Predictors of all-cause mortality among patients hospitalized with influenza, respiratory syncytial virus, or SARS-CoV-2

Authors: Mackenzie A. Hamilton1,2, Ying Liu1, Andrew Calzavara1, Maria E. Sundaram1,3, Mohamed Djebli1, Dariya Darvin2,4, Stefan Baral5, Rafal Kustra6, Jeffrey C. Kwong1,6,7,8,9,10‡, Sharmistha Mishra2,11,12,13‡

Affiliations:

1ICES, Toronto, Canada
2MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada
3Centre for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, USA
4Department of Medicine, University of Toronto, Toronto, Canada
5Department of Epidemiology, John Hopkins Bloomberg School of Public Health, Baltimore, USA
6Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
7Public Health Ontario, Toronto, Canada
8Department of Family and Community Medicine, University of Toronto, Toronto, Canada
9University Health Network, Toronto, Canada
10Centre for Vaccine Preventable Diseases, University of Toronto, Toronto, Canada
11Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
12Department of Medicine, St. Michael’s Hospital, Unity Health Toronto, Toronto, Canada
13Institute of Medical Sciences, University of Toronto, Canada

‡Authors contributed equally to this manuscript.

Corresponding Author:
Sharmistha Mishra
Rm 315, 3rd Floor, Li Ka Shing Knowledge Institute, St. Michael’s Hospital
209 Victoria Street, 3rd Floor
Toronto, Ontario, Canada, M5B 1T8
Phone: +1-416-864-5746
Fax: +1-416-864-5310
Email: sharmistha.mishra@utoronto.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Alternate Corresponding Author:

Mackenzie A. Hamilton
Rm 326.6, 3rd Floor, Li Ka Shing Knowledge Institute, St. Michael’s Hospital
209 Victoria Street, 3rd Floor
Toronto, Ontario, Canada, M5B 1T8
Phone: +1-416-864-5746
Fax: +1-416-864-5310
Email: mackenzie.hamilton@mail.utoronto.ca

Running title: Risk of respiratory infection mortality

Key words: SARS-CoV-2; influenza; respiratory syncytial virus; hospitalization; mortality

Summary: In this study of patients hospitalized with influenza, respiratory syncytial virus, and SARS-CoV-2, common predictors of mortality included: older age, male sex, residence in long-term care homes and chronic kidney disease. These predictors may support clinical- and systems-level decision making.
ABSTRACT

Background: Identification of shared and divergent predictors of clinical severity across respiratory viruses may support clinical decision-making and resource planning in the context of a novel or re-emergent respiratory pathogen.

Methods: We conducted a retrospective cohort study to identify predictors of 30-day all-cause mortality following hospitalization with influenza (N=45,749; 2011-09 to 2019-05), respiratory syncytial virus (RSV; N=24,345; 2011-09 to 2019-04), or SARS-CoV-2 (N=8,988; 2020-03 to 2020-12; pre-vaccine) using population-based health administrative data from Ontario, Canada. Multivariable modified Poisson regression was used to assess associations between potential predictors and mortality. We compared the direction, magnitude and confidence intervals of risk ratios to identify shared and divergent predictors of mortality.

Results: 3,186 (7.0%), 697 (2.9%) and 1,880 (20.9%) patients died within 30 days of hospital admission with influenza, RSV, and SARS-CoV-2, respectively. Common predictors of increased mortality included: older age, male sex, residence in a long-term care home, and chronic kidney disease. Positive associations between age and mortality were largest for patients with SARS-CoV-2. Few comorbidities were associated with mortality among patients with SARS-CoV-2 as compared to those with influenza or RSV.

Conclusions: Our findings may help identify patients at highest risk of illness secondary to a respiratory virus, anticipate hospital resource needs, and prioritize local preventions and therapeutics to communities with high prevalence of risk factors.
BACKGROUND

The COVID-19 pandemic has put tremendous strain on hospital systems, and exposed long-standing issues in healthcare capacity [1,2]. Knowing who is at highest risk of severe disease from respiratory viruses may support proactive clinical decision-making, and help distribute resources to healthcare settings with high prevalence of risk factors [3,4]. This is particularly useful in the context of a new and emerging respiratory virus where information and resources are scarce [3,5].

Several studies have compared shared and divergent predictors of severe disease among patients with influenza and respiratory syncytial virus (RSV) [6–11], two respiratory viruses with high seasonal prevalence prior to the emergence of SARS-CoV-2. However, few papers have compared predictors of severity across influenza, RSV, and SARS-CoV-2.

Communities are returning to pre-pandemic contact and exposure patterns, which may increase the risk of all respiratory infections. At the same time, laboratory diagnostic testing is transitioning to pre-pandemic approaches, where only a subset of hospitalized patients with viral respiratory or influenza-like illness receive laboratory-confirmed diagnoses [12]. Thus, during periods of respiratory viral epidemics (novel or seasonal), shared predictors of severity across the most important respiratory viruses may: 1) reduce morbidity and mortality by prioritizing preventions (e.g. vaccinations), testing, and access to therapeutics (e.g. antivirals) and; 2) prepare healthcare settings that will require greater resources based on the prevalence of the underlying predictors.

We conducted an observational study using extensive health administrative data from Ontario, Canada to identify the direction and magnitude of shared and divergent predictors of 30-
day all-cause mortality following hospitalization with influenza, RSV, or SARS-CoV-2 (prior to vaccine availability or variant emergence).

METHODS

Study setting and design

We conducted a retrospective cohort study of patients hospitalized with influenza, RSV or SARS-CoV-2 using population-based laboratory and health administrative data from Ontario, Canada (population 14.7 million [13]). Ontario’s healthcare system provides publicly funded physician services, laboratory testing, and hospital care for all residents with a provincial health card. Datasets used in this study were linked using unique encoded identifiers and analyzed at ICES [14].

Case definitions and outcomes

Hospitalization: We generated three study cohorts to assess predictors of severe outcomes among patients hospitalized with influenza, RSV, and SARS-CoV-2 respectively. Patients with influenza and RSV were identified using hospitalization data from the Canadian Institute for Health Information’s Discharge Abstract Database (DAD) during the 2010-11 to 2018-19 respiratory virus seasons. DAD captures administrative, clinical, and demographic information on all hospital discharges in Canada. Patients were considered hospitalized with influenza if their discharge abstract contained any of the following ICD-10 codes: J09, J10.0, J10.1, J10.8, J11.0, J11.1, or J11.8. Patients were considered hospitalized with RSV if their discharge abstract contained any of the following ICD-10 codes: J12.1, J20.5, J21.0, or B97.4. Case definitions
were validated in Ontario against laboratory confirmation, and showed high specificity (influenza: 98%; RSV: 99%), and positive predictive values (influenza: 91%; RSV: 91%) [15].

We used DAD, the Ontario Laboratories Information System (OLIS), and the Public Health Case and Contact Management System (CCM) to identify patients hospitalized with SARS-CoV-2 between March 1 and December 1, 2020. OLIS is an electronic repository of Ontario’s laboratory test results, containing information on laboratory orders, patient demographics, provider information, and test results. CCM is a central data repository for all COVID-19 case management, contact management, and reporting in Ontario. Patients were considered hospitalized with SARS-CoV-2 if: 1) they were documented as hospitalized in DAD and had a positive polymerase chain reaction test for SARS-CoV-2 within 14 days before or 3 days after hospital admission; or 2) they were documented as hospitalized in CCM.

Mortality: Our primary outcome of interest was 30-day all-cause mortality following hospital admission with influenza, RSV or SARS-CoV-2. We used the Registered Persons Database (RPDB) and CCM to identify patients who died within 30 days of hospital admission. RPDB contains basic demographic information including age, sex, postal code, and date of death among all residents with an Ontario health card.

Inclusion and exclusion criteria

Hospitalized patients were excluded if: they were not eligible for the Ontario Health Insurance Plan; their birthdate, sex, or postal code was missing from RPDB; their residential postal code was outside of Ontario; they were older than 105 years according to their birthdate in RPDB; or their recorded death date predated hospital admission (Figure 1). Only one hospitalization per patient was included (per season for influenza and RSV, and overall for
SARS-CoV-2). Among patients hospitalized with influenza or RSV, we included the first hospital admission of the season. Among patients hospitalized with SARS-CoV-2, we included any hospitalization that resulted in death within 30 days of admission, or the first admission if no other admission was associated with 30-day mortality. Variation in inclusion criteria were due to suspected differences in hospital admission and discharge behavior across virus cohorts. For example, early in the pandemic, evidence suggested that patients hospitalized with SARS-CoV-2 patients had a relatively high likelihood of readmission within 60 days of discharge [16]. Patients hospitalized with influenza or RSV were excluded if they were hospitalized outside of the respective respiratory virus season. Respiratory virus seasonality was defined as November to May for influenza, and November to April for RSV to align with case definitions from Hamilton et al. [15], and to create the most inclusive time frame to capture seasonal virus activity in Ontario [17].

Predictors of 30-day all-cause mortality

We selected potential predictors of 30-day all-cause mortality *a priori*. Variables were considered if they had documented or suspected associations with respiratory virus acquisition or severity, or healthcare access in peer-reviewed, published literature.

Demographic Characteristics: We used data from RPDB to describe pertinent individual-level demographic characteristics including age, sex, and residence in rural neighbourhoods [18]. Rural neighbourhoods were defined as those outside commuting zones of population centres (i.e. centres with more than 10,000 residents).

We used aggregated 2016 Canadian census data to describe neighbourhood-level social determinants of health associated with risk of respiratory virus acquisition [19–21], access to
care, and discrimination within health care settings [22,23] including: income [24], household size [25], and “ethnic concentration” [26] (herein referred to as percent racialized).

Neighbourhood-level variables were categorized into quintiles (i.e. 1 = 20% of neighbourhoods with lowest values; 5 = 20% of neighbourhoods with highest values). Patients were assigned a quintile according to their residential postal code. We describe derivation of the neighbourhood-level determinants of health in depth in Supplementary text.

Underlying Health Conditions: Pertinent underlying health conditions included: asthma, chronic obstructive pulmonary disease (COPD), hypertension, cardiac ischemic disease, congestive heart failure, stroke, dementia or frailty, chronic kidney disease, advanced liver disease, and immunosuppression (i.e. patients with a cancer diagnosis in the past 5 years, human immunodeficiency virus, solid organ or bone marrow transplant, or another immunodeficiency condition) [27,28]. We used validated case definitions and health administrative data to classify each individual-level health condition. Case definitions and validity are described in detail in Supplementary Table 1.

Other Covariates: Other predictors of severe outcomes included residence in a long-term care home (LTCH) [29,30], and seasonal immunization against influenza [31–33]. We used the Chronic Care Reporting System, pharmacist billing claims in the Ontario Drug Benefits Database (ODB), and physician billing claims in the Ontario Health Insurance Plan (OHIP) database to determine whether individuals resided in a LTCH. We used ODB and OHIP databases to identify patients vaccinated against influenza between October 1 of the season of hospital admission and 14 days prior to admission. Relevant vaccination claim codes and drug identification numbers are outlined in Supplementary Table 2.
Statistical analyses

Data processing and analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). Frequencies and proportions were used to describe the distribution of risk factors among individuals hospitalized with influenza, RSV, or SARS-CoV-2. Modified Poisson regression (i.e. Poisson regression with a robust error variance) was used to assess the association between predictors and 30-day all-cause mortality. Modified Poisson regression was used over logistic regression to estimate risk ratios and avoid misinterpretation of odds ratios obtained from logistic regression [34]. We calculated unadjusted and fully adjusted relative risk of dying within 30 days of hospital admission per predictor among each hospitalization cohort. Fully adjusted models included all other predictors. We qualitatively compared the direction, magnitude and 95% confidence interval of associations among respective cohorts of hospitalized patients to identify shared and divergent predictors of 30-day all-cause mortality.

Ethics statement

This study used laboratory and health administrative data housed at ICES. ICES is a prescribed entity under Ontario’s Personal Health Information Protection Act (PHIPA). Section 45 of PHIPA authorizes ICES to collect personal health information, without consent, for the purpose of analysis or compiling statistical information with respect to the management of, evaluation or monitoring of, the allocation of resources to or planning for all or part of the health system. Projects that use data collected by ICES under section 45 of PHIPA, and use no other data, are exempt from REB review. The use of the data in this project is authorized under section 45 and approved by ICES’ Privacy and Legal Office. Patient information was de-identified prior to analysis and distribution.
RESULTS

Characteristics of patients hospitalized with influenza, RSV or SARS-CoV-2

We observed 45,749 influenza hospitalizations, 24,345 RSV hospitalizations, and 8,988 SARS-CoV-2 hospitalizations after applying inclusion and exclusion criteria (Figure 1). Patients hospitalized with RSV were younger than patients hospitalized with influenza and SARS-CoV-2 (median age RSV patients = 1 year; median age influenza patients = 71 years; median age SARS-CoV-2 patients = 70 years). Only 47% of RSV patients presented with at least one comorbidity as compared to 84% of influenza patients and 82% of SARS-CoV-2 patients. Table 1 compares additional characteristics of hospitalized patients by virus and 30-day all-cause mortality.

Common predictors of 30-day all-cause mortality

Patients hospitalized with SARS-CoV-2 had the highest crude 30-day all-cause mortality rate (SARS-CoV-2 crude mortality rate = 20.9%; influenza crude mortality rate = 7.0%; RSV crude mortality rate = 2.9%).

In unadjusted models, common predictors of mortality included: older age, residence in a LTCH, immunization against seasonal influenza, COPD, cardiac ischemic disease, congestive heart failure, hypertension, diabetes, dementia/frailty, stroke, and chronic kidney disease (Figure 2, Supplementary Table 3). Larger magnitudes of association between older age and mortality were observed among patients hospitalized with SARS-CoV-2 [unadjusted relative risk (RR) among 85+ versus 50-64 = 4.88; 95% confidence interval (CI) = 4.16 to 5.72] versus influenza (unadjusted RR among 85+ versus 50-64 = 2.99; 95% CI = 2.65 to 3.37) or RSV (unadjusted RR
among 85+ versus 50-64 = 2.53; 95% CI = 1.93 to 3.32). All other shared predictors of mortality showed larger magnitudes of association among patients hospitalized with RSV (Figure 2).

In fully adjusted models, shared predictors of mortality included: older age, male sex, residence in a LTCH, and chronic kidney disease (Figure 2, Supplementary Table 4). Similar to unadjusted models, we observed larger magnitudes of association between older age and 30-day all-cause mortality among patients hospitalized with SARS-CoV-2 [SARS-CoV-2: adjusted RR (95% CI) 85+ versus 50-64 = 3.64 (3.08 to 4.30); influenza: adjusted RR (95% CI) 85+ versus 50-64 = 2.18 (1.91 to 2.48); RSV: adjusted RR (95% CI) 85+ versus 50-64 = 2.16 (1.60 to 2.92)]. The magnitude and direction of associations between male sex, residence in a LTCH, and chronic kidney disease, and mortality were similar among patients hospitalized with all three viruses.

Notable differences among predictors of 30-day all-cause mortality

Rural residence was associated with 30-day all-cause mortality among patients hospitalized with RSV (adjusted RR = 1.52, 95% CI = 1.09 to 2.12) and SARS-CoV-2 (adjusted RR = 1.27, 95% CI = 1.01 to 1.61), but not among patients hospitalized with influenza (adjusted RR = 1.00, 95% CI = 0.87 to 1.14). Immunization against seasonal influenza was protective against 30-day all-cause mortality among patients hospitalized with influenza (adjusted RR = 0.89, 95% CI = 0.83 to 0.96) but not patients hospitalized with RSV (adjusted RR = 1.09, 95% CI = 0.93 to 1.28) or SARS-CoV-2 (adjusted RR = 1.04, 95% CI = 0.95 to 1.13). Finally, cardiac ischemic disease, congestive heart failure, dementia/frailty, and immunosuppression were associated with all-cause mortality among patients with influenza and RSV after adjustment for all other predictors, but not among patients with SARS-CoV-2.
DISCUSSION

We identified shared and divergent predictors of mortality among patients hospitalized with influenza, RSV, or SARS-CoV-2 using population-based health administrative data from Ontario, Canada. In multivariable models, common predictors of 30-day all-cause mortality following hospitalization included older age, male sex, residence in a LTCH, and chronic kidney disease.

Older age and male sex were predictive of increased mortality across all respiratory virus cohorts which aligns with numerous studies from high-income countries [6–11,35–38], and confirms the need to consider age and sex in clinical practice. The magnitude of association between older age and mortality was largest among patients with SARS-CoV-2, confirming robust evidence that age is an important predictor of severity among COVID-19 patients, and should be used to guide targeted COVID-19 preventions and therapeutics [38,39].

Residence in a LTCH was also a common predictor of 30-day all-cause mortality; however, associations were weaker among patients hospitalized with SARS-CoV-2. Differences in magnitudes of association may be due to greater selection bias of LTCH residents hospitalized with SARS-CoV-2 in comparison to those with influenza or RSV. For example, in Ontario, only 24.3% of COVID-19-positive LTCH residents were hospitalized prior to death, compared to 79.3% of COVID-19-positive community residents during the first wave of the pandemic [40]. LTCH residents with SARS-CoV-2 may have been less likely to be hospitalized due to limited resources. The difference in hospitalizations prior to death narrowed in subsequent waves of the SARS-CoV-2 pandemic in Ontario [40] suggesting that the selection biases may have been
specific to wave 1 of the pandemic, and may not be reflective of past influenza or RSV seasonal epidemics.

Similar to previous studies [41], chronic kidney disease increased risk of 30-day all-cause mortality with similar magnitudes of effect among patients hospitalized with influenza, RSV or SARS-CoV-2. Several other comorbidities were important predictors of mortality among patients with influenza or RSV, but not SARS-CoV-2 despite their known associations with SARS-CoV-2 severity [28]. These comorbidities may have been associated with mortality among influenza and RSV patients, but not SARS-CoV-2 patients due to: 1) smaller sample size of the latter; 2) greater hospitalization rates of less severe patients with comorbidities who were infected with SARS-CoV-2 (i.e. selective hospitalization of patients with comorbidities due to limited understanding of the virus and disease trajectory); and/or 3) true clinical differences between patients requiring hospitalization with SARS-CoV-2 versus seasonal influenza or RSV [42–44]. Moreover, age may act as an effect measure modifier on the relationship between comorbidities and mortality due to SARS-CoV-2. More research is needed to compare the immunological and clinical disease progression of influenza, RSV, and SARS-CoV-2 to better explain observed differences in risk by comorbidity.

We did not observe associations between area-level social determinants of health and 30-day all-cause mortality following hospitalization with all three viruses, despite their associations with infection transmission risk [19–23]. Lack of associations may be due to misclassification of neighbourhood-level social determinants of health (as these metrics were derived from the 2016 census), ecological fallacy, or adjustment of mediators in the causal pathway between income, household size, or racialization, and 30-day all-cause mortality.
This study is limited by potential misclassification of influenza and RSV cases, as we identified patients using their hospitalization abstracts rather than diagnostic test results. However, case definitions were validated against a population of hospitalized patients who received diagnostic testing for influenza or RSV in the Ontario population [15]. The case definitions had high specificity (influenza = 98%; RSV = 99%) and positive predictive values (influenza = 91%; RSV = 91%). Thus, misclassification of influenza and RSV hospitalization is likely rare. Moreover, the use of these case definitions allowed us to obtain hospitalization data across more respiratory virus seasons, increasing the generalizability of our findings.

This study is also limited by a lack of data on other important predictors of respiratory infection severity such as pregnancy [45,46], obesity [47], and individual-level social determinants (e.g. economic marginalization and racialization), which are known to mediate quality of hospitalized care and rates of respiratory virus infection [19–23]. When using our results to inform prioritization of services, or to develop clinical prediction tools, we must consider these limitations so that other at-risk patients do not fall through the cracks.

Finally, to provide insights on shared predictors of mortality in the context of a novel, emerging pathogen, we purposefully restricted the study period of SARS-CoV-2 to exclude hospitalizations of patients vaccinated against SARS-CoV-2, or those with SARS-CoV-2 variants. Future work would benefit from comparisons of predictors of mortality among patients hospitalized with influenza, RSV or SARS-CoV-2 variants and/or breakthrough infections to determine whether shared and divergent trends remain.

Our results add to the growing literature base comparing similarities and differences in clinical disease progression of patients hospitalized with influenza and SARS-CoV-2 [42–44], and have three important implications for clinical care and health systems. First, shared
predictors of mortality could be used to identify, target, and prioritize hospitalized patients who are at greatest risk of death for prevention (e.g. vaccines), testing (e.g. rapid tests) and therapeutics (e.g. antivirals). Second, the underlying prevalence of shared predictors in a given geography could help prepare health systems for, and efficiently allocate health resources during, times of peak respiratory infection transmission. Finally, differences in observed predictors of mortality across the three viruses signal the importance of sufficient virus-specific laboratory testing to ensure at-risk individuals are not left behind.

Conclusion

We identified common predictors of 30-day all-cause mortality following hospitalization with SARS-CoV-2, influenza, or RSV in a population-based cohort from Ontario, Canada. Shared predictors of mortality may help identify patients at greatest risk for syndromic clinical management of illness from respiratory viruses, anticipate local resource needs (e.g. for communities and hospitals), and prioritize preventions and therapeutics during respiratory virus epidemics (novel or seasonal).
NOTES

Conflicts of Interest

The authors declare no competing interests that are relevant to the content of this article.

Funding

This work was supported by the Canadian Institutes of Health Research [grant number VR5-172683 to S.M and grant number PJT-159516 to J.C.K]; and unrestricted research operating funds from the St. Michael’s Hospital Foundation [to S.M.]. This work was also supported by ICES, which is funded by an annual grant from the Ontario Ministry of Health (MOH) and the Ministry of Long-Term Care (MLTC). This study was supported by Public Health Ontario, and the Ontario Health Data Platform (OHDP), a Province of Ontario initiative to support Ontario’s ongoing response to COVID-19 and its related impacts. The study sponsors did not participate in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; or the decision to submit the manuscript for publication. The analyses, conclusions, opinions and statements expressed herein are solely those of the authors and do not reflect those of the funding sources; no endorsement by ICES, MOH, MLTC or OHDP is intended or should be inferred.

Acknowledgments

We thank IQVIA Solutions Canada Inc. for use of their Drug Information File. Parts of this material are based on data and/or information compiled and provided by the Canadian Institute for Health Information (CIHI) and by Ontario Health (OH). However, the analyses, conclusions, opinions and statements expressed herein are solely those of the authors, and do not
reflect those of the data sources; no endorsement by CIHI or OH is intended or should be inferred. S.M. is supported by a Tier 2 Canada Research Chair in Mathematical Modeling and Program Science.
REFERENCES

8. Jansen AGSC, Sanders EAM, Hoes AW, Van Loon AM, Hak E. Influenza- and

Table 1. Descriptive characteristics of patients hospitalized with influenza, respiratory syncytial virus, or SARS-CoV-2.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Influenza</th>
<th>RSV</th>
<th>SARS-CoV-2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (%)</td>
<td>Deaths (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Total</td>
<td>45,749</td>
<td>3,186</td>
<td>24,345</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>4,863 (10.6)</td>
<td>11 (0.3)</td>
<td>17,157 (70.5)</td>
</tr>
<tr>
<td>5-19</td>
<td>2,363 (5.2)</td>
<td>12 (0.4)</td>
<td>557 (2.3)</td>
</tr>
<tr>
<td>20-49</td>
<td>4,466 (9.8)</td>
<td>95 (3.0)</td>
<td>421 (1.7)</td>
</tr>
<tr>
<td>50-64</td>
<td>6,519 (14.2)</td>
<td>305 (9.6)</td>
<td>969 (4.0)</td>
</tr>
<tr>
<td>65-74</td>
<td>7,030 (15.4)</td>
<td>466 (14.6)</td>
<td>1,298 (5.3)</td>
</tr>
<tr>
<td>75-84</td>
<td>9,981 (21.8)</td>
<td>827 (26.0)</td>
<td>1,837 (7.5)</td>
</tr>
<tr>
<td>≥85</td>
<td>10,527 (23.0)</td>
<td>1,470 (46.1)</td>
<td>2,106 (8.7)</td>
</tr>
<tr>
<td>Male sex</td>
<td>21,831 (47.7)</td>
<td>1,551 (48.7)</td>
<td>12,603 (51.8)</td>
</tr>
<tr>
<td>Living in rural area</td>
<td>3,818 (8.3)</td>
<td>260 (8.2)</td>
<td>2,243 (9.2)</td>
</tr>
<tr>
<td>Long-term care resident</td>
<td>3,048 (6.7)</td>
<td>814 (25.5)</td>
<td>721 (3.0)</td>
</tr>
<tr>
<td>Immunized against seasonal influenza</td>
<td>14,718 (32.2)</td>
<td>1,083 (34.0)</td>
<td>4,106 (16.9)</td>
</tr>
<tr>
<td>Underlying Health Conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td>12,838 (28.1)</td>
<td>762 (23.9)</td>
<td>6,630 (27.2)</td>
</tr>
<tr>
<td>COPD</td>
<td>11,924 (26.1)</td>
<td>1,183 (37.1)</td>
<td>2,593 (10.7)</td>
</tr>
<tr>
<td>Cardiac ischemic disease</td>
<td>9,301 (20.3)</td>
<td>1,044 (32.8)</td>
<td>1,717 (7.1)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>12,240 (26.8)</td>
<td>1,507 (47.3)</td>
<td>2,769 (11.4)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>28,811 (63.0)</td>
<td>2,644 (83.0)</td>
<td>5,379 (22.1)</td>
</tr>
<tr>
<td>Condition</td>
<td>Total</td>
<td>1 (least)</td>
<td>2</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>Diabetes</td>
<td>16,036</td>
<td>1,373</td>
<td>2,828</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(35.1)</td>
<td>(43.1)</td>
</tr>
<tr>
<td>Dementia/frailty</td>
<td>11,149</td>
<td>1,557</td>
<td>2,451</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(24.4)</td>
<td>(48.9)</td>
</tr>
<tr>
<td>Stroke</td>
<td>3,999</td>
<td>445</td>
<td>738</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8.7)</td>
<td>(14.0)</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>9,729</td>
<td>1,091</td>
<td>2,007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(21.3)</td>
<td>(34.2)</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>7,222</td>
<td>578</td>
<td>1,936</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(15.8)</td>
<td>(18.1)</td>
</tr>
<tr>
<td>Advanced liver disease</td>
<td>1,305</td>
<td>115</td>
<td>246</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.9)</td>
<td>(3.6)</td>
</tr>
</tbody>
</table>

Neighbourhood-level social determinants of health

<table>
<thead>
<tr>
<th>Income quintile</th>
<th>Missing</th>
<th>1 (lowest income)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (highest income)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>149 (0.3)</td>
<td>12,199 (26.7)</td>
<td>773 (24.3)</td>
<td>5,967 (24.5)</td>
<td>202 (29.0)</td>
<td>2,617 (29.1)</td>
</tr>
<tr>
<td></td>
<td>11 (0.3)</td>
<td>10,187 (22.3)</td>
<td>798 (25.0)</td>
<td>5,162 (21.2)</td>
<td>164 (23.5)</td>
<td>2,081 (23.2)</td>
</tr>
<tr>
<td></td>
<td>147 (0.6)</td>
<td>8,802 (19.2)</td>
<td>597 (18.7)</td>
<td>4,754 (19.5)</td>
<td>113 (16.2)</td>
<td>1,823 (20.3)</td>
</tr>
<tr>
<td></td>
<td>*1-5</td>
<td>7,564 (16.5)</td>
<td>482 (15.1)</td>
<td>4,527 (18.6)</td>
<td>110 (15.8)</td>
<td>1,293 (14.4)</td>
</tr>
<tr>
<td></td>
<td>67 (0.8)</td>
<td>6,848 (15.0)</td>
<td>525 (16.5)</td>
<td>3,788 (15.6)</td>
<td>*103-107</td>
<td>1,107 (12.3)</td>
</tr>
<tr>
<td></td>
<td>10 (0.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household size quintile</th>
<th>Missing</th>
<th>1 (smallest household size)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (largest household size)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>416 (0.9)</td>
<td>11,947 (26.1)</td>
<td>911 (28.6)</td>
<td>4,614 (19.0)</td>
<td>202 (29.0)</td>
<td>1,729 (19.2)</td>
</tr>
<tr>
<td></td>
<td>30 (0.9)</td>
<td>8,319 (18.2)</td>
<td>636 (20.0)</td>
<td>4,507 (18.5)</td>
<td>129 (18.5)</td>
<td>1,168 (13.0)</td>
</tr>
<tr>
<td></td>
<td>380 (1.6)</td>
<td>6,173 (13.5)</td>
<td>445 (14.0)</td>
<td>3,512 (14.4)</td>
<td>105 (15.1)</td>
<td>905 (10.1)</td>
</tr>
<tr>
<td></td>
<td>10 (1.4)</td>
<td>9,605 (21.0)</td>
<td>665 (20.9)</td>
<td>5,821 (23.9)</td>
<td>155 (22.2)</td>
<td>2,156 (24.0)</td>
</tr>
<tr>
<td></td>
<td>139 (1.6)</td>
<td>9,289 (20.3)</td>
<td>499 (15.7)</td>
<td>5,511 (22.6)</td>
<td>96 (13.8)</td>
<td>2,891 (32.2)</td>
</tr>
<tr>
<td></td>
<td>34 (1.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percent racialized quintile</th>
<th>Missing</th>
<th>1 (least percent)</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 (least percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>420 (0.9)</td>
<td>7,035 (15.4)</td>
<td>512 (16.1)</td>
<td>3,573 (14.7)</td>
<td>85 (12.2)</td>
<td>579 (6.4)</td>
</tr>
<tr>
<td></td>
<td>27 (0.8)</td>
<td>328 (1.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 (1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Diabetes, Dementia/frailty, Stroke, Chronic kidney disease, Immunosuppression, Advanced liver disease, Income quintile, Household size quintile, Percent racialized quintile.
<table>
<thead>
<tr>
<th></th>
<th>Racialized</th>
<th>Non-racialized</th>
<th>Older</th>
<th>Frailty</th>
<th>Ischemic</th>
<th>Immunodeficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,482 (16.4)</td>
<td>540 (16.9)</td>
<td>4,124 (16.9)</td>
<td>99 (14.2)</td>
<td>843 (9.4)</td>
<td>212 (11.3)</td>
</tr>
<tr>
<td>3</td>
<td>8,179 (17.9)</td>
<td>601 (18.9)</td>
<td>4,510 (18.5)</td>
<td>135 (19.4)</td>
<td>1,355 (15.1)</td>
<td>340 (18.1)</td>
</tr>
<tr>
<td>4</td>
<td>9,578 (20.9)</td>
<td>743 (23.3)</td>
<td>5,039 (20.7)</td>
<td>174 (25.0)</td>
<td>1,914 (21.3)</td>
<td>380 (20.2)</td>
</tr>
<tr>
<td>5 (most racialized)</td>
<td>13,055 (28.5)</td>
<td>763 (23.9)</td>
<td>6,771 (27.8)</td>
<td>197 (28.3)</td>
<td>4,199 (46.7)</td>
<td>814 (43.3)</td>
</tr>
</tbody>
</table>

RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COPD, chronic obstructive pulmonary disease.

*Cells with less than five patients have been suppressed to prevent individual identification.

*Defined as a city or town with a population of less than 10,000.

*Among patients aged 40 years or older.

*Defined as a Hospital Frailty Risk Score [48] greater than 15.

*Defined as history of a transient ischemic attack or an acute ischemic stroke.

*Within the past 5 years.

*Defined as patients with a cancer diagnosis in the past 5 years, who were HIV positive, who had an organ or bone marrow transplant, or who had another immunodeficiency condition.

*Captured at the level of the Canadian census dissemination area.

*Measured as a per-person equivalent. Quintiles were generated per census agglomeration unit or census metropolitan area to adjust for variability in cost of living across the province. Quintile ranges vary by unit across the province.

*Range household size: quintile 1 = 0 - 2.1 persons per dwelling; quintile 2 = 2.2 – 2.4 persons per dwelling; quintile 3 = 2.5 – 2.6 persons per dwelling; quintile 4 = 2.7 – 3 persons per dwelling; quintile 5 = 3.1-5.7 persons per dwelling.

*As defined by the “ethnic concentration quintile” from the Ontario Marginalization Index [26]. Quintiles were created by ranking dissemination areas on a principle component score; thus, quintile ranges are uninterpretable.
Figure 1. Study cohorts and exclusions. A) Influenza hospitalization cohort. B) RSV hospitalization cohort. C) SARS-CoV-2 hospitalization cohort. Exclusions were made in the order in which they appear. RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; OHIP, Ontario health insurance plan.

a Influenza and RSV hospitalizations prior to the 2010-11 respiratory virus season were excluded to reduce selection bias due to changes in testing behavior following the H1N1 influenza epidemic in 2009-10.

b Virus seasonality was defined as November through May, and November through April for influenza and RSV, respectively. We defined seasonality to align with case definitions from Hamilton et al. [15], and to create the most inclusive time frame to capture virus seasonal activity in Ontario [17].

Figure 2. Unadjusted and adjusted predictors of 30-day all-cause mortality among patients hospitalized with influenza, RSV or SARS-CoV-2. Modified Poisson regression was used to calculate associations between predictors and 30-day all-cause mortality. Fully adjusted models included all predictors. Influenza and RSV fully adjusted models additionally included season of hospital admission. Associations are presented as risk ratios and 95% confidence intervals. RSV, respiratory syncytial virus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COPD, chronic obstructive pulmonary disease; CI, confidence interval.

a Defined as a city or town with a population of less than 10,000.

b Among patients aged 40 years or older.

c Defined as a Hospital Frailty Risk Score [48] greater than 15.
Defined as history of a transient ischemic attack or an acute ischemic stroke.

Within the past 5 years.

Defined as patients with a cancer diagnosis in the past 5 years, who were HIV positive, who had an organ or bone marrow transplant, or who had another immunodeficiency condition.

Captured at the level of the Canadian census dissemination area.

Measured as a per-person equivalent. Quintiles were generated per census agglomeration unit or census metropolitan area to adjust for variability in cost of living across the province. Quintile ranges vary by unit across the province.

Range household size: quintile 1 = 0 - 2.1 persons per dwelling; quintile 2 = 2.2 – 2.4 persons per dwelling; quintile 3 = 2.5 – 2.6 persons per dwelling; quintile 4 = 2.7 – 3 persons per dwelling; quintile 5 = 3.1-5.7 persons per dwelling.

As defined by “ethnic concentration quintile” from the Ontario Marginalization Index [26]. Quintiles were created by ranking dissemination areas on a principle component score; thus, quintile ranges are uninterpretable.
(A) Influenza Cohort

57,874 patients hospitalized with influenza between September 1, 2004 and August 31, 2019

57,729 patients fit inclusion criteria and were linked to 58,087 hospital admissions during the study period

45,749 hospitalizations included

Patients Excluded:
- 59 patients: with missing birthdate, sex, or postal code; from out of province; greater than 105 years old; or with death dates listed before hospital admission
- 86 patients who were not eligible for OHIP

Hospitalizations Excluded:
- 1,526 secondary hospitalizations within the same season
- 9,427 hospitalizations prior to 2010-11 influenza season
- 1,385 hospitalizations outside of the influenza respiratory virus season

(B) RSV Cohort

37,337 patients hospitalized with RSV between September 1, 2004 and August 31, 2019

36,894 patients fit inclusion criteria and were linked to 37,189 hospital admissions during the study period

24,345 hospitalizations included

Patients Excluded:
- 147 patients: with missing birthdate, sex, or postal code; from out of province; greater than 105 years old; or with death dates listed before hospital admission
- 291 patients who were not eligible for OHIP

Hospitalizations Excluded:
- 1,092 secondary hospitalizations within the same season
- 10,683 hospitalizations prior to 2010-11 influenza season
- 1,069 hospitalizations outside of the RSV respiratory virus season

(C) SARS-CoV-2 Cohort

CCM: 7,735 hospitalizations with SARS-CoV-2 between March 1 and December 1, 2020

8,988 hospitalizations included

OLIS + CIHI-DAD: 7,867 hospitalizations with SARS-CoV-2 between March 1 and December 1, 2020

Hospitalizations and Patients Excluded:
- 333 secondary hospitalizations
- 13 patients with missing birthdate, sex, or postal code; from out of province; greater than 105 years old; or with death dates listed before hospital admission
- 6,268 duplicate hospitalizations (recorded in CCM and CIHI-DAD)