The mobilome associated with Gram-negative bloodstream infections: A large-scale observational hybrid sequencing based study

Samuel Lipworth1,3*,5, William Matlock1*, Liam Shaw2, Gillian Rodger1, Kevin Chau1, Leanne Barker1, Sophie George1, James Kavanagh1, Timothy Davies1,3, Alison Vaughan1, Monique Andersson1, Katie Jeffery3, Sarah Oakley1, Marcus Morgan1, Susan Hopkins3, Timothy Peto1,3,5, Derrick Crook1,3,5, A. Sarah Walker1,3, and Nicole Stoesser1,3,5

Plasmids carry genes conferring antimicrobial resistance (AMR), and other clinically important traits; their ability to move within and between species may provide the machinery for rapid dissemination of such genes. Despite this, existing studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to those carrying particularly antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections (BSI) in 2009 (194 isolates) and 2018 (368 isolates) in Oxfordshire, UK, plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to host species, although there is substantial overlap between species of plasmid gene-repertoire. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative ‘backbone’ of core genes with those carrying no such genes. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.

Plasmids | Antimicrobial resistance | E. coli | Klebsiella

Correspondence: samuel.lipworth@ndm.ox.ac.uk

Introduction

Gram-negative bloodstream infections (BSI) are associated with substantial morbidity and mortality; their incidence continues to increase both in the UK and globally(1, 2). Multidrug-resistant and hypervirulent phenotypes are a particular concern, especially since genes conferring these characteristics (and others which may have either positive or negative fitness effects) are carried on plasmids, frequently in association with other smaller mobile genetic elements(3, 4). Plasmids are thought to facilitate the rapid dissemination of these genes within and between species and a detailed understanding of their biology and epidemiology is therefore likely to be crucial in tackling the global threat of antimicrobial resistance (AMR).

It is impossible to assemble most plasmids from short read sequencing data alone, meaning that until relatively recently their epidemiology could only be studied using marker genes(5, 6) or prediction algorithms trained on reference databases(7), which attempt to classify contigs as being of chromosomal or plasmid origin. Such studies have suggested an association between plasmid replicon types and particular bacterial sequence types (ST)/AMR phenotypes, for example: Q-type plasmids with ST69 Escherichia coli(8), FIA-type plasmids with drug-resistant ST131 E. coli isolates(9), and L/M-type plasmids with the Europe-wide dissemination of blaOXA-48(3). However, these methods have substantial limitations, meaning that it is difficult to make reliable inferences from most existing datasets(10).

Long-read sequencing technologies (e.g., PacBio/Oxford Nanopore Technologies) enable the reconstruction of complete genome assemblies, but a relatively high error rate has previously limited their application to high-resolution comparative analyses. Combining both long and short read sequencing data as “hybrid assemblies” overcomes these limitations, but has been, until recently, prohibitively expensive for large-scale application. Whilst this approach has recently been used at scale to evaluate the plasmidome of environmental/agricultural isolates(11), to our knowledge, its application to human-associated isolates has been mostly restricted to AMR-associated plasmids and/or small outbreaks(3, 12). Recently, two studies have demonstrated the utility of network-based approaches to classify plasmid assemblies from public databases, offering insights into the host range of these plasmids, though such analyses suffer from sampling bias as well as a lack of clinical context and accurate metadata(13, 14). Therefore, the plasmidome associated with Gram-negative isolates causing both antimicrobial susceptible and sensitive clinical infections remains largely uncharacterised.

In this study, we generated a large collection of complete E. coli/Klebsiella spp. genomes from all BSIs collected in 2009 and 2018 in Oxfordshire, UK, as well as a representative sample from intervening years. Using network-based classification, we provide the most comprehensive description to date...
of the epidemiology and pangenome dynamics of plasmids associated with *E. coli*Klebsiella spp. BSIs.

