Ambient Temperature and Dengue Hospitalisation in Brazil over a 10-year period, 2010-2019: a times series analysis

Rafael Lopes Paixão da Silva¹,²,³,⁴, Xavier Basagaña²,³,⁴, Leonardo S. L. Bastos⁵, Fernando A. Bozza⁶, Otavio T. Ranzani²,³,⁴,⁷

1 - Instituto de Física Teórica, IFT, UNESP, São Paulo, Brazil
2 - Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
3 - Universitat Pompeu Fabra, UPF, Barcelona, Spain
4 - CIBER Epidemiología y Salud Pública, CIBERESP, Madrid, Spain
5 - Department of Industrial Engineering (DEI), Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
6 - National Institute of Infectious Disease Evandro Chagas (INI), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
7 - Pulmonary Division, Heart Institute (InCor), HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil

Corresponding author:
Rafael Lopes Paixão da Silva (rafael.lp.silva@unesp.br)
IFT-Unesp, R. Dr. Bento Teobaldo Ferraz, 271, 01140-070 São Paulo, Brazil

Otavio T. Ranzani (otavio.ranzani@isglobal.org)
ISGlobal, Dr. Aiguader, 88, 08003 Barcelona, Spain

Word count: 2,669.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary:

Background: Climate factors are known to influence seasonal patterns of dengue transmission. However, little is known about the effect of extreme heat on the severity of dengue infection, such as hospital admission. We aimed to quantify the effect of ambient temperature on dengue hospitalisation risk in Brazil.

Methods: We retrieved daily dengue hospitalisation counts by each of 5,570 municipalities across the 27 states of Brazil from 1st of January 2010 to 31st of December 2019, from the Brazilian Public Hospital Admission System (“SIH”). We obtained average daily ambient temperature for each municipality from the ERA5-land product reanalysis. We combined distributed lag non-linear models with time stratified design model framework to pool an estimate for dose-response and lag-response structures for the association of Dengue hospitalisation relative risk (RR) and temperature. We estimated the overall dengue hospitalisation RR for the whole country as well as for each of the five macro-regions by meta-analysing state level estimates.

Findings: 579,703 hospital admissions due to dengue occurred over the 10 years period of 2010 to 2019. We observed a positive association between high temperatures and high risk of hospitalisation for Brazil and each of the five macro-regions. The overall RR for dengue hospitalisation was at the 50th percentile of temperature distribution 1·40 (95% IC 1·27-1·54) and at 95th percentile of temperature the RR was 1·50 (1·38-1·66) for Brazil, relative to the minimum temperature, which was the one with the lowest risk. We also found lagged effects of heat on hospitalisation, particularly observed on the same day (lag 0) both at the 50th percentile and 95th.

Interpretation: High temperatures are associated with an increase in the risk of hospitalisation by dengue infection. These findings may guide preparedness and mitigation policies during dengue season outbreaks, particularly on the health-care demand.

Funding: Conselho Nacional de Pesquisa, Coordenação Nacional de Aperfeiçoamento de Pessoal, Institut de Salud Carlos III.

Keywords: Dengue; severe Dengue; temperature; heatwave; hospital
Research in context

Evidence before this study Temperature can have an effect of aggravating a dengue infection progressing to severe disease requiring hospitalisation. On February 12, 2022, we searched PubMed for the terms “dengue”, “severe or hospital” and “temperature or heat”. Although there is extensive literature on the association of temperature and number of dengue cases, we did not find any study quantifying the association of ambient temperature and hospitalisation by dengue. Quantitative evidence on this association, and how the extreme high temperature augments the risk of hospitalisation by dengue is needed to guide plans of mitigation and preparedness.

Added value of this study Our findings show that heat can aggravate an on-going infection of Dengue virus leading to hospitalisation. Average temperatures above 23.96º Celsius degrees, the 50th percentile of temperature distribution over Brazil, represents a risk of over 1.3x to the Minimum Hospitalisation Temperature. An average temperature of 28.68º Celsius degrees, the 95th percentile of temperature distribution, represents a risk of hospitalisation of over 1.4x to the Minimum Hospitalisation Temperature. The South region, which does not have a high incidence of Dengue cases and a colder climate compared to other regions, has a temperature-related risk of hospitalisation of greater magnitude compared to other regions.

