>
<tr>
<td>Adults (18 years +)</td>
<td>6 (75%)</td>
<td>23 (79%)</td>
<td>29 (78%)</td>
</tr>
<tr>
<td>Elderly (60 years +)</td>
<td>2 (25%)</td>
<td>3 (10%)</td>
<td>5 (14%)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North</td>
<td>4 (50%)</td>
<td>3 (10%)</td>
<td>7 (19%)</td>
</tr>
<tr>
<td>East</td>
<td>1 (12%)</td>
<td>5 (17%)</td>
<td>6 (16%)</td>
</tr>
<tr>
<td>South</td>
<td>2 (25%)</td>
<td>14 (48%)</td>
<td>16 (43%)</td>
</tr>
<tr>
<td>West</td>
<td>1 (12%)</td>
<td>2 (7%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Multi-region</td>
<td>-</td>
<td>5 (17%)</td>
<td>5 (14%)</td>
</tr>
<tr>
<td>Area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>2 (25%)</td>
<td>9 (31%)</td>
<td>11 (30%)</td>
</tr>
<tr>
<td>Rural</td>
<td>3 (38%)</td>
<td>12 (41%)</td>
<td>15 (41%)</td>
</tr>
<tr>
<td>Urban</td>
<td>3 (38%)</td>
<td>8 (28%)</td>
<td>11 (30%)</td>
</tr>
<tr>
<td>Period of study</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001-2010</td>
<td>8 (100%)</td>
<td>8 (28%)</td>
<td>16 (43%)</td>
</tr>
<tr>
<td>2011-2020</td>
<td>-</td>
<td>21 (72%)</td>
<td>21 (57%)</td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>-</td>
<td>2 (7%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Cross-sectional</td>
<td>8 (100%)</td>
<td>27 (93%)</td>
<td>35 (95%)</td>
</tr>
<tr>
<td>Sampling method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Census</td>
<td>-</td>
<td>3 (10%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Cluster sampling</td>
<td>5 (62%)</td>
<td>9 (31%)</td>
<td>14 (38%)</td>
</tr>
<tr>
<td>Simple random sampling</td>
<td>2 (25%)</td>
<td>6 (21%)</td>
<td>8 (22%)</td>
</tr>
<tr>
<td>Systematic random sampling</td>
<td>1 (12%)</td>
<td>11 (38%)</td>
<td>12 (32%)</td>
</tr>
<tr>
<td>Hypertension prevalence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sex

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female>male</td>
<td>1 (12%)</td>
<td>7 (24%)</td>
<td>8 (21%)</td>
</tr>
<tr>
<td>Male=female</td>
<td>3 (38%)</td>
<td>4 (14%)</td>
<td>7 (19%)</td>
</tr>
<tr>
<td>Male>female</td>
<td>3 (38%)</td>
<td>11 (38%)</td>
<td>14 (38%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>1 (12%)</td>
<td>7 (24%)</td>
<td>8 (22%)</td>
</tr>
</tbody>
</table>

Region

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural=urban</td>
<td>-</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Urban>rural</td>
<td>-</td>
<td>5 (18%)</td>
<td>5 (13%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>8 (100%)</td>
<td>23 (79%)</td>
<td>31 (84%)</td>
</tr>
</tbody>
</table>

Hypertension control rates

Sex

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males have poorer control</td>
<td>2 (25%)</td>
<td>10 (34%)</td>
<td>12 (33%)</td>
</tr>
<tr>
<td>Females have poorer control</td>
<td>1 (12%)</td>
<td>2 (7%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>No difference</td>
<td>1 (12%)</td>
<td>6 (21%)</td>
<td>7 (19%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>4 (50%)</td>
<td>11 (38%)</td>
<td>15 (40%)</td>
</tr>
</tbody>
</table>

Region

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural patients have poorer control</td>
<td>-</td>
<td>4 (14%)</td>
<td>4 (11%)</td>
</tr>
<tr>
<td>No difference</td>
<td>-</td>
<td>2 (7%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>8 (100%)</td>
<td>23 (79%)</td>
<td>31 (84%)</td>
</tr>
</tbody>
</table>

Income/wealth

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low income/wealth have poorer control</td>
<td>1 (12%)</td>
<td>1 (3%)</td>
<td>2 (5.5%)</td>
</tr>
<tr>
<td>No difference</td>
<td>-</td>
<td>2 (7%)</td>
<td>2 (5.5%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>7 (88%)</td>
<td>26 (90%)</td>
<td>33 (89%)</td>
</tr>
</tbody>
</table>

Education levels

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less educated have poorer control</td>
<td>-</td>
<td>1 (4%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>No difference</td>
<td>-</td>
<td>3 (10%)</td>
<td>3 (8%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>8 (100%)</td>
<td>25 (86%)</td>
<td>33 (89%)</td>
</tr>
</tbody>
</table>

Treatment/not on treatment

<table>
<thead>
<tr>
<th></th>
<th>n (%)</th>
<th>n (%)</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No difference</td>
<td>-</td>
<td>1 (3%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Not reported</td>
<td>8 (100%)</td>
<td>28 (97%)</td>
<td>36 (97%)</td>
</tr>
</tbody>
</table>
Table 2: Meta-regression model: hypertension control rates in India, 2001-2020

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Standard error</th>
<th>t-value</th>
<th>p-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>9.2</td>
<td>6.6</td>
<td>1.39</td>
<td>0.1743</td>
<td>-4.3, 22.7</td>
</tr>
<tr>
<td>Region: North</td>
<td>10.1</td>
<td>7.1</td>
<td>1.41</td>
<td>0.1687</td>
<td>-4.6, 24.7</td>
</tr>
<tr>
<td>Region: South</td>
<td>26.3</td>
<td>6.6</td>
<td>3.96</td>
<td>0.0005</td>
<td>12.6, 39.9***</td>
</tr>
<tr>
<td>Region: West</td>
<td>15.9</td>
<td>7.5</td>
<td>2.10</td>
<td>0.0456</td>
<td>3.4, 31.4*</td>
</tr>
<tr>
<td>Period: 2011-2020</td>
<td>14.7</td>
<td>4.3</td>
<td>3.43</td>
<td>0.0021</td>
<td>5.8, 23.5**</td>
</tr>
<tr>
<td>Sex: Male</td>
<td>-4.7</td>
<td>4.3</td>
<td>-1.11</td>
<td>0.279</td>
<td>-13.5, 4.0</td>
</tr>
</tbody>
</table>

Significance codes:

- **** 0.001
- *** 0.01
- ** 0.05
Reference:

46. Chacko S, Jeemon P. Role of family support and self-care practices in blood pressure control in individuals with hypertension: results from a cross-sectional study in Kollam District, Kerala. Published online July 28, 2020. doi:10.12688/wellcomeopenres.16146.1

Records obtained through primary search (n=4,087)

PubMed = 1,519
Embase = 1,062
Web of science = 1,506

Duplicates excluded (n=1,036)

Titles & abstracts screened (n=3,051)

Irrelevant abstracts excluded (n=2,893)

Full-text articles assessed for eligibility (n=158)

Full-text articles excluded (n=121)
- no measure of control rate = 44,
- conference abstracts/editorials = 31,
- reviews/SR = 13,
- non-Indian population = 12,
- convenient sample = 1
- missing data on known hypertensives = 4,
- non-community based studies = 9,
- RCTs/interventional studies = 3,
- pre-2001 = 2,
- paper not available = 2

Studies included in the qualitative synthesis (n=37)
- cross-sectional = 35, cohort = 2

Studies included in the meta-analysis (n=29)
- cross-sectional = 28, cohort = 1

Sample less than 100 (n=8)
Study vs. Control rate [95% C.I.]

<table>
<thead>
<tr>
<th>Study</th>
<th>Control rate [95% C.I.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bharucha;2003</td>
<td>13.76 [10.63; 16.89]</td>
</tr>
<tr>
<td>Hazarika;2004</td>
<td>17.90 [12.94; 22.87]</td>
</tr>
<tr>
<td>Thankappan;2006</td>
<td>26.02 [21.93; 30.11]</td>
</tr>
<tr>
<td>Mohan;2007</td>
<td>32.47 [25.07; 39.86]</td>
</tr>
<tr>
<td>Chaturvedi;2007a</td>
<td>19.66 [13.82; 25.50]</td>
</tr>
<tr>
<td>Chaturvedi;2007b</td>
<td>15.75 [12.09; 19.41]</td>
</tr>
<tr>
<td>Kaur;2012</td>
<td>26.42 [22.78; 30.06]</td>
</tr>
<tr>
<td>Gupta;2012</td>
<td>41.98 [38.39; 45.56]</td>
</tr>
<tr>
<td>Gupta;2013</td>
<td>44.32 [41.79; 46.84]</td>
</tr>
<tr>
<td>Mallik;2014</td>
<td>26.23 [21.29; 31.17]</td>
</tr>
<tr>
<td>Gupta;2014</td>
<td>28.47 [25.77; 31.16]</td>
</tr>
<tr>
<td>Moser;2014</td>
<td>45.59 [42.89; 48.28]</td>
</tr>
<tr>
<td>Goswami;2016</td>
<td>32.99 [26.43; 39.56]</td>
</tr>
<tr>
<td>Kaur;2016</td>
<td>43.07 [37.80; 48.34]</td>
</tr>
<tr>
<td>Banerjee;2016</td>
<td>11.70 [10.74; 12.66]</td>
</tr>
<tr>
<td>Busingye;2017</td>
<td>62.71 [53.99; 71.44]</td>
</tr>
<tr>
<td>Anupama;2017</td>
<td>14.46 [10.09; 18.83]</td>
</tr>
<tr>
<td>Roy;2017</td>
<td>33.21 [29.27; 37.15]</td>
</tr>
<tr>
<td>Tripathy;2017</td>
<td>61.05 [57.18; 64.91]</td>
</tr>
<tr>
<td>Kanungo;2017</td>
<td>27.70 [24.52; 30.89]</td>
</tr>
<tr>
<td>Gabert;2017</td>
<td>40.99 [37.72; 44.27]</td>
</tr>
<tr>
<td>Reddy;2018</td>
<td>35.56 [27.48; 43.63]</td>
</tr>
<tr>
<td>Sandhya;2018</td>
<td>43.05 [35.15; 50.94]</td>
</tr>
<tr>
<td>Veena;2019</td>
<td>43.91 [37.50; 50.33]</td>
</tr>
<tr>
<td>Dandge;2019</td>
<td>46.83 [40.66; 52.99]</td>
</tr>
<tr>
<td>Prenissl;2019</td>
<td>15.40 [15.13; 15.68]</td>
</tr>
<tr>
<td>Gupta;2020</td>
<td>23.68 [15.88; 31.49]</td>
</tr>
<tr>
<td>Mini;2020</td>
<td>54.80 [48.63; 60.97]</td>
</tr>
<tr>
<td>Chacko;2020</td>
<td>38.46 [34.83; 42.09]</td>
</tr>
<tr>
<td>Total</td>
<td>33.23 [27.86; 38.59]</td>
</tr>
</tbody>
</table>

Prediction interval [6.68; 59.77]
Heterogeneity: $\chi^2_{28} = 3003.91$ ($P < .001$), $I^2 = 99\%$
Region:

- **West**
 - Study: Random effects model
 - Total: 1190
 - Proportion: 0.33 [0.00; 1.00]
 - Heterogeneity: $\tau^2 = 0.0621$, $p < 0.01$

- **South**
 - Study: Random effects model
 - Total: 4887
 - Proportion: 0.39 [0.32; 0.47]
 - Heterogeneity: $\tau^2 = 0.0153$, $p < 0.01$

- **North**
 - Study: Random effects model
 - Total: 1304
 - Proportion: 0.25 [0.00; 0.40]
 - Heterogeneity: $\tau^2 = 0.0076$, $p < 0.01$

- **East**
 - Study: Random effects model
 - Total: 5557
 - Proportion: 0.21 [0.00; 0.33]
 - Heterogeneity: $\tau^2 = 0.0056$, $p < 0.01$

- **Total**
 - Study: Random effects model
 - Total: 12938
 - Proportion: 0.33 [0.27; 0.39]
 - Heterogeneity: $\tau^2 = 0.0208$, $p = 0$
 - Test for subgroup differences: $p < 0.01$

Time period:

- **2001–2010**
 - Study: Random effects model
 - Total: 7357
 - Proportion: 0.30 [0.22; 0.37]
 - Heterogeneity: $\tau^2 = 0.0155$, $p < 0.01$

- **2011–2020**
 - Study: Random effects model
 - Total: 77128
 - Proportion: 0.36 [0.28; 0.44]
 - Heterogeneity: $\tau^2 = 0.0134$, $p = 0$

- **Total**
 - Study: Random effects model
 - Total: 84485
 - Proportion: 0.33 [0.28; 0.39]
 - Heterogeneity: $\tau^2 = 0.0161$, $p = 0$
 - Test for subgroup differences: $p = 0.23$

Sex:

- **Female**
 - Study: Random effects model
 - Total: 68928
 - Proportion: 0.34 [0.27; 0.42]
 - Heterogeneity: $\tau^2 = 0.0158$, $p < 0.01$

- **Male**
 - Study: Random effects model
 - Total: 12269
 - Proportion: 0.28 [0.21; 0.35]
 - Heterogeneity: $\tau^2 = 0.0130$, $p < 0.01$

- **Total**
 - Study: Random effects model
 - Total: 81197
 - Proportion: 0.31 [0.26; 0.36]
 - Heterogeneity: $\tau^2 = 0.0095$, $p = 0$
 - Test for subgroup differences: $p = 0.23$