Results

We successfully sequenced *n*=738 isolates of which 75% (553/738) were *E. coli* (*n*=153, 297, 103 in 2009, 2018, intervening years, respectively), 22% (161/738) *Klebsiella* spp. (*n*=39, 58, 64 in 2009, 2018, intervening years, respectively) and 3% (24/168) other Enterobacteriales spp (details in Figure S1). In total, these isolates carried 1,880 plasmids with a median of 2 plasmids per isolate (interquartile range (IQR) 1-3); 10% (77/738) isolates carried none. Further, 50% (368/738) isolates carried at least one plasmid-borne AMR gene; of these, 83% (304/368) carried all annotated ARGs on a single plasmid. *Klebsiella* spp. isolates tended to carry slightly more plasmids than *E. coli*: median 2 (IQR 1-5) vs (median 2 (1-3) plasmids respectively (Kruskal-Wallis, *p*-value=0.03; Figure 1a), as did multi-drug resistant (MDR i.e., carriage of ≥3 ARG classes) vs. non-MDR isolates: (n=317/738 vs. n=421/738 isolates; median 3 (IQR 2-4) vs. median 2 (1-3) Kruskal-Wallis, *p*-value<0.001). Of the n=661/738 isolates with at least one plasmid, 77% (508/661) carried at least one large plasmid (i.e., sequence length >100,000bp), and 94% 621/661) at least one large or medium plasmid (i.e., sequence length >10,000bp); of these 53% (329/621) also carried at least one small plasmid (i.e. sequence length <10,000bp). In isolates with a medium or large plasmid, co-carryage of a small plasmid was significantly more common in isolates harboring plasmid-borne ARGs 58% (210/361) vs. 46% (119/260) without (Fisher test, *p*-value=0.003). Carriage of one or more small plasmids in the absence of any medium or large plasmid was relatively rare at 6% (40/661).

Despite comprising a relatively small proportion of the total genome (median=2.79%, IQR=1.97-3.97%), plasmids carried 39% (2069/5311) ARGs, 12% (987/8315) virulence genes and 60% (2836/4735) stress response genes. Large/medium plasmids (>10,000bp) were significantly more likely to have a toxin-antitoxin system 76% (789/1036 vs 1% (10/844) small plasmids, Fisher-test *p*-value=0.001) as were large plasmids with at least one ARG compared to large plasmids without 92% (377/412) vs 66% (412/627), Fisher-test *p*-value=0.001. Previous studies have suggested that plasmids with a lower GC content relative to the host chromosome (i.e. a more negative GC-gap) are generally favored, but the host chromosome seems to tolerate a higher GC content where the plasmid contributes a potential fitness advantage (e.g. ARG carriage).11 This was confirmed in our study; plasmids with at least one ARG tended to have less difference in GC content relative to their host chromosome (median +0.25 (IQR -2.5 to +1.41) vs -3.21 (IQR -6.27 to -0.39), *p*-value=0.001). Extending these previous observations, we found that the presence of a toxin-antitoxin system was associated GC-content which was more similar to the host chromosome (median GC-gap 0.32 (IQR -1.85 to +1.38) with vs -1.42 (IQR -5.24 to +1.84) without toxin-antitoxin system) and non ARG-carrying plasmids (median GC-gap -1.11 (IQR -4.60 to -0.44) with vs -3.48 (IQR -6.91 to +1.11) without toxin-antitoxin system (p<0.001), perhaps because these systems protect plasmids from segregational loss and thus there is less need for adaptive evolution (Figure S2). Prominent toxin-antitoxin systems in larger ARG-containing plasmid groups included the *hok/sok, ccdA/ccdB* and *peml pemK* systems (Figure S3).

Hybrid assembly demonstrates the limitations of existing typing schemes

Of the 738 chromosomes, 12 (2%) had at least one plasmid replicon type assigned. At the plasmid-level, 17% (317/1880) plasmids could not be assigned a replicon type and 33% (622/1880) had no identifiable relaxase-type. Similarly 26% (487/1880) plasmids were not typable using the recently described Plasmid Taxonomic Unit (PTU) scheme. Whilst overall there was a strong correlation between the number of plasmids in hybrid assemblies and replicon types detected in the short read assemblies (Pearson correlation 0.83, 95%CI 0.81-0.86, *p*-value=0.001), there were a substantial number of isolates 69% (507/738) for which counting replicon types misrepresented the true number of plasmids, consistent with the presence of multi-replicon plasmids (Figure 1b). There was substantial genomic diversity encompassed within plasmid groups as classified using replicon typing (Figure 1c), highlighting the lack of resolution around relatedness provided by this approach to grouping. As an example, of the 47 replicon types seen ≥5 times, there were 10 (21%) cases (all Col-type except for a group of Inc1-1-alpha plasmids) where there were no genes classed as core or soft-core (present in ≥99% and ≥95% plasmids respectively) (Figure S4). This may also reflect limitations of existing software for annotation of small plasmids.