Implications of all the available evidence Heat exposure plays an important role to the public health policy for mitigating dengue virus burden on the population. Hospitalisation is costly to any health system and can be more impacting on fragile or unprepared health systems as frequently found in countries affected by dengue. Due to its hyperendemicity and its seasonality, dengue can be predicted in mid to long term allowing for better designed early-warnings systems to mitigation measures.
INTRODUCTION

Dengue fever has been a major global seasonal endemic disease, mainly present in the tropics, with an estimated burden over ~390 million infections per year.1–4 Approximately one-quarter of these infections manifest as clinical or subclinical disease.1 Brazil is one of the most affected countries by Dengue, that has caused over ~20·9 million cases of infections in the last 20 years, since the compulsory universal notification to the Brazilian health systems was established.5,6 Additionally, it is estimated that the Brazilian Universal Health System (SUS) spent more than USD 159 million in the treatment and assistance to Dengue cases and USD 10 million on severe Dengue between 2000 and 2015.5 The impressive burden of Dengue in Brazil is also observed in several others low-income and middle-income countries.7

Dengue incidence is influenced by climate variables due to mosquito life cycle and human behaviour changes, particularly with rainfall and temperature.1,6,7 However, there is lacking evidence for the association of ambient temperature and the frequency of severe dengue cases. The pathophysiology of Dengue severity involves dehydration and coagulation disorders, both conditions that can be aggravated by ambient temperature.8,9

Based on the extensive literature on the association of temperature and all-cause hospitalizations,2,3,5,6 we hypothesised that high ambient temperatures are associated with a
higher risk of hospitalisation due to Dengue. We aimed to evaluate the association between ambient temperature and Dengue hospitalisation in Brazil, analysing the period from 2010 to 2019.

METHODS

Setting

Brazil has about 211 million inhabitants distributed over 8.5 million km² area, divided into 26 states and the country capital, the federal district. These 27 states are grouped in 5 administrative macro-regions: North, Northeast, Center-West, Southeast, and South. The country is located in a tropical region and has 3 main Köppen climate types and 12 subtypes.

We conducted a time-stratified regression analysis to evaluate the association between ambient temperature and Dengue hospitalisation in Brazil. The unit of analysis was municipality (n=5,570) of residence.

Data sources and definitions

Dengue hospitalizations

We used the Brazilian Hospital Admission System (SIH), a nationwide database that comprises individual level data of all hospitalizations covered by the Universal Healthcare System (SUS) in Brazil. We defined a dengue hospitalisation by the ICD-10 codes 'A90', 'A91', 'A97', 'A970', 'A971', 'A972', 'A979'. We build daily time series by date of hospitalisation for each municipality of residence. We excluded dengue hospitalizations from three municipalities that are placed in small islands, because there was no ambient temperature for them. This filtering resulted in a loss of 153 (0.03%) cases in total, for the whole period of the 10 years. The final
time series aggregation by municipalities encompasses a total of 579,703 hospital admissions due to Dengue over the 10 years period of 2010 to 2019.

Ambient temperature

We used the gridded (0.1° x 0.1°) 2 metres daily temperature taken from reanalysis products (ERA5-Land) freely available from the Copernicus Climate Service through the Climate data Store. The original data was an hourly gridded dataset over the extension of Brazil and encompassing the whole period of 10 years. We estimated the daily mean temperature for each municipality by calculating the daily temperature weighted to the municipality area. All these weighted mean areas were done with the ‘exactextractr’ R package.

