A systematic review of Hepatitis B virus (HBV) prevalence and genotypes in Kenya: Data to inform clinical care and health policy

Louise O Downs¹,², Cori Campbell¹, Paul Yonga³, M. Azim Ansari¹,
Philippa C Matthews¹,⁴,⁵,⁶* and Anthony O. Etyang⁷⁷

¹ Nuffield Department of Medicine, Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK
² Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Headley Way, Oxford, UK
³ CA Medlynk Clinic and Laboratory, Nairobi, and Fountain Projects and Research Office, Fountain Health Care Hospital, Eldoret, Kenya
⁴ The Francis Crick Institute, 1 Midland Way, London, UK
⁵ Division of Infection and Immunity, University College London, London, London, UK
⁶ Department of Infectious Diseases, University College London Hospital, London, London, UK
⁷ KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya

Key words: hepatitis B virus, HBV, epidemiology, serology, serosurveillance, prevalence, Kenya, Africa, genotype, drug resistance, treatment

* Corresponding author - Email: philippa.matthews@crick.ac.uk
¶ These two authors contributed equally to this work

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

More than 20% of the global disease burden from chronic hepatitis B infection (CHB) is in Africa, however there is minimal high quality seroprevalence data from individual countries and little viral sequencing data available to represent the continent. We undertook a systematic review of the prevalence and genetic data available for hepatitis B virus (HBV) in Kenya using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 checklist. We identified 23 studies reporting HBV prevalence and 25 studies that included HBV genetic data published in English between January 2000 and December 2021. We assessed study quality using the Joanna Briggs Institute critical appraisal checklist. Due to study heterogeneity, we divided the studies to represent low, moderate, high and very high-risk for HBV infection. We calculated pooled HBV prevalence within each group and evaluated available sequencing data. We also assessed whether reported HBV biomarkers could be applied to determine treatment eligibility. Eight studies were identified in the low-risk group, seven in the moderate risk group, five in the high-risk group and three in the very high-risk group for HBV infection. Pooled HBV prevalence was 3.31% (95% CI 2.62-4.01%), 5.58% (95% CI 3.46-7.7%), 6.17% (95% CI 4.4-9.94) and 31.39% (95% CI 9.5-53.09) respectively. Study quality was overall low, representing a small geographical location or a limited population subset. Only three studies detailed sample size calculation and 17/23 studies were cross sectional. Eight studies included genetic information on HBV, representing 247 individuals. Six studies sequenced one or two genes; two undertook whole genome sequencing, representing 22 participants. 92% people were infected with genotype A. Other genotypes included genotype D (6%), D/E recombinants (1%) or mixed populations (1%). Drug resistance mutations were reported by two studies. Seven studies presented
additional biomarkers alongside HBsAg, however none provided sufficient information to
deduce treatment eligibility.

Introduction

Chronic hepatitis B (CHB) infection accounts for an estimated 90,000 deaths annually across
West, East and Southern Africa, where most countries are of medium to high prevalence for
CHB (prevalence ≥4%), accounting for around 20% of the worldwide burden of disease (1).
The World Health Organisation’s (WHO) point prevalence estimate of CHB for Africa is 6.1%
with some uncertainty (4.6-8.5%), but this varies substantially between settings, and high-
quality data for individual countries are scarce (1). CHB meets many of the WHO criteria for
a neglected tropical disease, including disproportionately affecting populations living in
poverty, being associated with significant stigma and discrimination, and poor investment in
clinical infrastructure and research (2). Fewer than 10% of people have access to testing and
treatment leading to delayed diagnosis, with associated risks of advanced liver disease and
hepatocellular carcinoma (HCC) (1).

The Global Health Sector Strategy (GHSS) for viral hepatitis aims to eliminate HBV as a public
health threat by 2030 by reducing the incidence of new chronic infections by 90% and
reducing mortality by 65% from the 2015 baseline to achieve the 2030 WHO Sustainable
Development Goals (3). These are ambitious targets, and current estimates indicate they
will not be attained until beyond 2050 (4). Detailed seroprevalence data are needed to
target testing, treatment, and prevention interventions to the highest risk groups, to
allocate resources, and to inform policy.
In Kenya, information regarding HBV prevalence is lacking. Most studies focus on specific groups such as blood donors and those living with HIV, which may not be representative of the general population (5–7). Other studies have stringent inclusion criteria, meaning important demographic subgroups remain uncharacterised (8). HBV testing is not done routinely in Kenya, even in antenatal populations. Triple HBV vaccine from the age of 6 weeks onwards is recommended by the Kenyan Ministry of Health as a component of the WHO Expanded Programme for Immunization (EPI). It does not however currently recommend the monovalent HBV vaccine at birth, due to a belief that HBV transmission in early life in Kenya is horizontal rather than vertical, in which case birth dose vaccine would offer no significant advantage over vaccination begun at 6 weeks (9). However, more data are needed to underpin evidence-based policy in this domain.

HBV is divided into 9 genotypes (A-I) with a 10th putative genotype J (10,11); these tend to have distinct geographical locations and have been linked to different outcomes. Genotype A predominates in many African countries and has been associated with horizontal transmission, chronicity, early HBeAg seroconversion (12), cirrhosis and HCC development (13). Genotype also affects response to treatment (including drug resistance), and thus may influence clinical recommendations (12–14), though is not yet widely undertaken in clinical practice in most settings. Most studies of the impact of HBV genotype have been in Asia and Europe. There is a paucity of data on circulating genotypes and subgenotypes in Africa, including Kenya. Whole genome sequencing (WGS) of HBV in Kenya could provide information on transmission networks, disease and treatment outcomes, drug resistance and vaccine escape.
Guidelines for assessment and treatment of those with CHB typically involve complex algorithms based on biomarkers such as quantitative HBV DNA, and liver stiffness scores based on elastography (14) (Table 1). Regional African guidelines have been published (e.g. by the South African Department of Health (15) and the Gastroenterology Society of Kenya (16)). However, these still require a battery of tests on initial assessment and follow up, which are not universally practical or accessible in many low- and middle-income country (LMIC) settings. Thus, a refined assessment of population characteristics and needs is required to help improve algorithms to better match the circumstances of the local population and to support development of healthcare services.

Table 1: Recommendations by various international and national guidelines on assessment of a person with chronic hepatitis B infection.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HBV serological markers</td>
<td>+ aFP</td>
<td>+ aFP</td>
<td>+ aFP</td>
<td>+ aFP</td>
</tr>
<tr>
<td>FBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFTs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver USS/ fibroscan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver Biopsy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successive tests prior to treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Red indicates not recommended for treatment decisions, orange indicates recommended if possible, green indicates essential for treatment decision. HBV serological markers – HBsAg (Hepatitis B surface antigen), HBeAg (Hepatitis B e-antigen), HBV DNA (quantitative viral load); FBC – Full blood count; LFTs – Liver function tests; aFP = Alpha-fetoprotein; PTT – Prothrombin time; USS – Ultrasound scan; EASL – European Association for the Study of the Liver; NICE – National Institute for Health and Care Excellence (UK).
We here assimilate data to describe the serological, clinical and molecular characteristics of HBV infection in Kenya to underpin an evidence-base for local strategies for intervention, and highlight knowledge gaps to inform research. High resolution local data will be essential for development of local clinical care pathways and public health policy, to underpin progress towards the 2030 elimination targets.

Methods

We set out to review literature on prevalence and genetic characteristics of HBV infection in Kenya, using the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 statement checklist (S1 Fig). We searched the online databases PubMed, Embase, African Journals Online (AJOL) and Scopus on 6th December 2021 using the terms in table 2. We included studies published in English, from 2000 to December 2021 (from 2003 for AJOL) that investigated prevalence, genotype and sequencing of HBV infection in Kenya. We only included data for adults from studies for which the full text was available. There was no minimum number of participants for studies included. We initially screened using a thorough review of the title and abstract, and subsequently reviewed the full manuscripts of eligible articles. Articles that did not meet the inclusion criteria were excluded. Any uncertainty regarding the inclusion of papers was discussed with another reviewer and a consensus obtained.
Table 2: Search terms for online databases used during a systematic review on HBV prevalence and genetic information in Kenya.

<table>
<thead>
<tr>
<th>Database searched</th>
<th>Search terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>((("Hepatitis B"[Mesh]) OR ("hepatitis b"[Title/Abstract] OR HBV[Title/Abstract] OR "hepatitis type b"[Title/Abstract] OR "type b hepatitis"[Title/Abstract] OR "hep b"[Title/Abstract])) AND ("Kenya"[Mesh]) OR (kenya*[Title/Abstract] OR nairobi*[Title/Abstract] OR mombasa*[Title/Abstract]))</td>
</tr>
</tbody>
</table>
| Embase | 1 exp hepatitis B/ (109266)
2 ("hepatitis b" or HBV or "hepatitis type b" or "type b hepatitis" or "hep b").ti,ab. (135330)
3 1 or 2 (161216)
4 Kenya/ (22999)
5 (Kenya* or nairobi* or mombasa*).ti,ab. (26384)
6 4 or 5 (29072)
7 3 and 6 (227)
8 limit 7 to yr="2000-Current" (173) |
| AJOL | ((("Hepatitis B" OR ("hepatitis b" OR HBV OR "hepatitis type b" OR "type b hepatitis" OR "hep b") AND ("Kenya") OR (Kenya* OR nairobi* OR mombasa*)) |
| Scopus | ((("Hepatitis B" OR ("hepatitis b" OR HBV OR "hepatitis type b" OR "type b hepatitis" OR "hep b") AND ("Kenya") OR (Kenya* OR nairobi* OR mombasa*)) |

Terms used to search online databases for a systematic review reporting prevalence and genetic data for HBV in Kenya. We also modified search terms to include the 5 largest cities in Kenya (Nairobi, Mombasa, Eldoret, Nakuru and Kisumu with no change to the results).
From each study, we extracted:

- Total number of individuals tested for HBV.
- Number of individuals found to be infected with HBV (either HBsAg positive or HBV DNA positive)
- Study location (city or geographical region)
- Participant selection criteria
- Laboratory methods for confirmation of HBV infection
- Any other measurements taken relating to HBV assessment and liver health
- Whether any viral sequencing was undertaken, methods used and results (including genotype, presence of vaccine escape and drug resistance mutations).

Early in the review, it became obvious the studies would be very heterogeneous. On these grounds, we divided them into four groups to represent different risk profiles. The low-risk group included studies most likely to represent the general population (antenatal women, healthcare workers, blood donors and the national survey), the moderate risk group consisted of studies containing populations living with HIV, the high-risk group included intravenous drug users, men who have sex with men (MSM) and sex workers, and the very high-risk group was those presenting to hospital with hepatitis or jaundice.

Quality assessment of studies

A thorough assessment of the study quality was done using the PRISMA guidelines (20) and Joanna Briggs Institute critical appraisal checklist for prevalence studies (S2 Fig) (21). Any
dispute surrounding study quality was discussed with another reviewer and a consensus reached.

Current available Kenyan full-length sequences

We downloaded all full genome HBV sequences from Kenya in GenBank on 1-December-2021 to assimilate a reference set of all whole genome sequences representing Kenya. Sequences were aligned with available HBV reference sequences for each genotype (11) using MAFFT (22). A maximum likelihood phylogenetic tree with bootstrap replicates of 1000 was created using NGPhylogeny.fr (23).

Statistical Analysis

Pooled prevalence estimates for CHB infection (i.e. HBsAg seroprevalence) were generated via meta-analysis using inverse-variance weighting of standard errors. Meta-analysis was conducted in R (version 4.1.1) using the ‘meta’ package (version 5.2-1). Standard errors for prevalence were calculated using the formula $\sqrt{p(1-p)/n}$, with the total sample size represented by n and the proportion of the sample seropositive for HBV represented by p.

Meta-analysis was stratified by cohort risk group. The I^2 statistic was used to quantify the heterogeneity between studies within each risk group, calculated using $I^2 = 100\% \times (Q-df)/Q$ where $Q = $ Cochran’s coefficient and $df = $ degrees of freedom. Pooled estimates from fixed and random effects models are presented for each risk group. Where heterogeneity was statistically significant, results from random effects models were discussed. Study site locations were identified using latitudinal and longitudinal data from GoogleMaps based on
where the study was conducted. The map plot was created in R (version 4.1.1) using `rworldmap` (version 1.3-6) `ggmap` (version 3) and `ggplot2` (version 3.3.5) packages.

Occult HBV infection

Occult HBV infection (OBI) is defined as detectable HBV DNA in the absence of HBsAg. Where studies reported both HBsAg positivity rates and OBI rates in those who were HBsAg negative, only prevalence data based on HBsAg positivity was included in the meta-analysis, in order to ensure datasets were comparable between studies.

Review of treatment guidelines

We reviewed clinical and laboratory data necessary to make HBV treatment decisions based on the National Institute for Health and Care Excellence (NICE) (17), European Association for the Study of the Liver (EASL) (24), National South African (19) and Kenyan guidelines (18) on the management of CHB (Table 1). For each study reporting factors involved in treatment decisions, we reviewed the information available and compared it to the treatment guidelines. We then reviewed the proportion of study participants who would meet treatment criteria by each of these guidelines.

Results

(i) Identification of Studies

We identified 272 published studies, of which 23 studies met the inclusion criteria, representing a total of 11,467 people (Figure 1 and Table 3). Three of these studies also
screened individuals for occult HBV infection (OBI) in a total of 666 people using HBV DNA polymerase chain reaction (PCR) in addition to testing for HBsAg seroprevalence. Two studies screened initially with HBsAg, then with HBV DNA PCR on those who were HBsAg negative (25,26). A further study included two different populations: a) those attending a clinic for sex workers, whom they screened initially for HBsAg, then HBV PCR in those who were HBsAg negative and b) known HBsAg negative, jaundiced participants whom they screened with HBV DNA PCR to detect OBI (27).

Figure 1: Flow chart for eligibility of studies included in a systematic review reporting prevalence and genetic data for HBV in Kenya between 2000 – 2021 (AJOL: African Journal Online).

Table 3: Characteristics of the studies included in the systematic review reporting prevalence and genetic data for HBV in Kenya.
###非常高风险人群（共3个研究，代表482人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluora PO</td>
<td>2004</td>
<td>60</td>
<td>Nairobi</td>
<td>30</td>
<td>单向</td>
<td>非随机</td>
<td>医院</td>
<td>肝炎</td>
</tr>
<tr>
<td>Muchiri I</td>
<td>2013</td>
<td>100</td>
<td>Nairobi</td>
<td>13</td>
<td>单向</td>
<td>非随机</td>
<td>医院</td>
<td>肝炎</td>
</tr>
<tr>
<td>Ochwole M</td>
<td>2016</td>
<td>332</td>
<td>Nairobi, Mombasa, Kiambu</td>
<td>50.6</td>
<td>单向</td>
<td>非随机</td>
<td>医院</td>
<td>脏器</td>
</tr>
</tbody>
</table>

###高风险人群（共5个研究，代表221人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day SL</td>
<td>2013</td>
<td>159</td>
<td>Mombasa</td>
<td>7</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>女性性工作者</td>
</tr>
<tr>
<td>Webele MK</td>
<td>2015</td>
<td>752</td>
<td>Mombasa</td>
<td>5.2</td>
<td>双向</td>
<td>非随机</td>
<td>社区</td>
<td>采毒者</td>
</tr>
<tr>
<td>Wahome E</td>
<td>2016</td>
<td>525</td>
<td>Coastal Kenya</td>
<td>8</td>
<td>单向</td>
<td>非随机</td>
<td>社区</td>
<td>HIV阴性MSM</td>
</tr>
<tr>
<td>Oyar O</td>
<td>2018</td>
<td>673</td>
<td>Nairobi, Mombasa, Kiambu</td>
<td>4.3</td>
<td>单向</td>
<td>非随机</td>
<td>社区</td>
<td>药物使用者</td>
</tr>
<tr>
<td>Jeplemei</td>
<td>2020</td>
<td>112</td>
<td>Nairobi</td>
<td>9.8</td>
<td>双向</td>
<td>非随机</td>
<td>健康诊所</td>
<td>MSM</td>
</tr>
</tbody>
</table>

###中等风险人群（共7个研究，代表186人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harania RS</td>
<td>2008</td>
<td>357</td>
<td>Nairobi</td>
<td>6.2</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>成人HIV</td>
</tr>
<tr>
<td>Kim HH</td>
<td>2011</td>
<td>389</td>
<td>Nairobi</td>
<td>6.9</td>
<td>双向</td>
<td>随机</td>
<td>HIV诊所</td>
<td>成人HIV</td>
</tr>
<tr>
<td>Muriuki BM</td>
<td>2013</td>
<td>290</td>
<td>Nairobi</td>
<td>6.2</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>成人HIV</td>
</tr>
<tr>
<td>EN Njoguna</td>
<td>2015</td>
<td>322</td>
<td>Nairobi, Thika</td>
<td>1</td>
<td>单向</td>
<td>非随机</td>
<td>医院</td>
<td>HIVdiscordant伴侣</td>
</tr>
<tr>
<td>Maina DN</td>
<td>2017</td>
<td>190</td>
<td>Kajiado</td>
<td>5.8</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>成人HIV</td>
</tr>
<tr>
<td>Greer AE</td>
<td>2017</td>
<td>105</td>
<td>Kiambu</td>
<td>11</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>HIV discordant伴侣</td>
</tr>
<tr>
<td>Salanyi A</td>
<td>2021</td>
<td>208</td>
<td>Nairobi, Kiambu, Mbagathi</td>
<td>5.8</td>
<td>单向</td>
<td>非随机</td>
<td>HIV诊所</td>
<td>成人HIV</td>
</tr>
</tbody>
</table>

###低风险人群（共8个研究，代表682人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ngaira JA</td>
<td>2016</td>
<td>287</td>
<td>Mbagathi</td>
<td>3.8</td>
<td>单向</td>
<td>随机</td>
<td>母乳</td>
<td>孕妇</td>
</tr>
<tr>
<td>LK KN</td>
<td>2016</td>
<td>1091</td>
<td>Countrywide</td>
<td>2.1</td>
<td>双向</td>
<td>随机</td>
<td>调查</td>
<td>城市和农村区域</td>
</tr>
<tr>
<td>Wamamba D</td>
<td>2017</td>
<td>2046</td>
<td>Kiambu</td>
<td>3.1</td>
<td>双向</td>
<td>非随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
<tr>
<td>Oyango CG</td>
<td>2018</td>
<td>1215</td>
<td>Siaya, Homa Bay</td>
<td>3.5</td>
<td>单向</td>
<td>随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
<tr>
<td>Bartono G</td>
<td>2019</td>
<td>594</td>
<td>Nakuru, Tenwek</td>
<td>5.6</td>
<td>单向</td>
<td>随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
<tr>
<td>Kisaungu EN</td>
<td>2019</td>
<td>295</td>
<td>Mauenei</td>
<td>4.5</td>
<td>单向</td>
<td>随机</td>
<td>医院</td>
<td>医护人员</td>
</tr>
<tr>
<td>Awiti HO</td>
<td>2020</td>
<td>1000</td>
<td>Kiambu, Siaya, Homa Bay</td>
<td>3.4</td>
<td>单向</td>
<td>非随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
<tr>
<td>Aluora PO</td>
<td>2020</td>
<td>300</td>
<td>Nairobi</td>
<td>2.3</td>
<td>单向</td>
<td>随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
</tbody>
</table>

###已知HBsAg阳性人群包括基因数据分析（共2个研究，代表90人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwanje K</td>
<td>2013</td>
<td>32</td>
<td>Nairobi</td>
<td>100</td>
<td>单向</td>
<td>随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
<tr>
<td>Ochwole M</td>
<td>2013</td>
<td>58</td>
<td>Nairobi</td>
<td>100</td>
<td>单向</td>
<td>随机</td>
<td>血液捐赠者</td>
<td>血液捐赠者</td>
</tr>
</tbody>
</table>

###检查隐藏HBV感染在HBsAg阴性人群中（共3个研究，代表666人）

<table>
<thead>
<tr>
<th>首作者</th>
<th>年份</th>
<th>N</th>
<th>地区</th>
<th>方法</th>
<th>样本类型</th>
<th>位置</th>
<th>调查对象</th>
<th>鉴定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeplemei</td>
<td>2020</td>
<td>166</td>
<td>Nairobi</td>
<td>18.7</td>
<td>双向</td>
<td>非随机</td>
<td>健康诊所</td>
<td>HBV DNA</td>
</tr>
<tr>
<td>Salanyi A</td>
<td>2021</td>
<td>196</td>
<td>Nairobi, Kiambu, Mbagathi</td>
<td>5.3</td>
<td>单向</td>
<td>非随机</td>
<td>健康诊所</td>
<td>HBV DNA</td>
</tr>
<tr>
<td>Aluora PO</td>
<td>2020</td>
<td>293</td>
<td>Nairobi</td>
<td>2.4</td>
<td>单向</td>
<td>非随机</td>
<td>健康诊所</td>
<td>HBV DNA</td>
</tr>
</tbody>
</table>

此包括两项研究的HBSAg阳性患者，用于分析基因数据（46,47），以及三项研究的OBI阳性（25-27）。研究被分为非常高 / 高 / 中等 / 低风险类别（按时间顺序）并在这些类别中按出版日期排序。
We identified eight studies reporting HBsAg prevalence in low-risk populations (total number of participants = 6828), seven studies in people living with HIV (medium risk, total number of participants = 1861), five studies in high-risk groups (total number of participants = 2221) and three studies in the very high-risk group (total number of participants = 492).

Two studies included only HBsAg positive participants (total sample size 90) and studied HBV genotype (46,47). These were not included in our evaluation of HBV prevalence but contributed to our appraisal of HBV sequencing data.

(ii) Geographical distribution of HBV seroprevalence data

Of the 23 studies included, 14 (61%) were in Nairobi or Mombasa, Kenya’s most populous cities (Table 3), and all studies were done in the South of the country along the infrastructure routes between Mombasa, Nairobi and Kisumu. These are also the most densely populated Kenyan counties (48). Kisumu was the city most represented in the studies by overall sample size (Figure 2).

Figure 2: Map of Kenya indicating the locations and size of populations from which seroprevalence of HBV infection is reported. Data from a systematic review of papers reporting prevalence and genetic data for HBV in Kenya between 2000 and 2021. The size of the red circle indicates numbers screened in each location, studies in the same location are grouped together. n = number of individuals reported.
The mean cohort sample size was 599 participants (IQR 434). 14 studies recruited participants for cohort inclusion at outpatient clinics (8 in HIV clinics, 4 in blood donor clinics, 1 in a health clinic and 1 in antenatal clinic), one recruited participants through the blood donor registry; three through community outreach screening, three recruited hospital inpatients; one recruited healthcare workers and one was a national survey using urban and rural population groups (table 3).

(iii) Quality assessment of the literature

Overall the quality of studies investigating HBV prevalence in Kenya was low (Figure 3 and S2 Fig). 17/23 studies were cross sectional, reporting HBV population prevalence at a single time point only. Most cohort sampling methods were non-randomised and only 4/21 studies detailed their sample size calculation (25,26,40,44). Several studies sampled people only from small geographical locations or from a subset of the general population e.g. HIV negative individuals. 21/23 studies used either an enzyme linked immunosorbent assay or chemiluminescent enzyme immunoassay (ELISA or CLEIA) for HBsAg diagnosis. Two studies used reverse passive haemagglutination for diagnosis of CHB, a method previously demonstrated to have poor sensitivity (28,29,49) (Table 3). 2/23 studies went on to screen the HBsAg negative population for HBV DNA via PCR (25,26) and one study included a known HBsAg negative population which they screened for HBV DNA (27).

Figure 3: Bar chart showing characteristics of studies identified for a systematic review reporting prevalence and genetic data for HBV in Kenya. This is stratified by number of participants, study design, sampling method, data collection and diagnostic methods. RCT: Randomised controlled trial; EIA: Chemiluminescent enzyme immunoassay; ELISA: Enzyme linked immunosorbent assay.
(iv) Biomarkers measured and assessment of treatment criteria

Of the 23 studies examined, 12 reported solely HBsAg detection as a binary result (positive or negative) (table 4). Seven studies combined HBsAg testing with anti-HBc and/or anti-HBs to quantify HBV exposure and/or vaccination rates (7,26,27,31,32,39,41). The mean prevalence of anti-HBc alone or in combination with anti-HBs in those who were HBsAg negative was 38% indicating recovered infection. 4/7 studies reported prevalence of anti-HBs alone in those who were HBsAg negative, indicating likely vaccination, with a mean prevalence of 7.4% (26,31,32,39). Six studies reported HBeAg status and/or HBV DNA quantification (7,33–35,39,50). In those who were HBsAg positive, HBeAg positivity varied between studies from 55% in one study (7) to only 0.7% in another (50).

Table 4: HBV Biomarkers measured by studies reporting prevalence and genetic data for HBV in Kenya

<table>
<thead>
<tr>
<th>Citation</th>
<th>HBsAg</th>
<th>Anti-HBc or Anti-HBs</th>
<th>HBeAg</th>
<th>ALT</th>
<th>HBV DNA PCR</th>
<th>Fib-4 or APRI</th>
<th>Any imaging (USS/elastography)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very high-risk population group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atina JO (28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muchiri I (29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochwoto M (30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk population group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day SL (7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webale MK (31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wahome E (32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oyarro M (33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jepkemei (27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate risk population group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harania RS (34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kim HN (35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muriuki BM (36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EN Njuguna (37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maina DN (38)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greer AE (39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salyani A (26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk population group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ngaira JA (40)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ly KN (41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A blue square indicates the biomarker was measured in that study. ALT – Alanine aminotransferase; USS – ultrasound, Fib-4 and APRI are non-invasive scores of liver health accredited by the World Health Organisation for the assessment of patients with chronic hepatitis B (51).

Seven studies which measured additional biomarkers alongside HBsAg or anti-HBc/anti-HBs (including HBeAg, HBV DNA and/or liver function tests) were assessed to determine whether participants met local or international HBV treatment guidelines (table 5). Three studies did not present sufficient information to assess treatment eligibility (26–28). Of the remaining four studies representing 167 HBsAg positive participants, 32/167 (19%) people would have possibly met EASL treatment criteria alone if they were aged >30 years, however line-level age data were not presented, so this could not be confirmed. A further 14/167 (8%) participants may have met EASL, South African and Kenyan treatment criteria as they had abnormal ALT alongside HBeAg positivity and high HBV viral load. However, there was insufficient data on the level of ALT derangement to fully determine this. We were unable to assess whether any individuals met criteria for therapy based on NICE guidelines, as these require longitudinal follow up with serial biomarker monitoring.

<table>
<thead>
<tr>
<th>Population Risk Group</th>
<th>Citation</th>
<th>Consideration of meeting national and international treatment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate risk for HBV infection - HIV coinfection</td>
<td>Kim HN (35)</td>
<td>27 HBsAg +ve participants [3/27 would meet EASL treatment criteria if >30 years]</td>
</tr>
<tr>
<td>Moderate risk for HBV</td>
<td>Greer AE (39)</td>
<td>106 HBsAg +ve.</td>
</tr>
</tbody>
</table>
infection – HIV coinfection

Moderate risk for HBV infection – HIV coinfection

Harania RS (34)

23 HBsAg +ve participants

23/106 would meet EASL treatment criteria if >30 years

11 could have met treatment criteria based on EASL, South African and Kenyan guidelines depending on level of ALT derangement.

High risk for HBV infection – Female sex workers

Day SL (7)

11 HBsAg +ve participants

6/11 Would have met EASL treatment criteria if aged >30 years

High risk for HBV infection – Drug users

Oyaro M (33)

Measured HBV DNA but results not presented. No HBeAg data.

Unable to assess whether meet treatment criteria.

High risk for HBV infection – Drug users

Webale MK (50)

30 HBsAg +ve participants. 1 was HBeAg +ve but nil on HBV DNA or liver disease

Unable to assess whether meet treatment criteria.

Very high risk for HBV infection – those presenting to hospital with hepatitis

Atina JO (28)

No information on HBeAg status. ALT not distinguished between patients infected with different hepatitis viruses.

Unable to assess whether meet treatment criteria.

(v) HBV prevalence estimates in different risk groups

The pooled estimate for HBV prevalence using a random effects model in the low-risk group was 3.31% (95% CI 2.62-4.01%) compared with 5.58% in the moderate risk group (95% CI 3.46-7.77%), 6.17% (95% CI 4.4-7.94%) in the high-risk group and 31.29% (95% CI 9.5-53.09%) in the very high-risk group, however we note that the confidence interval of this estimate is very wide (Figure 4). Heterogeneity was significant ($l^2 > 50\%$) within each subgroup, and highest in the very high-risk sub-group ($l^2 = 97\%, p < 0.01$).

Three studies screened for OBI using HBV DNA PCR. These were in populations known to be HBsAg negative and from different HBV risk groups: blood donors, those living with HIV and
those presenting to hospital with jaundice. OBI prevalence estimates in these studies were 2.4%, 5.3% and 18.7% respectively (25,52,53).

Figure 4: Forest plot showing pooled HBV prevalence for populations in different risk groups by fixed and random effects model. This is part of a systematic review reporting prevalence and genetic data for HBV in Kenya between 2000-2021. In each case, the size of the population included is represented by the size of the square. Point prevalence and 95% Confidence Interval (CI) is indicated for each study. Studies are ordered by HBV prevalence in each risk group.

(vi) Identification of HBV sequences

We identified nine studies in total reporting HBV sequence data (full or partial genome), including seven studies from among our 23 seroprevalence studies (Table 3), and an additional two studies that did not contribute to the prevalence estimates (46,47), providing a total of nine studies representing 247 individuals. One study did not clearly report how many HBV samples were sequenced or what the results were, and this study was subsequently excluded from further analysis (39). All the eight remaining studies used PCR of the HBV basal core promoter, Pol or S genes for amplification, followed by Sanger sequencing to determine genotype. Two studies looked for known drug resistance mutations (46,47). Two studies undertook whole genome HBV sequencing in a total of 22 patients (30,46). 228/247 (92%) of participants were infected with HBV genotype A, 15/247 (6%) with genotype D infection, whilst the remaining were either mixed genotype populations (2/247) or genotype D/E recombinants (2/247) (table 6). Sub-genotype was determined in 146/247 (59%) participants. This was most commonly sub-genotype A1 (134/146, 92%) in keeping with previous regional data (54).
Table 6: Numbers of individuals in which HBV genotype or sub-genotype was reported for study populations in Kenya, as part of a systematic review on prevalence and genetic data for HBV in Kenya from 2000–2021.

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Sub-genotype</th>
<th>Number of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Total 228</td>
<td>Not sub-genotyped 94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1 134</td>
</tr>
<tr>
<td>D</td>
<td>Total 15</td>
<td>Not sub-genotyped 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 or D6 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D/E Recombinants 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unclear 2</td>
</tr>
</tbody>
</table>

To provide further background context for HBV sequences in Kenya, we identified 25 full length HBV sequences from GenBank (Figure 5). These were generated from three studies, published in 2013, 2015 and 2016 (30,47,55). They primarily represented individuals presenting to hospital with jaundice, (21/25 sequences) infected with genotypes A1 and D.

Figure 5: Maximum likelihood phylogenetic tree of full-length consensus HBV sequences from Kenya. Kenyan sequences are those published in GenBank (downloaded 1st Dec 2021) and are shown in red alongside genotype reference sequences in black (1000 bootstrap replicates were performed, and bootstrap support of ≥70% are indicated. Reference sequences from McNaughton et al. (2020) (11).

5/8 studies provided a detailed analysis of either amino acid or nucleotide substitutions found in the sequenced region of HBV (25,30,35,46,47). 2/5 studies correlated these with known drug resistance mutations to lamivudine and other nucleoside analogues (Table 7) (25,35). One study reported the emergence of drug resistance mutations during lamivudine treatment associated with breakthrough HBV viraemia (35). Multiple other mutations were described in the five studies, some of which were in the major hydrophilic region of the
surface gene, and thus potentially important in influencing both natural and vaccine-mediated immunity (56,57).

Table 7: Details of HBV mutations found in two studies in Kenya which reported presence of drug resistance mutations, as part of a systematic review on prevalence and genetic data for HBV in Kenya from 2000 – 2021.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Publication Year and number of participants</th>
<th>Mutations Identified</th>
<th>Number of individuals with mutation</th>
<th>Resistance conferred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim HN (35)</td>
<td>2011 (n=389) 21 participants had HBV sequenced</td>
<td>rt1233V, rta181S, rtV207I</td>
<td>3/21 had rt1233V, rta181S or rtV207I prior to treatment</td>
<td>Adefovir + lamivudine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A200V, M204I</td>
<td>1/21 developed A200V + M204I during lamivudine treatment</td>
<td>Lamivudine</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M204I</td>
<td>1/21 developed M204I during lamivudine treatment</td>
<td>Lamivudine</td>
</tr>
<tr>
<td>Patrick Okoti-Aluora (25)</td>
<td>2020 (n=300) 9 participants had HBV sequenced (2 HBsAg +ve, 7 HBV DNA +ve only)</td>
<td>rt181T, M129LV163I</td>
<td>1/9, 9/9 developed RT M204I mutation alone or both A200V and M204I mutations during treatment</td>
<td>Lamivudine, Adefovir, Lamivudine</td>
</tr>
</tbody>
</table>

In Kim HN, two patients developed HBV breakthrough viraemia during lamivudine treatment and developed either RT M204I mutation alone or both A200V and M204I mutations during treatment.

Discussion

Enhanced efforts to characterise the epidemiology and disease burden of HBV are urgently required in Africa, as HBV is present at medium-high endemicity in many populations but has been neglected as a public health problem. Here we have reviewed the literature available on prevalence, genotypes and available sequence data for CHB in Kenya. The pooled prevalence estimates we generated in the different risk groups ranged from 3.31% in the low risk group to 31.29% in the very high-risk group, although wide confidence intervals...
along with significant heterogeneity ($I^2 = 97\%$) are notable in the very high risk group. This is the group presenting to hospital with jaundice or hepatitis who are likely to have very different pre-test probabilities for HBV infection.

Most studies included in this review focussed on specific groups of people such as blood donors and those co-infected with HIV. Blood donation in Kenya is voluntary and often done by family members of those in need. There is no financial compensation for donation (58).

Routine screening for HBV through the Kenyan National Blood Transfusion Service (KNBTS) consists of ELISA for HBsAg only and there is no nucleic acid amplification testing (NAAT); some OBI may therefore go unidentified. Only one study in this review focussed on pregnant women (40) and one study enrolled healthcare workers (44). These are accessible and important groups to screen for HBV infection given they are engaged with healthcare, likely to come for follow up visits, and interventions can have a significant impact on reducing transmission events. Treatment for pregnant mothers and healthcare workers would reduce onward transmission, and vaccination of babies and uninfected healthcare workers would decrease the overall burden of infection, reducing morbidity and mortality. One study was nationwide (41), but only included those who were HIV negative. More general population screening is lacking, and testing is not routinely done when presenting to healthcare facilities (59). Some areas of the country have been more rigorous in their diagnostic approaches, but this is sporadic and may be increased only when there is a known outbreak of HBV in the local community, as has been the case in other African countries (60,61). This may give a skewed view on population prevalence, but also leads to missed opportunities for diagnosis and intervention, particularly given the very high
proportion of those presenting to hospital with jaundice or hepatitis found to be infected
with HBV (pooled HBV prevalence 31.29% and 18.7% OBI prevalence).

It is notable that no studies were done in Northern Kenya, particularly along the borders
with Somalia and South Sudan where the prevalence of HBV is substantially higher (for
these two neighbouring countries, HBsAg prevalence estimated at 19% and 12%
respectively (62,63)), however population density here is also very low (48).

Along with minimal population screening, there is very little sequencing of HBV in Kenya. Of
the 25 papers we reviewed regarding HBV sequencing, only two reported whole genome
sequencing, and none did next generation sequencing. We identified only 25 complete HBV
genomes from Kenya in a GenBank search. Most available data is from single gene PCR and
Sanger sequencing of S and P genes to determine genotype. Expanding these data will allow
identification of recombinant genotypes, of which there is evidence in Kenya (64,65), but
currently without good understanding of how these translate into clinical outcomes. Deep
sequencing data will enable detection of minority variant mutations that may be relevant in
emergence of vaccine escape and drug resistance, and also allow description of viral
quasispecies, how this correlates with clinical phenotype and other biomarkers.

Three studies reviewed here screened for OBI using PCR. OBI prevalence was similar to
estimated pooled HBsAg prevalence in the associated risk group (2.4%, 5.3% and 18.7% OBI
prevalence in low, medium and high/very-risk groups compared with 3.31%, 5.58% and
6.17/31.29% pooled HBsAg positivity estimates in the equivalent groups). This indicates that
many HBV cases are being missed due to the lack of appropriate screening tests, however
the cost and poor availability of HBV DNA testing means it is not currently feasible to use as a universal screening test in Kenya. 20/23 studies solely reported HBsAg positivity diagnosed using other less sensitive tests. It is worth noting that of those presenting to hospital with jaundice who were HBsAg negative, nearly 20% were HBV DNA positive. It is not known whether the jaundice was due to acute HBV infection, or reactivation of chronic disease, but it seems to be an important indicator of HBV infection and screening of all those presenting to hospital with jaundice or hepatitis for OBI with HBV DNA PCR would be optimal. Few studies had characterised HBV exposure and vaccination status using anti-HBc and anti-HBs respectively. This highlights a broader issue around funding and access to laboratory tests needed for complete epidemiological assessment of populations.

Comparing data available within these studies to a range of African and European treatment algorithms highlights the complexity of guidelines. Most of the studies we included had not been set up to include assessment of treatment criteria, which was likely not feasible within the setting of the study. However, measurement of parameters such as HBeAg, HBV DNA viral load, and liver elastography are clearly outside the reach of existing budgets and infrastructure, and we highlight the need for simpler treatment stratification and cost effectiveness analysis for Kenya and other LMIC settings.

HIV coinfection as a special case

The prevalence of HIV infection in adults in Kenya is 4.2% (95% CI 3.7-4.9%) (66). Seven studies included in this analysis reported HBV prevalence in people living with HIV. The pooled HBV prevalence in this group was 5.58% (95% CI 3.46 – 7.7%). The HIV population is
better represented than other groups at risk, as HBV screening is easier to offer to individuals already accessing healthcare for HIV monitoring and treatment. Through this established infrastructure for HIV (including clinics with staff, laboratory support, blood monitoring and drug distribution services), clinical care pathways for HBV could be incorporated. Although tenofovir is available free of charge in Kenya, and is on the WHO list of essential medicines (67), it is only consistently available in combination with lamivudine or emtricitabine for HIV treatment, leaving the HBV monoinfected population unable to access licensed monotherapy.

Limitations

The HBV prevalence estimates we have generated here are wide and vary significantly between the risk groups (pooled risk group prevalence 3.31% - 31.29%). The very high-risk group also has a very wide confidence interval for prevalence estimates. Other sources have different estimates of Kenyan HBV prevalence (e.g. 1% by the CDA Foundation (4)). The CDA data are from 2016, so may be out of date, but the varying estimates reflect difficulties with methods of data collection, varying data sources and data missingness. The overall quality of studies was low, with non-random sample selection common, no calculation of sample size in most studies and nearly all studies being cross sectional representing only a snapshot of HBV prevalence. Only selected populations are represented by the studies we identified, and even those studies seeming to represent the population more broadly are skewed. For example, the study of healthcare workers was primarily female nurses (44) and the nationwide survey only included HIV negative participants (41). OBI was investigated in only three studies. There are no data for the northern part of Kenya, including the region around
the border with South Sudan where there might be migration of high prevalence populations. It is likely that prevalence of HBV infection varies significantly by age, region of the country, and according to particular at-risk groups – thus targeted surveillance is important to provide an evidence-base for local and population-specific interventions.

No children were included in this review. In 2019 Kenya achieved an average coverage of 91% of 3rd dose HBV childhood vaccination (68), but in future studies, screening children for HBsAg, anti-HBc, anti-HBs by birth cohort would be important to determine the impact of the vaccine campaign on infection, exposure and immunity, and to identify any populations being missed by vaccine coverage. More evidence is needed to determine whether birth dose HBV immunisation should be routinely deployed.

We highlight the poor representation of HBV in Kenya with sequencing data, identifying only two studies that undertook whole genome sequencing. 24/25 sequences available on GenBank were from two studies. This is clearly not representative of HBV in the general population, and work is required to determine circulating genotypes and to characterise polymorphisms that are relevant to outcomes of infection, treatment and vaccination.

Conclusions

We have assimilated epidemiological data for HBV in Kenya, together with clinical and genetic parameters where available, to provide the most refined picture possible to date. A sparse literature highlights the pressing need for clinical and research enterprise, to provide an evidence base for realistic and practical strategies that support country-specific scale-up
of screening and treatment. Alongside continued efforts for three-dose vaccine coverage in
ingfancy, these interventions can reduce the burden of disease in those currently infected,
and reduce the incidence of new infections, moving Kenya towards 2030 elimination
targets.

Registration and Protocol

This was not registered as a systematic review. A review protocol was prepared in advance
but not published.

Funding

LD is funded by a Wellcome Clinician PhD fellowship. CC is funded by GlaxoSmithKline (GSK)
and the University of Oxford Nuffield Department of Medicine. PCM is funded by a
Wellcome intermediate fellowship (ref 110110Z), UCL/UCLH BRC and the Francis Crick
Institute.

Acknowledgements

This manuscript was written with the permission of the Director, KEMRI-CGMRC

Conflicts

CC (supervised by PCM) receives a contribution of her PhD fellowship funding from GSK.
References

20. PRISMA 2020 Checklist Section and Topic Item # Checklist item Location where item is reported TITLE Title 1 Identify the report as a systematic review. [cited 2022 Feb 16]; Available from: http://www.prisma-statement.org/

51. GUIDELINES FOR THE PREVENTION, CARE AND TREATMENT OF PERSONS WITH CHRONIC HEPATITIS B INFECTION. 2015;

tuberculosis testing are much less common than HIV testing among adults in Kisumu,
Kenya: results from a cross-sectional assessment. BMC Public Health [Internet]. 2021

60. Nosocomial Outbreak of Hepatitis B Virus Infection in a Pediatric Hematology and
Oncology Unit in South Africa: Epidemiological Investigation and Measures to Prevent
Further Transmission. 2015;

61. Thompson P, Morgan CE, Ngimbi P, Mwandagalirwa K, Ravelomanana NLR, Tabala M,
et al. Arresting vertical transmission of hepatitis B virus (AVERT-HBV) in pregnant
women and their neonates in the Democratic Republic of the Congo: a feasibility

62. Abdulkadir Hassan-Kadle M, Sulaiman Osman M, Petrovich Ogurtsov Mohamed
Abdulkadir Hassan-Kadle P, Petrovich Ogurtsov P. Epidemiology of viral hepatitis in
Somalia: Systematic review and meta-analysis study. Available from:
http://dx.doi.org/10.3748/wjg.v24.i34.3927

63. Kirbak ALS, Ng’ang’a Z, Omolo J, Idris H, Usman A, Mbabazi WB. Sero-prevalence for
Hepatitis B virus among pregnant women attending antenatal clinic in Juba Teaching
Hospital, Republic of South Sudan. Pan Afr Med J [Internet]. 2017 Feb 20 [cited 2022

infection is highly prevalent among patients presenting with jaundice in Kenya. BMC
Infectious Diseases. 2016 Mar 1;16(1).

68. Hepatitis B (HepB3) immunization coverage among 1-year-olds (%) [Internet]. [cited 2022 Feb 16]. Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/hepatitis-b-(hepb3)-immunization-coverage-among-1-year-olds-(

Supporting information

S1 Fig: Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2020 statement checklist

S2 Fig: Joanna Briggs critical appraisal checklist.
Records identified via online search using search terms to capture studies of HBV seroprevalence in Kenya between 2000 and 2021*

Excluding:
- Published before 2000 (2003 for AJOL)
- Not in English
- No full text available.
(Total: 272: PubMed =74, Embase = 37, AJOL = 9, Scopus = 152).

Duplicates removed n = 171 remaining

Records excluded (n=101): Embase 23, AJOL 5, Scopus 56, PubMed 17

Records screened for title and abstract

Records removed for:
- Not being relevant to Kenya or no mention of hepatitis B or prevalence/genetic diversity (141)
- Including children without clear description of solely adult data (2)
- No clear sampling strategy (2)
- No diagnostic method documented (1)

23 papers included in the final meta-analysis
(Pubmed = 20, Scopus = 2, AJOL = 1)
2 papers included only when discussing viral sequencing data
Figure 2
Figure 3
Figure 5