Louvain clustering of plasmids based on Mash distances

Given the limitations of existing typing methods described above, we opted to use a previously described classification system which utilizes a graph-based Louvain community detection algorithm.15 This approach performed optimally (i.e. assigned the maximum number of isolates to larger [n≥10 isolate] clusters) when the graph was sparsified at an edge weight of ≤0.551 prior to community detection (Figure S5); this parameter was used for all subsequent analyses. Louvain-based clustering has the advantage of not being reliant on reference databases for group assignation and is thus able to classify all plasmids into groups. It had good agreement with previously described classification methods using normalised mutual information (NMI; see Methods): replicon-typing NMI=0.81, relaxase-typing NMI=0.93, plasmid taxonomic unit (PTU) NMI=0.81.

Distribution of plasmid groups within and between species

The Louvain-based clustering approach yielded 513 groups from 1880 plasmids, of which 164 (32%) contained ≥1 plasmid, but only 33 (6%) contained ≥10 plasmids, and most were singletons (349/513 (68%)). Overall, 141/513 (27%) group were found in ≥1 MLST and 22/513 (4%) were found in more than one species; multi-species groups had ≥10 members significantly more commonly (8/22 (36%) vs
25/491 (5%), p<0.001) (Figure 2). 322/553 (58%) E. coli isolates carried a plasmid from one of the four most common, predominantly E. coli-associated, large (≥100,000bp) plasmid groups (4/6/7/8 in Figure 2) and similarly 76/161 (47%) Klebsiella spp. isolates contained a plasmid from one of the three most common, predominantly Klebsiella spp.-associated, large plasmid groups (1/2/5 in Figure 2). Rarefaction analysis suggested that a substantial number of plasmid groups remain unsampled and that there is a significantly greater diversity amongst groups containing smaller (<100,000bp) vs larger (≥100,000bp) plasmids (Figure S6).

We found strong evidence that the plasmidome of bloodstream isolates was structured by host phylogeny, although there was also vast and persistent background diversity. Sequence type and host species explained 8% and 7% (Adonis p=0.001 for both) of the observed plasmidome variance respectively. ARG content explained a smaller amount of variance (R2=2%, p=0.001), whereas year of isolation (0.03%, p=0.005) and source attribution (R2=1.2%, p=0.99, i.e. suspected focus of infection, only available for a small subset of isolates) explained very little of the variance (Figure 3, panels a, b, c and d respectively).

In common E. coli STs, just over half of plasmids are represented in generalist plasmid groups observed across STs, and are linked with persistence across a decade. Plasmids may facilitate rapid adaptation to a niche, however, different STs of the same species may adapt to the same niche differently. We therefore investigated the plasmidome of the main E. coli STs in detail. We considered only the three most prevalent E. coli STs in the years 2009 and 2018: ST73 (n=80 isolates), ST95 (n=55), and ST131 (n=44). The 179 isolates in these STs contained 400 plasmids clustered in 109 groups, with 161 (90%) isolates carrying at least one plasmid. Most plasmid groups were seen in only a single ST (78/109) but 13 ‘generalist’ groups were seen in all three STs, and accounted for the majority of plasmids (215/400 (54%)). Of the 78 ST-restricted plasmid groups, only five were seen in both 2009 and 2018 (three in ST73, two in ST95). Within each ST the plasmidome was significantly but weakly correlated with phylogeny for both shared genes and shared plasmid groups (Spearman’s p ranging from -0.1 to -0.2, p<0.001; Figure S7). The exception to this was plasmid gene content in ST131 (Spearman’s p=-0.01, p=0.7), which may reflect distinct plasmidome dynamics in ST131 compared to other prevalent STs (Figure S8). Highly similar plasmidomes were seen in genetically divergent members of each ST, consistent with multiple horizontal transfer events. Persistent plasmid groups seen in both 2009 and 2018 were also seen in more phylogenetically diverse isolates within STs (Figure S9), consistent with the hypothesis that the persistence of plasmids is linked to their host range potential.

Common plasmid groups share genes with each other; gene sharing with chromosomes is also frequent
Most genes in the pangenomes of common plasmid groups of E. coli and Klebsiella spp. (i.e. containing n≥10 plasmids) were non-unique to their group (median % non-unique genes 88%, IQR 67-98%). Most overlap occurred amongst genes found in the plasmid pangenome from the same species (median % shared genes 86% (IQR 50-95%) vs 31% (8-43%)
Fig. 2. Phylogenetic distribution of the most common (n≥10 members) plasmid groups (n=33 groups) and the content of these. The tree is a neighbour joining tree built on Mash distances between chromosomes. Tip colours represent species/ST/phylogroup. The black bars represent the presence or absence of plasmid groups (shown along the bottom x-axis) for each isolate in the tree. The right panel shows the percentage of isolates within each of these 33 plasmid groups carrying the genes indicated (darker colours denote higher proportion of isolates carrying gene). To improve readability, gene groups have been clustered together.

Fig. 3. A Umap projection of the mash distances between the plasmidomes of isolates (each point represents the plasmidome, i.e. all plasmid sequences of a single isolate). These are coloured to show the variability explained by species (A) ARG carriage (B) year (C) and infection source (D).

from different species, p<0.001). There was also substantial overlap between plasmid group pangenomes and the chromosome pangenome, although there was some evidence of convergence in the chromosomally integrated mobilome between species, evidenced by less difference in the proportion of genes shared with the chromosome for same vs different species (Figure S10, median 33% (IQR 0-45%) vs 21% (0-35%), respectively p=0.34).

Common plasmid groups have variable patterns of antimicrobial resistance, virulence and stress response genes, but plasmids carrying ARGs often share a puta-
tive backbone with those carrying no ARGs

Common plasmid groups across all species (n=33 groups with ≥10 plasmids) could be categorised as: (i) devoid of antibiotic resistance/stress/virulence genes (13 groups, 11 with small (<10,000bp) plasmids/2 with medium (10,000-99,999bp) plasmids) n=272 plasmids in total, (ii) associated with ARGs but not virulence/stress response genes (8 groups, 1 with large (>100,000bp)/3 with medium/4 with small plasmids, n=211 plasmids in total) and (iii) associated with both ARGs and virulence/stress response genes (11 groups, 6 with large/4 with medium/1 with small plasmids, n=586 plasmids in total). Most plasmid-borne ARGs were carried by plasmids clustering in a small number of groups (i.e. 1721/2069 (83%) ARGs were carried by 10 plasmid groups). The 439 plasmids carrying at least one ARG were predominantly large (≥100,000bp, 277/439, 63%), low copy number (median 1.80 IQR 1.63-2.37) and conjugative (347/439, 79%). There was a single plasmid group (n=33 plasmids) in a local K. pneumoniae outbreak clade (ST490) which was notable for having the largest plasmid genome (median 224,365bp) and carriage of three stress response gene groups (sil (silver resistance), pco (copper resistance) and hsp (head shock protein)) but no antibiotic resistance/virulence genes (the only group >100,000bp where this was true).

In E. coli, plasmid groups 3 and 6 (over-represented in ST131, Table S1), 7 (in ST73), and 8 (in STs 131/69/95) were notable for their carriage of multiple ARGs (including ESBL and aminoglycoside resistance genes) as well as ammonium and mercury resistance, the enterotoxin senB and genes involved in iron chelation. Group 4 plasmids, which were over-represented in a subset of ST95 isolates, appeared to have similar ARG repertoires, and were additionally associated with carriage of genes encoding colicin V. Group 2 plasmids carried multiple ARGs (including ESBL/gentamicin resistance-conferring genes) across K. pneumoniae lineages (and also one K. oxytoca isolate) as well as multiple genes involved in heat/heavy metal/ammonium resistance.

Whilst seven out of eight common plasmid groups with median size >100,000bp contained ARG-associated plasmids, the extent of ARG carriage was highly variable within these groups. Of the 417 plasmids in these seven common ARG-associated groups, 150 (36%) carried no ARG, highlighting that acquisition of ARGs in ARG-negative plasmid backbones represents a common risk across genetically divergent plasmid groups. ARG carriage was ubiquitous in all K. pneumoniae ST490 members of group 5 (comprising 41/42 members of this group and likely contributing to the success of this local outbreak strain); all other large groups contained multiple members carrying no ARGs.

Hybrid assembly reveals complex nested diversity associated with key AMR genes, significant chromosomal integration of ARGs and presence of multiple copies in different contexts

Chromosomal integration of ARGs was common: for example, in E. coli, 56% (23/41) blacTX-M-15, 9% (2/22) blacTX-M-27, 14% (42/293) blatEM-1, 42% (14/33) blaqXa-1, 39% (7/18) aac(3)-IId and 5% (3/65) dfrA17 were chromosomally integrated. There was significantly more chromosomal integration of ARGs also seen at least once in a plasmid in our study in E. coli vs Klebsiella spp. (restricting to 2009 and 2018 only 15% [324/2103] vs 8% 39/478 [8%], Chi-squared test p<0.001). For E. coli, there was significantly more chromosomal integration in 2018 vs 2009 (19% [285/1485] vs 6% [39/618], Chi-squared test p<0.001) but there was no evidence of this for Klebsiella spp., 7% [13/190] vs 6% [17/279], Chi-squared test p=0.89. For most of these ARGs, there were multiple instances of isolates carrying two (and occasionally more) copies (9 such examples for blacTX-M-15 (Figure 4), 1 blacTX-M-27, 29 blatEM-1, 2 aac(3)-IId and 1 dfrA7).