Data Analysis

We studied the association between daily dengue hospitalizations counts time-series and ambient daily temperature using the Distributed Lag Nonlinear Model (DLNM) framework. We used the two-stage approach, first fitting generalised linear models at Brazilian State level. In the second stage we pooled the estimates using a meta-analysis at the country level and its five macro-regions. At the first stage, we fitted a Conditional Poisson Model for the aggregated time series of Dengue hospitalisation counts. The model strata was a month-city term. We report the overall Relative Risk (RR) compared to the Minimum Hospitalisation Temperature (MHT) point for each state. MHT is the temperature with minimum hospitalisations according to the model. We also reported the lagged effects at the 50th and 95th percentiles. The second-stage was one meta-analysis for the whole country and another for each of the macro administrative regions. The meta-analysis for the whole country was conducted aggregating all the coefficients fitted by each state and their covariance matrix in a multivariate meta-analysis random effects
model. The meta-analysis for each macro-region used the coefficients and the covariance matrix of the states within a given region. From the meta-analysis, we estimated the overall cumulative RR curve, relative to MHT and the lag-effects at 50th and 95th percentile.

First-stage:

In the first-stage, we ran the following model for each state:

\[
g[E(Y_{it})] = \xi_{si} + f(x_{it}, l) + \sum_{k=1}^{K} s_k(t)
\]

Where \(Y_{it}\) is the daily count of hospitalisations on the \(i\)-th municipality, \(\xi_{si}\) the dow-month-municipality strata term conditioned out. \(f(x_{it}, l)\) which is the bi-dimensional exposure-lag-response distributed lag non-linear model for mean temperature by each day of delay, until 21 days of lags. The cross-basis is parametrized with natural splines, with 2 knots equally spaced on the exposure-response structure and 3 knots equally spaced on the log transformed scale for the lag-response structure. The last term is the long-term trend model choice for temperature trend along the whole period, a natural spline with 7 degrees of freedom by each year on the whole period.

Second-stage:

Whole Country and Regions:

In the meta-analysis we did the aggregation of the data generated by the first-stage analysis on the whole country and by each of the five macro regions. We ran a multivariate meta-analysis with random effects, so from the \(i\)-th state-level estimate, \(\theta_i\), we have the following equation:

\[
\theta_i \vee u_i \sim N_k(\theta_i + u_i, S_i), u_i \sim N_k(0, \psi)
\]

is the estimate for the \(i\)-th location, \(u_i\) the random effects for the coefficients of this study with \(S_i\) intra-location covariance matrix of coefficient estimates, and \(\psi\) the between-location covariance matrix. For the whole country meta-analysis, the coefficients \(\theta_i\) were taken from the 27 states,
while in the macro regions meta-analysis the coefficients θ_i were only taken from states pertaining to the macro region.

We ran two sensitivity analyses with different splines parametrizations for each of the exposure-response and lag-response structures. On the first sensitivity analysis, we parameterized the cross-basis with 3 knots (one extra knot compared to the main analysis) equally spaced on the exposure-response structure and again 3 knots equally spaced on the log transformed scale for the lag-response structure. In the second sensitivity analysis we parameterized the cross-basis with 2 knots equally spaced on the dose-response structure and 4 knots placed on the days 1, 2, 7, 14 for the lag-response structure.

All the analyses were run on R statistical Software, version 4.1.2.

Role of the funding source

The funders had no role in any decision about the manuscript. All authors had full access to all the data in the study and RLPS and OTR verified the data, and all authors approved the final version of the manuscript for publication.

RESULTS

Climate data description

A descriptive table (Table S1) of the mean daily temperature for each state, macro regions and the whole country over the ten years period can be found in the supplementary material. The overall temperature range across locations and years covered from -0.09° Celsius to 34.8°
Celsius. Figure 1 gives the distribution of the mean daily temperature for each state.

Figure 1. Mean temperature density distribution over each state. The colours represent each macro administrative region.
Table 1. Characteristics of Dengue Hospitalisation cases

<table>
<thead>
<tr>
<th>Characteristics Variables</th>
<th>Brazil, N = 579,703</th>
<th>North, N = 75,304</th>
<th>Northeast, N = 224,085</th>
<th>Center-West, N = 100,056</th>
<th>Southeast, N = 155,405</th>
<th>South, N = 24,853</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median [p25, p75], years</td>
<td>30 (15, 49)</td>
<td>27 (15, 44)</td>
<td>25 (12, 45)</td>
<td>36 (20, 53)</td>
<td>34 (17, 54)</td>
<td>37 (21, 55)</td>
</tr>
<tr>
<td>Age Categories, years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 1</td>
<td>8,752 (1.5%)</td>
<td>1,309 (1.7%)</td>
<td>4,457 (2.0%)</td>
<td>1,058 (1.1%)</td>
<td>1,726 (1.1%)</td>
<td>202 (0.8%)</td>
</tr>
<tr>
<td>1 to 9</td>
<td>73,507 (13%)</td>
<td>9,401 (12%)</td>
<td>37,354 (17%)</td>
<td>8,438 (8.4%)</td>
<td>16,620 (11%)</td>
<td>1,694 (6.8%)</td>
</tr>
<tr>
<td>10 to 17</td>
<td>91,786 (16%)</td>
<td>12,562 (17%)</td>
<td>41,991 (19%)</td>
<td>12,155 (12%)</td>
<td>22,171 (14%)</td>
<td>2,907 (12%)</td>
</tr>
<tr>
<td>18 to 39</td>
<td>192,819 (33%)</td>
<td>29,153 (39%)</td>
<td>72,769 (32%)</td>
<td>34,330 (34%)</td>
<td>48,002 (31%)</td>
<td>8,558 (34%)</td>
</tr>
<tr>
<td>40 to 59</td>
<td>126,059 (22%)</td>
<td>14,863 (20%)</td>
<td>39,640 (18%)</td>
<td>26,825 (27%)</td>
<td>38,268 (25%)</td>
<td>6,463 (26%)</td>
</tr>
<tr>
<td>60 to 79</td>
<td>71,395 (12%)</td>
<td>6,737 (8.9%)</td>
<td>22,314 (10.0%)</td>
<td>14,656 (15%)</td>
<td>23,494 (15%)</td>
<td>4,194 (17%)</td>
</tr>
<tr>
<td>80+</td>
<td>15,385 (2.7%)</td>
<td>1,279 (1.7%)</td>
<td>5,560 (2.5%)</td>
<td>2,594 (2.6%)</td>
<td>5,117 (3.3%)</td>
<td>835 (3.4%)</td>
</tr>
<tr>
<td>Self-Reported Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>12,467 (3.1%)</td>
<td>1,042 (2.3%)</td>
<td>3,946 (2.7%)</td>
<td>1,187 (1.9%)</td>
<td>5,760 (4.9%)</td>
<td>532 (2.6%)</td>
</tr>
<tr>
<td>Brown</td>
<td>244,869 (62%)</td>
<td>39,925 (87%)</td>
<td>120,476 (81%)</td>
<td>34,973 (55%)</td>
<td>45,113 (38%)</td>
<td>4,382 (21%)</td>
</tr>
<tr>
<td>Indigenous</td>
<td>1,092 (0.3%)</td>
<td>306 (0.7%)</td>
<td>116 (<0.1%)</td>
<td>595 (0.9%)</td>
<td>62 (<0.1%)</td>
<td>13 (<0.1%)</td>
</tr>
<tr>
<td>White</td>
<td>129,031 (33%)</td>
<td>3,893 (8.5%)</td>
<td>19,700 (13%)</td>
<td>24,396 (39%)</td>
<td>65,746 (55%)</td>
<td>15,296 (74%)</td>
</tr>
<tr>
<td>Yellow</td>
<td>9,165 (2.3%)</td>
<td>700 (1.5%)</td>
<td>4,003 (2.7%)</td>
<td>2,116 (3.3%)</td>
<td>1,991 (1.7%)</td>
<td>355 (1.7%)</td>
</tr>
<tr>
<td>(Missing)</td>
<td>183,079</td>
<td>29,438</td>
<td>75,844</td>
<td>36,789</td>
<td>36,733</td>
<td>4,275</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>310,308 (54%)</td>
<td>38,225 (51%)</td>
<td>121,175 (54%)</td>
<td>54,916 (55%)</td>
<td>82,550 (53%)</td>
<td>13,442 (54%)</td>
</tr>
<tr>
<td>Male</td>
<td>269,395 (46%)</td>
<td>37,079 (49%)</td>
<td>102,910 (46%)</td>
<td>45,140 (45%)</td>
<td>72,855 (47%)</td>
<td>11,411 (46%)</td>
</tr>
<tr>
<td>Hospital length of stay, median [p25-p75], days</td>
<td>3.00 (2.0, 4.0)</td>
<td>2.00 (2.0, 3.0)</td>
<td>3.00 (2.0, 4.0)</td>
<td>2.00 (2.0, 3.0)</td>
<td>3.00 (2.0, 4.0)</td>
<td>2.00 (2.0, 3.0)</td>
</tr>
<tr>
<td>Outcome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>3,436 (0.6%)</td>
<td>281 (0.4%)</td>
<td>958 (0.4%)</td>
<td>548 (0.5%)</td>
<td>1,510 (1.0%)</td>
<td>139 (0.6%)</td>
</tr>
</tbody>
</table>
Cases data description:

Table 1 gives a characterization of the data summarised by each macro administrative region. In the overall data the mean age for a hospitalisation by Dengue was 30 years old. There were differences in mean age of hospitalisation by region, ranging from 25 years old in the Northeast region to 37 years old in the South region. The sex ratio was representative of the sex ratio estimates form the national statistics. The crude in-hospital mortality was in general low, with a mortality rate of 0·6% of the total hospitalizations, ranging from 0·4% in the North and Northeast regions to 1·0% in the Southeast region. Figure S1 gives a visual description of the time series for Dengue Hospitalisation for each region.

First-stage Results:

The cumulative overall lags RR curves to the MHT on each state level, for the whole period of analysis, 2010 to 2019 are given in the supplementary material (Figure S2). The majority of the states show an increasing risk of hospitalisation with high temperatures.

Second-stage Results:

Figure 2A and 3, presents the cumulative overall RR accounting for the 21 days of lags, derived from the meta-analysis of the association with temperature and hospitalisation, for the whole country and for each macro-region. The overall curve (Figure 2A) shows that the risk of dengue hospitalisation is minimal for the lowest temperature, and steadily increases up to more than a 40% increase at the highest temperatures. Figure 2B and 2C, present the lag effects for the 50th (23·96º C) and 95th (28·68º C) percentiles of mean temperature distribution for Brazil, showing that the association is mainly observed on the same day (lag 0), with a greater than 2-fold
increase in risk. The lag effects for each macro-region are shown on supplementary material,

Figure S3, S4, S5, S6 and S7. A summary of the RR and MHT for Brazil and each macro-region is shown in **Table 2.**

Figure 2. A) Cumulative overall lags RR for the relationship between Dengue hospitalisation and mean temperature, relative to the MHT. Vertical traced lines mark the 50th (Blue) and 95th (Red) percentile of the temperature distribution. The grey shade represents the 95% confidence interval derived from the meta-analysis. B) Lag effect to the RR to the MHT of Hospitalisation due to Dengue on the 50th (23.96°C) percentile of temperature. C) Lag effect to the RR to the MHT of hospitalisation due to Dengue on the 95th (28.68°C) percentile of temperature.
Figure 3. Cumulative overall lags RR for the relationship between Dengue hospitalisation and mean temperature, relative to the MHT. Each panel is the result of a meta-analysis model run over the estimates for all states that pertains to a given macro administrative region. Order by region is given by latitude extent.
Table 2. Dengue hospitalisation relative risk by Brazil and each macro-region

<table>
<thead>
<tr>
<th>Unit</th>
<th>MHT (°C)</th>
<th>RR (CI 95%) 50th (23·96°C)</th>
<th>RR (CI 95%) 95th (28·68°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>10·8</td>
<td>1·404 (1·274-1·548)</td>
<td>1·491 (1·337-1·664)</td>
</tr>
<tr>
<td>North</td>
<td>22·8</td>
<td>1·153 (1·026-1·295)</td>
<td>1·256 (1·039-1·518)</td>
</tr>
<tr>
<td>Northeast</td>
<td>19·7</td>
<td>1·196 (1·091-1·312)</td>
<td>1·255 (1·059-1·488)</td>
</tr>
<tr>
<td>Center-West</td>
<td>17</td>
<td>1·303 (1·093-1·553)</td>
<td>1·460 (1·198-1·779)</td>
</tr>
<tr>
<td>Southeast</td>
<td>13·7</td>
<td>1·353 (1·171-1·563)</td>
<td>1·498 (1·298-1·729)</td>
</tr>
<tr>
<td>South</td>
<td>7·4</td>
<td>2·723 (1·447-5·125)</td>
<td>2·508 (1·362-4·618)</td>
</tr>
</tbody>
</table>