Given the global importance of the ESBL gene blacTX-M-15 conferring third generation cephalosporin resistance, we focused on its genetic background and putative dissemination mechanisms. As above, plasmid groups carrying this gene in our dataset were generally species constrained. However, within a single species, considering phylogroup, sequence type and even plasmid group, blacTX-M-15 was found in a variety of genetic contexts (Figure 4). For example, in E. coli ST131 it was found in five plasmid groups and was chromosomally integrated in 41% (17/41) isolates (Figure 4). Within ST131 sub-clades, there was some evidence of vertical transmission, as well as numerous independent integration events (Figure 4). In many cases, several unique gene flanking regions were found in association with blacTX-M-15 within a single plasmid group, or identical flanking regions were shared across plasmid groups and between plasmid groups and chromosomes (Figure 4). Visual inspection of gene flanking regions and hierarchical clustering of a weighted graph (methods: bioinformatics) suggested that whilst there was substantial diversity, these flanking regions appear to have evolved in a stepwise manner with bilateral association of blacTX-M-15 and Tn2 in flanking groups 2, 3 and 6 compared to the presence of Kpn14 (groups 1 and 5) and IS26 (group 4) (Figure S11). Inspection of core-genome phylogenies of the two largest blacTX-M-15 carrying plasmid groups (plasmid groups 2 and 3 in Figure 2) demonstrated multiple probable independent horizontal acquisition events of this gene (and other ARG cassettes Figure S12 and Figure S13), suggesting that their presence is not the sole factor driving dissemination of the host plasmid.

Comparison with wider plasmid datasets highlights undersampled plasmid diversity, more widespread interspecies and inter-niche plasmid sharing, and the potential for carbapenemase dissemination amongst ‘high-risk’ plasmid groups

We repeated our graph-based plasmid clustering method on a combined dataset of Oxfordshire plasmids (N=1880) and the Acman collection of plasmids deposited in the NCBI (N=10,159) using the same sparsifying threshold (≤0.551, denoted the ‘global dataset’ vs the ‘Oxfordshire dataset’ in previous sections). This yielded 5913 groups of which 484 contained at least one plasmid from the ‘Oxfordshire
dataset'; of these, 326 groups (67%) containing 536 plasmids appeared to be unique to Oxfordshire. 79/484 (16%) of groups containing Oxfordshire plasmids were found in more than one species in the full dataset; of these 57 (72%) occurred in only a single species in the Oxfordshire dataset, highlighting the substantial underestimation of wider between-species dissemination by investigating only a single region and single source (i.e. bloodstream infections).

A striking feature of the global network was that plasmids carrying carbapenemase genes clustered with those that did not (Figure 5). Of 122 plasmid groups with at least one member carrying a carbapenemase gene, 19 (16%) contained at least one Oxfordshire plasmid. These included representatives from the K. pneumoniae MDR-associated Oxfordshire BSI dataset groups 2 and 5 (Figure 2), three large groups (Figure 2 groups 3/6/8) widely distributed amongst E. coli isolates and two groups of smaller plasmids (<100,000bp, Figure 2 groups 10 and 12), also widely distributed in Oxfordshire E. coli. Although only 2% (7/414) Oxfordshire plasmids falling into these groups actually carried a carbapenemase ARG, this suggests the potential for carbapenemase acquisition and dissemination amongst widespread “high-risk” plasmid backbones.

Factors predictive of plasmid group “success”

Finally, we sought to understand factors associated with plasmid “success”. Multivariable Poisson regression analysis revealed that plasmid group frequency (a subjective marker of evolutionary “success”) was associated with isolation in multiple species, capacity to conjugate or mobilise (i.e. containing either a relaxase or oriT but missing a mate-pair formation marker), carriage of multiple AMR/virulence/stress genes/replicons and a higher GC content (Table S2). Carriage of ARGs (adjusted Odds Ratio, aOR=2.88 (95%CI 1.53–5.41, p<0.001) and isolation in multiple species (aOR=7.79, 95%CI 3.07-22.90, p<0.001) were independently associated with a higher probability of plasmid groups being observed internationally (Table S3).

Given these findings and the obvious clinical relevance of ARG carriage, we also performed a logistic regression analysis (corrected for population structure) to identify genes associated with plasmid-borne ARGs. This revealed significant associations between presence of plasmid-borne ARGs and presence on the same plasmid of insertion sequences, toxin/anti-toxin systems, class 1 integrases and mercury resistance genes (Table S4).
Discussion

In this study, we fully reconstructed 738 isolates (1880 plasmids) to conduct the largest, most unselected and comprehensive evaluation of the epidemiology and function of plasmids associated with Gram-negative isolates causing bloodstream infections to date. Most isolates in this study carried a large plasmid from a small number of plasmid groups. These were frequently, but not invariably, associated with carriage of multiple antibiotic resistance, virulence and heavy metal resistance genes, providing survival and fitness benefits to the host bacterium but also carrying toxin-antitoxin systems to reduce the chance of plasmid loss.

To date, most similar sequencing studies have focused on plasmids carrying particular ARGs (particularly those with ESBL/carbapenem resistance genes). In this study we demonstrate that these plasmids frequently cluster in large, widely disseminated groups with plasmids without these genes, representing a potential “high-risk” reservoir for acquisition and horizontal spread. The fact that these plasmid groups are also often associated with multiple ARGs from different classes reinforces the importance of good antimicrobial stewardship and avoiding unnecessary exposure to all classes of antibiotics to control co-selection as much as possible. We hypothesise that plasmid adaptation to co-exist with successful lineages often occurs prior to the acquisition of high-risk ARGs, presenting a potential window of opportunity for intervention which is lost if one is solely focused on the presence of these genes. Our data should therefore motivate a shift away from targeted surveillance of selected genotypes or phenotypes towards efforts to identify and track high-risk plasmid groups or other smaller mobile genetic elements. Our results clearly illustrate that such a new surveillance framework must incorporate unselected sampling frames. Notably we found an association of small plasmids and medium/large ARG-associated plasmids, suggesting that they may play an important helper role in ARG plasmid persistence/spread, and a more detailed understanding of this possible synergy could be valuable(16).

Whilst plasmid populations were structured, and plasmid groups where mostly constrained to a single species and in some cases species lineages in Oxfordshire, there was also clear evidence of exchange between lineages of a species and different species. Enterobacterales are widely distributed...
as commensals and in multiple environmental sources; our study sample is thus extremely sparse relative to the whole ecology. Even where we found no evidence that certain plasmids were shared between species in Oxfordshire, our data demonstrated widespread sharing of the plasmid gene repertoire (including ARGs and their flanking regions) with plasmids and chromosomes in other species. The unexpectedly high proportion of isolates with chromosomally integrated ARGs (and apparent increase across the study period for *E. coli*) may either represent a success of plasmids in conferring survival benefits to their host while lowering their own associated fitness cost or a success of the host by lowering its dependence on the presence of the plasmid. Limitations of this study include the fact that is from a single region, mitigated in part by comparisons with publicly available datasets, and the inability to sequence and/or assemble all plasmids from the selected cohort. Sequencing only bloodstream infection isolates may lead to underestimation of how much sharing of plasmids between species truly occurs given that this represents a highly selected subset of isolates causing severe disease. This is supported by our analysis of the large publicly available dataset, which demonstrated that several groups found only in a single species in our study have previously been seen in other species. Our results also highlight the substantial limitations of previous studies using reference database-based approaches for plasmid typing and demonstrate that fully reconstructed genomes (i.e. long read sequencing data) are essential in order to provide meaningful insight.

In conclusion our study provides the first high-resolution description of the plasmidome associated with *E.coli*/Klebsiella spp. bloodstream infections and demonstrates that using long-read data and unselected sampling frames is essential in order to fully appreciate its complexity. Previous studies of plasmid epidemiology in Gram-negatives have primarily focused on MDR/carbapenemase-carrying isolates; our finding that non-ARG carrying plasmids are often highly similar to plasmids isolated in these earlier studies demonstrates the potential for rapid dissemination of ARGs to settings where they are currently rare. We recommend that surveillance is based on unselected sampling frames, long-read sequencing and considers plasmids and smaller mobile genetic elements to develop a representative understanding of the horizontal gene transfer landscape to facilitate appropriate intervention.

Methods

Isolate selection

We have previously reported analyses of short read sequencing data from *E. coli* and *Klebsiella* spp. bloodstream infection isolates in Oxfordshire between 2009 and 2018 as described previously[17, 18]. In this study, we additionally sequenced all *E. coli* and *Klebsiella* spp. isolates from 2009 and 2018 using Oxford Nanopore Technologies. We also sequenced a subset of isolates from intervening years, using stratified random sampling based on analysis of short-read data to capture maximum plasmid diversity. Additionally we selected isolates from clinically important local AMR-associated outbreaks and representatives of other species with apparently similar plasmidomes. Details of successfully sequenced isolates, those excluded and the stratification and selection methods are available in the appendix.

Sequencing

DNA for long-read sequencing was extracted either using Qiacgen Genomic Tip/100G according to the manufacturer’s instructions, or with the BioMerieux Easymag using the manufacturer’s generic short protocol with a final elution volume of 50µl. The Qubit 2.0 Fluorometer was used to quantify DNA. Sequencing libraries were prepared using the Oxford Nanopore Technologies Native (n=23) and Rapid (all other) barcoding kits, according to the manufacturer’s instructions. Sequencing was performed on Gridlons with R9.4 flowsells, which were reused multiple times utilising the ONT Flow Cell Wash kit and our previously validated protocol[19]. Illumina (short-read) data was created as previously described[18].

Bioinformatics

Reads were first base-called and demultiplexed using Guppy (v3.1.5, Oxford Nanopore Technologies) with Deepbinner[20] (v0.2.0) subsequently used to recover additional unclassified reads as previously described[19]. Our strategy for hybrid assembly is depicted in Figure S14. We first assembled all isolates using Unicycler[20] (–mode bold) with the raw Illumina and ONT reads as input. In parallel we performed another assembly where Unicycler was given an assembly graph from Flye[21] (run with –plasmids – meta and reads which had been polished using Ratatosk[22]) and short reads pre-processed by Shovill[23]. The most contiguous assembly of these was used (or the latter if both were complete). If neither hybrid assembly completed then we used the Flye assembly (with four subsequent rounds of Pilon[24] polishing) if this was complete. Incomplete assemblies (where ≥1 replicon [i.e. either plasmids or the chromosome] had >1 contig) were excluded from further analysis (n=215).

Rarefaction analysis with performed using the R library Micropan[25]. Annotation of genes was performed using AMRFinder Plus[26], ABRicate[27], TADB 2.0[28] and Prokka[29]; custom/manually augmented databases (available at www.github.com/samlipworth/GN_BSI_Hybrid) were used for the latter two to attempt to improve the proportion of annotatable toxin-antitoxin systems/plasmid associated genes respectively. GC content and predicted mobility were extracted from Mobsuite output. GC-gap was defined as GC content of plasmid – GC content of chromosome.

Pangenomes were analysed using Panaroo[30] (v1.2.8 – clean-mode sensitive) and visualised with a Umap projection created using the R package Umap[31]. Variance in the pangenome explained by e.g. AMR content/year/species was examined using a permanova performed in the R package vegan[32]. Gene flanking regions were analysed using...
Flanker (v1.0, –w 0 –wstop 5000 –wstep 100)(33). The Reder package(34) was used to cluster a weighted graph created from a matrix in which distances were determined to be the greatest distance from the gene (in both upstream and downstream directions) in pairs of isolates which were in the same Flanker cluster; this analysis was repeated in an all vs all fashion for all isolates. Flanking regions were annotated using the Galileo AMR software (Arc Bio, Cambridge MA USA).

Plasmid clustering

Robust taxonomic classification of plasmids remains a challenge(35). We therefore used two established methods that have been applied to large-scale short read sequencing datasets, Replicon typing using PlasmidFinder(5) and Relaxase typing with MOB-suite(6). We also typed all plasmids using the recently described Plasmid Taxonomic Unit nomenclature(14) (using COPLA(36)). As a substantial number of plasmids remained unclassified by all these methods, we additionally utilized a recently described graph-based classification system(15). Mash(v2.3)(37) (-s 1000, -k 21) was used to create an all-vs-all distance matrix of plasmid assemblies where the distance was taken to be 1 – the proportion of shared kmers between the plasmid of interest and plasmids in the sketch sequences, where plasmids with a distance of 0 share all kmers in the sketch space whereas those with a score of 1 share no common kmers. This was used to create a weighted graph using the R package Igraph(38) where vertices represent plasmids and edges between these are weighted by the distance described above. Community detection on this graph was performed using the Louvain algorithm which seeks to maximise the density of edges within vs between communities. We optimised performance of this algorithm as described previously(15) by sparsifying the graph, removing edges with a weight ≤ a threshold which was selected by iteration. The final sparsification threshold was selected to optimise the number of plasmids assigned to large (n ≥ 10) clusters. We compared the classifications given by this approach to other methods using the Normalized Mutual Information index in the R package NMI(39).

Comparison with existing plasmid sequencing data

To place our plasmid sequencing data in a global context, we downloaded all available plasmids (n=10.159) from a recently curated plasmid collection(13) for comparison. We refer to the Oxfordshire isolates as the “Oxfordshire dataset” and the combined collection as the “Global dataset”. We computed a pairwise distance matrix and performed Louvain-based clustering as described above, sparsifying the graph using the same threshold (0.551) as in the main analysis.

Statistical analysis

To search for non-AMR plasmid-borne genes associated with carriage of ARGs, we performed logistic regression with AMR presence or absence on plasmids as the dependent variable and each gene in the plasmid pan-genome as the independent variable, adjusting for population structure using multi-dimensional scaling (MDS) of mash distances (R package CMD scale), represented in 10 dimensions(40). P-values were adjusted for multiple comparisons using the Bonferroni method. To investigate factors associated with geographical dissemination of plasmid groups we subsetted the global dataset to include only Oxfordshire isolates and those from NCBI not from the UK and where the location of isolation was known. We further filtered this to include only plasmid clusters observed at least once in Oxfordshire. Isolation in more than one country was used as the binary dependent variable in a logistic regression with other plasmid group features (e.g. ARG/virulence/GC content) as independent variables. Multivariable associations between all available plasmid group metrics (independent variables) and plasmid group frequency in the dataset (dependent variable) were estimated using Poisson regression in exploratory analyses. Over-representation of plasmid groups was investigated using a permutation test. For each of the larger plasmid groups (n≥10), the number of members in each of the most commonly observed E. coli/Klebsiella sequence types (E. coli 131/95/73/69, K. pneumoniae 490) was compared to the permuted random distribution. Sequence types were randomised for the whole dataset 100 times, and the number of members of each plasmid group appearing in each sequence type recorded for each iteration. A p-value was calculated as the number of permuted values at least as extreme as the observed value divided by the number of permutations, considering values ≤0.025 as significant in a one-sided test. Comparisons of continuous variables and proportions between groups used Kruskal-Wallis/Wilcoxon Rank-sum and Fisher/Ci-squared tests respectively in R version 4.1(41).

Data visualisation

Data were visualised using the ggplot2(42) and gggenes(43) packages in R, Clinker(44) and Biorender (www.biorender.com).

ACKNOWLEDGEMENTS

This study is supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford in partnership with Public Health England (PHE) (NIHR200915). WM is supported by a scholarship from the Medical Research Foundation National PhD Training Programme in Antimicrobial Resistance (MRF-145-0004-TPG-AVISO). ASW and TEAP are also supported by the NIHR Oxford BioMed Research Centre. ASW is an NIHR Senior Investigator. NS is an NIHR Oxford BRC Senior Fellow. The views expressed are those of the authors and not necessarily those of the National Health Service, NIHR, Department of Health, or PHE. SL is supported by an MRC Clinical Research Training Fellowship. Computation used the Oxford Biomedical Research Computing (BMRC) facility, a joint development between the Wellcome Centre for Human Genetics and the University of Oxford in partnership with Public Health England (PHE) (NIHR200915). WM is supported by a scholarship from the Medical Research Foundation National PhD Training Programme in Antimicrobial Resistance (MRF-145-0004-TPG-AVISO). ASW and TEAP are also supported by the NIHR Oxford BioMed Research Centre. ASW is an NIHR Senior Investigator. NS is an NIHR Oxford BRC Senior Fellow. The views expressed are those of the authors and not necessarily those of the National Health Service, NIHR, Department of Health, or PHE. SL is supported by an MRC Clinical Research Training Fellowship. Computation used the Oxford Biomedical Research Computing (BMRC) facility, a joint development between the Welcome Centre for Human Genetics and the Big Data Institute supported by Health Data Research UK and the NIHR Oxford Biomedical Research Centre.

Bibliography

10 | medRxiv

2020-5-18.

27. Torsten Seemann. abricate...