* Relative Risk to the Minimum Hospitalisation Temperature of hospitalisation due Dengue

** Minimum Hospitalisation Temperature, on Celsius degree

Sensitivity analyses

Overall, the sensitivity analysis results were comparable with the main analysis. From the meta-analyses, on the 50th percentile for whole Brazil aggregation the RR was 1·629 (1·276-2·079) and 1·405 (1·274-1·549), for the first and second sensitivity analysis parametrization, respectively. On the 95th percentile they were 1·780 (1·354-2·339) and 1·495 (1·344-1·663), respectively. These results are shown on Table S2 and Figures S8 and S9, in the supplementary material.

Discussion:

We ran a two-stage time stratified design study to assess the association between hospitalisation by Dengue disease and ambient temperature. Our main findings are that there is a higher risk of being hospitalised by Dengue as the temperature gets higher. In a quantitative way, in general for Brazil, after 20 degrees Celsius, the risk is 1·2x higher than for the minimum temperature.
observed, which coincides with the MHT. This is the cumulative effects of lags up to 21 days before the date of hospitalisation. We found a stronger immediate effect on the RR to the hospitalisation. We found the same patterns over each macro region of Brazil for the general association between RR hospitalisation and ambient temperature.

In comparison with the literature, we see that, in general, higher temperature is related to an augmented RR of mortality and hospitalisation by any causes2,3,22,23. There is scarce literature on the association between temperatures and hospitalisation by an infectious disease. Our study is the first, to our knowledge, to measure an association between temperature and hospitalisation by dengue directly.23,24 We did not observe a typical U-shaped or J-shaped curves observed in the majority of studies looking for all-cause and cause-specific hospitalisations.24,25 Some specific features of Dengue could explain this difference. First, its progression to severe disease is highly linked with factors that would be aggravated as the temperature increases. Second, the observed days with relatively low temperature are not frequent in Brazil and the incidence of the Dengue disease, of any severity, is much lower during cold months, therefore limiting the power to observe a potential effect of cold temperatures on Dengue hospitalisations. This reflects an additional challenge of studying climate variables and vector-borne infectious diseases severity, among others.26

Overall in the country and in each of the macro regions, the extreme heat had an effect of increasing the severity of cases, which evolved to a necessity of a hospitalisation. Quantitatively, the South region had the highest RR to its own MHT overall regions, with 1.5x higher risk on
the 95th percentile of its distribution of temperatures. This might be explained by the fact that the South region has the lowest MHT and the wider range of temperature in comparison to all other regions. The difference observed for the South could also reflect differences in the mosquito life cycle, human behaviour and Dengue mitigation strategies. A direct comparison between regions is not straightforward because of regional disparities. Although Brazil has a universal access health system (SUS), which has great disparities over geographical distribution. Thus, we might expect that regions with more hospital beds per population, such as South and Southeast, would hospitalise milder cases compared with regions with fewer hospital beds. This is also important during massive Dengue outbreaks, where the threshold for hospitalisation might change according to beds availability.

Several mechanisms can play a role in the observed overall association and lag effects. The immediate effect generating the first peak on lag-0 is expected and observed in the majority of studies evaluating temperature and heat waves and hospitalizations and deaths. It reflects an immediate worsening of the clinical condition due to high temperature. This sharp increase on lag-0 reinforces that our results is a direct effect of ambient temperature on hospitalisation risk, rather than the indirect effect of temperature on mosquito activity and increased risk of dengue incidence, association usually present in the scale of months. Another mechanism is that Dengue has a natural evolution of 1 to 3 days of incubation period, and more 5 to 7 days to complete clearance. If an individual is exposed to higher temperatures during the viral infection evolution this can lead to more severe infection, as seen a potential late lag-effect on some regions. Finally, the decrease on the RR following the immediate effect could be due to a depletion of susceptible ("harvesting effect"). This mechanism is reported for the lag between temperature and deaths,
but also has been hypothesised in another study evaluating temperature and other seasonal infectious diseases such as hand, foot and mouth disease34. If harvesting was the only explanation for the observed association, then the increase in hospitalizations observed on the hot day would just represent an advancement of a few days, because of heat, of hospitalizations that would have occurred anyway a few days later in the absence of heat. In that case, the overall RR cumulated over all lags will be close to 1. In our study, we observe important increases in the RR cumulated over three weeks, suggesting that these represent extra hospitalisations that would have not occurred in the absence of high temperatures. Interestingly, the South and Center-West regions present significant associations at later lags, see Figures S5 and S7. When varying the points for the knots in a sensitivity analysis, lag-effects were less prominent, increasing the likelihood of collinearity explaining this finding.35

Our study has some strengths. We evaluated a nationwide database providing a 10 year time-series of Dengue hospitalizations in a LMIC exposed to a wide temperature range. Ambient temperature from reanalysis products from ERA5-Land are the state-of-the-art in climatology,32,33 as the framework applied for data analysis, accounting for dose-response and lag-response structures and correlated daily data on temperature21,36. This has great generalizability to many other LMIC countries with great burden of Dengue and provides support to public health measures.

Our study has limitations to be mentioned. First, we did not evaluate other factors that could modify the high temperature effects, such as green space, urbanisation and relative humidity. In the same extension, we did not evaluate individual factors, such as age and sex, that could show different effects of temperature and risk of Dengue hospitalization in vulnerable populations.
Second, we obtained estimates for 27 states and pooled them for Brazil and each corresponding macro-regions. States from the same macro-region will have similar climate as well a similar Dengue incidence. This guarantees that they were likely comparing states with similar conditions for mosquito transmission as well hospitalisations conditions. Although this analysis respected administrative divisions, it might not be generalizable to some municipalities. Finally, we considered hospitalisation due to Dengue as a surrogate of severe Dengue without evaluation of clinical severity using defined clinical criteria.

Conclusion

We found an increased risk of Dengue hospitalisation due high temperatures in Brazil for a ten years period, 2010-2019. This increased risk varies over the whole extension of Brazil and between macro-regions. With the findings presented here we hope the climate variability of Brazil can be taken into account when public health measures are designed to curb and mitigate the impacts of Dengue on the population.

Acknowledgements:

The authors thank Carles Milà for the advice on ERA5-Land data management. The authors also thank the research funding agencies: the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -- Brazil (Finance Code 001 to RLPS), Conselho Nacional de Desenvolvimento Científico e Tecnológico -- Brazil (grant number: 141698/2018-7 to RLPS). OTR is funded by a Sara Borrell fellowship (CD19/00110) from the Instituto de Salud Carlos III. We acknowledge
support from the Spanish Ministry of Science and Innovation through the Centro de Excelencia Severo Ochoa 2019-2023 programme and from the Generalitat de Catalunya through the Centres de Recerca de Catalunya (CERCA) programme. The funding agencies had no role in the conceptualization of the study.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Contributors

RLPS, OTR and XB participated in the design and concept of the study. RLPS analysed the data. RLPS wrote the first version of the manuscript. XB, LSLB, FAB and OTR revised the manuscript with important intellectual contributions. XB and OTR supervised the study. All authors had full access to all data in the study, participated in data interpretation, revised the manuscript, and approved the final version of the manuscript for publication. RLPS and OTR verified the underlying data.

Declaration of interests

We declare no competing interests.

Data Availability Statement:

All data used in this study are publicly available. Hospitalisation data is available at http://sihd.datasus.gov.br/principal/index.php, and temperature at https://cds.climate.copernicus.eu/#/home. The code to reproduce this analysis is available at: https://github.com/rafalopespx/dengue_t2m_severity_paper
References:

