Using Genomic data to Investigate the Anti-Depressive Effects of Statins

Jiayue-Clara Jiang (PhD)¹, Chenwen Hu (Msc)², Sonia Shah (PhD)¹

¹ Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia

² The University of Queensland, St Lucia, Australia

Running title: Investigating anti-depressive properties of cholesterol-lowering statins using genomics

Corresponding author:

Sonia Shah, PhD

Address: Institute for Molecular Bioscience, Queensland Bioscience Precinct (Building 80), The University of Queensland, 306 Carmody Road, St Lucia Qld 4072 Australia

Telephone: +61 7 3346 2222

Email: s.shah1@uq.edu.au

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Cholesterol-lowering statins, which are widely prescribed for treating and preventing cardiovascular diseases, have previously been reported to show anti-depressive properties. However, there is conflicting evidence on the association of statins with depression, and the molecular mechanisms that govern their potential anti-depressive effects remain largely veiled. We evaluated the anti-depressive activities of statins using a combined approach of transcriptomic signature matching and genetic association analysis. We interrogated pre-compiled Connectivity Map (CMap) perturbational gene expression signatures and found that compounds with highly similar signatures to statins (average connectivity score > 90) were enriched for antidepressants ($p < 1E-05$). Genes perturbed in the same direction by both statins and antidepressants were significantly enriched for various immune pathways, while genes perturbed in the opposite direction were enriched for lipid metabolism pathways. Using publicly available expression quantitative trait loci (eQTL) and genome-wide association summary data, we performed Mendelian randomisation analysis to infer association of genetically predicted statin target inhibition with various depression, immune and disease traits. Genetically proxied HMGCR inhibition was significantly associated with extensive changes in immune cell traits, particularly platelet-related indices, and while we observed no genetic association between HMGCR expression and depression risk ($p = 0.21$), we found nominal association with depression-related worrying symptoms ($p = 0.042$). Our analyses provide genomic evidence for the association between statins and extensive alterations in immune-related processes, which have been linked to depression. Our findings carry clinical relevance, both for treating the increasing prevalence of individuals with comorbid cardiovascular diseases and depression, and for exploring the potential of repurposing statins for modulating depression symptoms.
Introduction

Depression is one of the most common mental disorders and a leading cause of non-fatal health loss, with severe impairments that interfere with or limit one’s ability to carry out major life activities. The pharmacological treatments for depression rely primarily on the use of antidepressants to alleviate symptoms; however, conventional antidepressants, including selective serotonin reuptake inhibitors (SSRI), often show latency in treatment response and limited remission rates [1].

Despite the continuous efforts in developing new treatments, many drug candidates fail to advance in clinical trials due to efficacy or safety-related reasons [2, 3]. Drug repurposing refers to the process of identifying novel therapeutic effects of existing drugs, and represents a more efficient and cost-effective approach for identifying new therapeutic treatments [4]. Computational approaches for identifying drug candidates for repurposing are largely powered by the increasing availability of large human genetic and transcriptomic datasets. For example, genome-wide association studies (GWAS) have guided the drug repurposing strategies for several diseases, with a notable example being Crohn’s disease and ulcerative colitis, where an association signal suggested functional involvement of interleukin-23 in the disease-associated inflammatory pathways [5]. Ustekinumab, a monoclonal antibody targeting interleukin-12 and interleukin-23, was initially approved as a treatment for psoriasis [6, 7], and later repurposed for treating Crohn’s disease and ulcerative colitis [7-9]. Overall, drug candidates with genetically supported targets have a two-fold higher success rate than those without genetic evidence [10].

Another computational approach for evaluating drug repurposing potential is signature matching, where the transcriptomic, proteomic or metabolic signatures of a drug candidate are compared against a drug with established efficacy on treating the disease. The underlying assumption for
signature matching is that if two drugs exhibit shared pharmacological effects, they likely induce highly similar molecular responses [4].

3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) inhibitors, or collectively known as statins, are potent inhibitors of cholesterol biosynthesis and effectively lower low-density lipoprotein cholesterol (LDL-C) levels [11, 12]. HMGCR is ubiquitously expressed in various human tissues, with notably high expression detected in the gastrointestinal tract, gallbladder and appendix [13, 14]. Statins are widely prescribed for treating and preventing cardiovascular diseases [15, 16]. While the use of statins is generally safe, several unintended effects have been reported, including musculoskeletal complications and diabetes [17]. Furthermore, there is conflicting evidence on the anti-depressive effect of statins from observational studies and randomised controlled trials (RCT) [18-27]. This inconsistency in findings may be due to differences in the chemical and pharmacokinetic properties of the types of statins studied [28], or reflect bias from small sample sizes, short follow-up times and unmeasured confounders.

Several mechanisms have been proposed to explain the anti-depressive effects of statins [29]. The primary hypothesis suggests that statins confer anti-depressive effects via their anti-inflammatory properties, both dependent and independent of their lipid-lowering activity. Depressive disorders are accompanied by chronic, systemic inflammatory and immune events [30, 31], and LDL-C has been shown to induce inflammation [32]. In addition, statins are found to drastically decrease the level of pro-inflammatory markers, such as C-reactive protein (CRP), and modulate innate and adaptive immune responses [29]. Other proposed mechanisms include statin-mediated reduction in glucocorticoid concentrations and atherosclerosis; however, the exact relationship between statins and depression remains largely unknown [29]. In this study, we aimed to investigate the anti-depressive effects of statins by mining the Connectivity Map

All rights reserved. No reuse allowed without permission.
(CMap) transcriptomic signatures and performing Mendelian randomisation (MR) analysis. The latter uses genetic data to infer causality and can overcome some of the issues of observational studies, such as bias from unmeasured confounders and sample size issues, since genetic studies nowadays often include hundreds of thousands of individuals. Our findings are clinically relevant to the increasing prevalence of individuals with comorbid cardiovascular diseases and depression, and provide insights into the potential of repurposing statins for modulating depression symptoms.

Methods

CMap perturbational profiles

The CMap platform contains over 1.3 million genetic and chemical perturbational profiles generated using human cell lines [33, 34]. Each perturbational signature consists of the gene expression changes of 978 directly measured “landmark” genes and 11 350 inferred genes, profiled using the L1000 assay [33] (Supplementary Methods). In this study, the level 5 z-scores of the CMap signatures, which represent a normalised measure of the magnitude and direction of gene expression changes induced by the perturbagens, were acquired from the GEO repository (GSE92742) in the GCTX format (accessed on July 8th, 2021).

The transcriptomic signatures of statins from the HA1E kidney cell line were selected for detailed analysis, due to the greatest concordance and specificity in gene expression changes amongst different statins (Supplementary Figure 1). Previous validation of the CMap pipeline shows that drugs are able to elicit intended pharmacological responses even in cell lines that are not derived from their primary target tissue types, provided that their targets are expressed in the cell lines [34]. We queried the Protein Atlas [13] and DepMap expression platforms [14], and
confirmed that HMGCR was ubiquitously expressed in diverse human tissues and cell lines, including the kidney and HA1E cells. Detailed analysis of statin transcriptomic signatures was performed on signatures generated in selected experimental conditions (perturbation time = 24 h, perturbation dose = 10 μM). A total of 7 statins (atorvastatin, fluvastatin, lovastatin, mevastatin, pravastatin, rosuvastatin and simvastatin) were profiled in HA1E cells under the selected experimental conditions, with pravastatin discarded from further analysis due to large transcriptomic discrepancies with other statins (Supplementary Figure 2). The MCF7 (breast cancer cell line) and HepG2 (liver cancer cell line) transcriptomic profiles of statins were also analysed for the purpose of comparison. The CMap signatures analysed in this study are summarised in Supplementary Table 1.

Similarly, the HA1E transcriptomic signatures of antidepressants were retrieved, and the signatures of alvespimycin (heat shock protein inhibitor) [35] and sirolimus (mTOR inhibitor) [36] were analysed as negative controls. Alvespimycin and sirolimus were reported by the CMap team to induce consistent and strong transcriptomic responses across cell lines, and are not functionally linked to lipid-associated pathways or strong anti-depressive effects.

Connectivity scores

The CMap platform uses an algorithm based on the weighted Kolmogorov-Smirnov enrichment statistic to quantify the similarity, or “connectivity” between two signatures [33]. The degree of connectivity is computed as Tau scores, which represent a statistical measure of the likelihood of observing the similarity given all transcriptomic signatures in the reference database. The pre-compiled Tau scores between reference signatures in the CMap database, which are available on the online CLUE platform (https://clue.io), are computed using the top 50 up-regulated landmark
genes and the top 50 down-regulated landmark genes. Tau scores range between -100 and 100, where a positive Tau score indicates positive connectivity, and its magnitude indicates the extent of similarity. A Tau score of 90 indicates that only 10% of CMap reference signatures show stronger connectivity to the query signature, and is considered evidence for strong connectivity [33].

We computed the connectivity profiles of statin-induced transcriptomic signatures. For each statin, we constructed a query signature using the top 50 landmark genes (50 genes with the highest positive z-scores and 50 genes with the lowest negative z-scores). The query signatures were compared against the CMap reference signatures (LINCS version 1.0) and Tau scores were retrieved using the CLUE platform. As a sensitivity analysis, we repeated the connectivity analysis using the top 100 and 150 landmark genes.

Transcriptome-wide pairwise correlation

As the connectivity scores were computed on only the top landmark genes, we further interrogated the gene expression correlation of all 12,328 genes profiled in each CMap signature. Pairwise correlation between a pair of perturbagens was evaluated using a simple linear regression model in R. The regression coefficient (slope), p-value, and adjusted R^2 value for each linear regression model were summarised.

Pathway enrichment analysis

The biological relevance of the transcriptomic impacts of statins was interrogated using pathway enrichment analysis. Differentially expressed genes were defined by $|z| > 1$, where z-score > 1 indicated up-regulation and z-score < -1 indicated down-regulation. To identify Gene Ontology
(GO) biological processes enriched amongst the differentially expressed genes, functional enrichment analysis was performed for up-regulated and down-regulated genes via gProfiler2 (version 0.2.0) (Ensembl 104) in R [37, 38], using the gSCS multiple testing correction method and all 12,328 profiled genes as the background gene list. Unlike Bonferroni and False Discovery Rate correction methods, the gSCS method accounts for the overlapping and hierarchically related nature of GO functional terms and gives a more stringent significance threshold [37, 38]. In this study, a gSCS-corrected p-value < 0.05 indicated statistical significance. Given the many overlapping biological process terms, we categorised the significantly enriched GO biological process terms into their higher-level ancestor terms (Supplementary Methods). Each GO term might be annotated with more than one ancestor term. As a sensitivity analysis, we repeated pathway enrichment analysis using different z-score thresholds (|z| of 1.5 and 2) to define differentially expressed genes (Supplementary Table 2).

Enrichment of antidepressants amongst high-connectivity compounds

A total of 38 antidepressants, documented in the Anatomical Therapeutic Chemical (ATC) system [39] (ATC code: N06A), are profiled by the CMap database (Supplementary Table 3 and Supplementary Methods). To test for the enrichment of antidepressants among compounds with high positive connectivity with statins, we performed a chi-square test to compare the percentage of antidepressants between high-connectivity (defined by an average Tau > 90) and non-high-connectivity compounds. A p-value threshold of 0.05 defined statistical significance.

Identifying shared perturbed pathways between statins and antidepressants

We hypothesised that if statins and antidepressants indeed exhibited shared pharmacological effects, they would likely perturb the same biological pathways. Out of the 38 antidepressants
profiled in HA1E cells, we selected five antidepressants (desipramine, nortriptyline, paroxetine, sertraline and trimipramine) for further analysis as they demonstrated the highest average connectivity with the six statins studied (Supplementary File 1). We performed pairwise comparison of the transcriptomic signatures of six statins against the five antidepressants, which gave rise to a total of 30 statin-antidepressant combinations. For each pair of statin and antidepressant, genes that were differentially expressed (defined by $|z| > 1$) in both signatures were further categorised into genes perturbed in the same or opposite direction. Using gProfiler2 and parameters described above, pathway enrichment analysis was performed for each category. Similarly, we also performed pairwise pathway enrichment analysis for genes commonly perturbed by statins and the two control drugs (alvespimycin and sirolimus).

MR

MR is a statistical method that uses genetic epidemiology information to assess the causality of an observed association between a modifiable exposure and a phenotypic or disease outcome (details in Supplementary Methods). Statins are potent inhibitors of the HMGCR protein, and statin-mediated HMGCR inhibition is the primary pathway underlying their lipid-lowering effects [11, 12]. Selective statins have also been reported to exert *in vitro* off-target interactions with Integrin Alpha-L (ITGAL) and Histone Deacetylase 2 (HDAC2) (details provided in Supplementary Methods). We therefore used MR analysis to investigate both on-target and off-target effects of statins. We used expression quantitative trait loci (eQTL) of *HMGCR*, *ITGAL* and *HDAC2* expression in blood (eQTLGen [40]), muscle (GTEx [41]) and brain prefrontal cortex (PsychENCODE [42]) to proxy for exposure to statins (Supplementary Methods and Supplementary Table 4). We used eQTLs with F-statistic > 10, indicating strong instruments (Supplementary Methods).
Genetic instruments for statin target inhibition

To investigate the on-target effect of statins, we selected rs12916, which is widely used as an instrument for HMGCR inhibition [43-45]. The genetic associations between rs12916-T allele and metabolomic traits are shown to mirror the actual effects of statin exposure on the metabolome [46]. rs12916 is a strong cis-eQTL for HMGCR expression, where each additional T allele was associated with 0.1 standard deviation (SD) decrease in HMGCR expression in eQTLGen blood (p = 1.5E-36) and 0.17 SD decrease in GTEx muscle (p = 7.9E-09) data. Given the relevance of the tissue for depression, we performed additional analysis using a strong eQTL (rs17671591; p = 2.5E-05) for HMGCR expression in the brain prefrontal cortex (PsychENCODE [42]), which is in moderate linkage disequilibrium (LD) (r² = 0.6) with rs12916 amongst European individuals.

In contrast to HMGCR inhibition, statin-mediated inhibition of ITGAL and HDAC2 lacked well profiled genetic proxies. Therefore, we used the most significant blood eQTLs (eQTLGen) as genetic proxies for ITGAL (rs11574938; p = 7.9E-150) and HDAC2 (rs9481408; p = 4.1E-07) inhibition.

Genetic instrument for PCSK9 inhibition

We sought to investigate whether any genetic association observed for statin targets were likely to be mediated independently of cholesterol lowering, by extending MR analysis to other lipid-lowering medications, namely PCSK9 inhibitors [47]. PCSK9 eQTLs were absent in the eQTLGen dataset, as PCSK9 was likely removed from meta-analysis due to the lack of variation in expression. We thus identified PCSK9 eQTLs from the GTEx whole blood dataset, and
performed MR analysis using a strong eQTL (rs12117661; p = 8.31E-11) as the genetic instrument for PCSK9 expression.

Outcome GWAS data

Publicly available GWAS summary statistics were obtained for 31 immune and disease traits, including haematological traits, interleukin-6 (IL6) and CRP levels, depression, and depression-related symptoms (neuroticism, worrying and depressed affect). In addition, we included several proof-of-principle traits previously linked to statin use, including blood lipid levels (high-density lipoprotein cholesterol (HDL-C), LDL-C, and triglycerides (TG)), body mass index (BMI), coronary artery disease (CAD), and type II diabetes (T2D). All GWAS summary statistics analysed in this study were derived from European cohorts, and were retrieved from original publications or public platforms including fastGWA [48], openGWAS [49, 50] and GWAS Catalogue [51] (Supplementary Table 5).

SMR analysis

We used SMR (version 0.710) [52] to evaluate the association of genetically proxied statin on-target and off-target gene expression with various traits. We used blood (HMGCR, ITGAL and HDAC2), muscle (HMGCR) or brain (HMGCR) gene expression as exposure, and immune and disease traits as outcome. GWAS summary-data-based MR methods require a reference dataset for LD estimation, and we used a random sample of 10 000 European individuals from the UK Biobank as the LD reference. A threshold of p < 0.0005 (after multiple testing correction for three statin target genes and 31 traits of interest) defined statistical significance for the SMR test. We performed the heterogeneity in dependent instruments (HEIDI) test as a sensitivity analysis [52], where a HEIDI p-value > 0.01 indicated that the observed exposure-outcome association
was mediated through one single causal single nucleotide polymorphism (SNP), rather than via LD between separate SNPs (linkage scenario) (Supplementary Methods). The distribution of GWAS or eQTL summary statistics were visualised using LocusCompare plots [53] (Supplementary Methods).

Results

Statins induce extensive *in vitro* transcriptomic alterations

We analysed the perturbational signatures of six statins (atorvastatin, fluvastatin, lovastatin, mevastatin, rosuvastatin and simvastatin) in HA1E cells. Overall, we observed high concordance amongst the transcriptional signatures of statins, where the median Tau score between pairs of statin compounds was 99.95. The consistency in statin-induced transcriptional profiles was further supported by highly correlated transcriptome-wide gene expression changes, namely all 12 328 genes that constituted the CMap signatures (Figure 1). The concordance and specificity of statin-induced signatures were confirmed when we re-computed the connectivity scores using the top 100 or 150 landmark genes (Supplementary Figure 3).

Statins induce transcriptional perturbations in lipid and immune-associated pathways

We performed functional enrichment analysis on genes up-regulated ($z > 1$) and down-regulated ($z < -1$) by statins in HA1E cells and identified overrepresented biological processes (Figure 2A and Supplementary File 2). A total of 366 GO biological process terms were identified to be significantly enriched amongst differentially expressed genes induced by at least one statin. Cellular processes, including various DNA replication and RNA processing pathways, were the most enriched category of biological processes (Figure 2A). Statins also induced extensive
transcriptomic perturbations in metabolic processes, biological regulation, localisation, and response to stimulus pathways (Figure 2A). As expected from their lipid-lowering properties, statins induced widespread expression changes amongst genes annotated with lipid metabolic pathways (Figure 2B). Furthermore, we observed an enrichment of 22 immune system process GO terms amongst statin-induced differentially expressed genes (Figure 2A). We confirmed the reproducibility of pathway enrichment analysis results using more stringent thresholds for defining differential gene expression ($|z| > 1.5$ or 2) (Supplementary Figure 4). We investigated the transcriptomic signatures of statins in other cell lines, namely HepG2 (liver) and MCF7 (breast), and found overall positive correlation across different cell lines in the transcriptomic landscape induced by statin exposure, both globally as well as amongst lipid and immune-associated genes (Supplementary Figure 5).

Immune pathways are perturbed by statins and antidepressants in concordant direction

The CMap connectivity analysis identified 201 out of 2770 (7.3%) non-statin compounds with an average Tau score greater than 90, indicating strong positive connectivity to statin-induced transcriptomic profiles (Supplementary File 1). On the other hand, 14 compounds had a Tau score lower than -90 and thus showed strong negative connectivity to statins, suggesting opposite transcriptomic impacts (Supplementary File 3). Antidepressants were significantly enriched amongst high-connectivity compounds ($p < 1E-05$), and 12 out of the 38 (31.6%) antidepressants profiled by the CMap database showed an average Tau score greater than 90 with statins (Figure 3A, Supplementary Figure 6 and Supplementary File 4). We focussed our analysis on three non-selective monoamine reuptake inhibitors (desipramine, trimipramine and nortriptyline) (ATC code: N06AA) and two SSRIs (paroxetine and sertraline) (ATC code: N06AB), as they showed
the highest average connectivity to the six statins in HA1E cells (Supplementary Figure 6 and Supplementary Figure 7).

To investigate the molecular basis of the high connectivity between statins and antidepressants, we conducted functional enrichment analysis on genes perturbed in the same or opposite direction by the two drug classes (Supplementary Table 6). A total of 179 and 56 biological processes were significantly enriched in genes perturbed in the same and opposite directions respectively (Figure 3B, Supplementary File 5 and Supplementary File 6). Notably, lipid metabolic processes were mostly significantly enriched amongst genes perturbed in the opposite direction (13 lipid metabolic process terms identified as enriched amongst genes perturbed in the opposite direction versus 1 identified in the same direction), indicating opposing effects between statins and antidepressants on lipid-related pathways. In comparison, genes perturbed in the same direction were, to a higher extent, functionally involved in cellular processes and biological regulation processes. Furthermore, genes perturbed in the same direction by statins and antidepressants were enriched in diverse immune system processes, including immune response and leukocyte activation, and such widespread enrichment was not observed for genes perturbed in the opposite direction.

In contrast, alvespimycin displayed limited similarity with statin-induced transcriptomic profiles in HA1E cells (average Tau = 23.7) (Supplementary Figure 8). Although sirolimus showed an average connectivity score of 92.5 and overall positive correlation with statin-induced transcriptomic profiles (Supplementary Figure 8), unlike antidepressants, genes perturbed in the same direction by statins and sirolimus were not functionally enriched in immune processes (Supplementary Figure 8). The high Tau scores between statins and sirolimus appeared to be
driven by genes involved in non-lipid metabolic processes and cellular process (Supplementary Figure 8).

Genetically predicted statin on-target and off-target inhibition is associated with changes in immune traits

We performed SMR analysis to investigate the association between genetically predicted HMGCR inhibition and various immune, lipid and relevant disease traits (Figure 4 and Supplementary File 7). We confirmed the validity of methodology using proof-of-principle traits with previously established associations to statins. As expected, reduced HMGCR expression in blood was specifically associated with reduced LDL-C levels while showing no association with HDL-C and TG levels, and was associated with decreased CAD risk, increased BMI and T2D risk, which is concordant with previous findings on the on-target and side effects of statins [54-56].

We did not observe an association of genetically predicted HMGCR inhibition with altered risk of depression, neuroticism or depressed affect; however, we found nominal association with reduced worrying symptoms (p = 0.042) (Figure 4). MR analysis uncovered substantial associations between genetically predicted HMGCR inhibition and changes in haematological traits, particularly platelet-associated parameters, including a positive association with mean platelet volume (p = 8.8E-08), as well as a negative association with platelet count (p = 1.1E-10) and platelet crit (volume occupied by platelets in the blood as a percentage) (p = 1.4E-06) (Figure 4). In addition, the reduction in HMGCR expression showed a significant association with increase in high light scatter reticulocyte percentage, immature reticulocyte fraction, monocyte count and erythrocyte distribution width, indicating a widespread effect on blood cell
parameters (Figure 4). We observed no association between HMGCR expression and levels of blood inflammatory cytokines, namely IL6 and CRP (Figure 4).

Interestingly, we observed HEIDI significance for the association of HMGCR expression in blood with CAD and LDL-C (Figure 4), which suggested that the variant associated with HMGCR expression was distinct from those associated with CAD risk and LDL-C level, despite extensive validation of the effects of HMGCR inhibition on these traits by previous studies [43, 45]. The HEIDI significance may be due to the complex LD structures in the GWAS studies, which may not be accurately accounted for by the LD reference (Supplementary Figure 9).

Sensitivity analysis using HMGCR expression in muscle and brain showed concordant patterns of associations with immune and depression-related traits (Supplementary Figure 10, Supplementary Figure 11, Supplementary Figure 12, Supplementary File 8 and Supplementary File 9).

In analyses of off-target effects, we observed no association between ITGAL and HDAC2 blood expression with lipid traits, confirming that the lipid-lowering effects of statins were driven by targeted inhibition of HMGCR (Figure 4). We found significant associations of genetically proxied ITGAL inhibition with BMI and changes in haematological traits, including an association monocyte count in the same direction as HMGCR inhibition (Figure 4 and Supplementary File 10). The MR analysis uncovered a nominally significant, positive correlation between lowering ITGAL expression and worrying, which was in the opposite direction from that observed for HMGCR expression (Figure 4). In contrast, limited associations were found between HDAC2 expression and outcome traits assessed in this study, except for nominal significance on the associations with neuroticism, worrying and several blood cell traits (Figure 4 and Supplementary File 11). Overall, genetically proxied statin target inhibition was found to be
associated with changes in diverse immune traits and potentially depressive symptoms, through both on-target and off-target effects.

To assess whether the observed associations were specific to statins or common to other lipid-lowering medications, we performed SMR analysis to predict the effects of PCSK9 inhibitors. As expected, genetically predicted PCSK9 inhibition showed a substantial association with reduced LDL-C and CAD risk (Figure 4 and Supplementary File 12). While we found nominal associations of PCSK9 inhibition with high light scatter reticulocyte, monocyte and erythrocyte counts, no association was observed with platelet traits, indicating that the extensive immunomodulatory effects observed for genetically predicted HMGCR inhibition was specific to statins, and likely independent of their lipid-lowering effects (Figure 4). Interestingly, genetically predicted PCSK9 inhibition was nominally associated with increased depression risk, which is concordant with previous findings [57] (Figure 4).

Discussion

We explored the anti-depressive properties of statins using transcriptomic signature matching and MR analyses. Transcriptomic analysis uncovered substantial similarities in cellular response to statin and antidepressant exposure, conferred by concordant impacts on diverse biological processes, ranging from cellular processes and biological regulation to various immune pathways. Using MR, we found no genetic association of HMGCR inhibition with depression risk, but observed extensive associations with various immune traits, further supporting an immunomodulatory activity of statins. Our study design and main findings are summarised in Figure 5.
While MR analysis did not detect an association between genetically predicted HMGCR inhibition and the risk of developing depression, we found that HMGCR inhibition was nominally associated with reduced worrying symptom. Corroborating our results, previous MR studies reported significant positive associations of TG and HDL-C levels with depressive risk, but found no association with LDL-C, which is the primary lipid species impacted by statins [58, 59]. While a previous MR study reported an association between statins and increased depression risks, our analysis used a larger GWAS dataset (n = 500 199 versus 180 866), which was expected to give more accurate estimation of effect sizes [60]. Previous observational and RCTs have presented conflicting evidence on the association between statins and depression. Several RCTs reported a clinically relevant improvement in depressive symptoms amongst patients that used statins alone or in combination with conventional SSRIs [18-22]. While a Swedish national cohort study reported that statin use was associated with an overall reduced depression risk [23], a large-scale observational study in Denmark found increased use of antidepressants and diagnosis of depression amongst statin users [25]. However, many of these observational studies are prone to confounding factors. At the time of writing, there are ongoing clinical trials investigating the effect of statin treatments on depression and emotional processing [61-63], which may provide further insights into their efficacy as stand-alone or add-on treatments for depression.

Immune system dysfunction and elevated pro-inflammatory cytokine levels, specifically IL6 and CRP, have been linked to disturbed serotonin metabolism and depressive symptoms [31, 64-66]. Furthermore, conventional antidepressants exhibit immunomodulatory properties, by reducing the levels of pro-inflammatory cytokines [67, 68]. We found that pathways related to pro-inflammatory cytokines, namely interleukin-1 and tumour necrosis factor, were frequently
enriched amongst genes downregulated by statins (Supplementary File 2), corroborating previous findings [29]. Consistent findings were observed in other cell lines, including the HepG2 cell line of liver origin, which is the primary target tissue of statins. Transcriptomic signature matching showed that genes perturbed in a concordant fashion by statins and antidepressants were functionally enriched in immune pathways, suggesting immunomodulatory activities as a common pharmacological effect of both drug classes. In comparison, lipid metabolic pathways were perturbed in the opposing direction, supporting previous findings on the cholesterol-increasing effects of antidepressants [69].

Furthermore, MR uncovered extensive associations between genetically predicted HMGCR inhibition and alterations in various blood cell parameters. Given these associations were not observed for PCSK9, another lipid-lowering medication target, the effects of statins on these haematological traits were likely independent of LDL-C lowering. In particular, our analysis uncovered genetic associations between HMGCR inhibition and various platelet-related indices, including a lower platelet count, which corroborates previous case reports of thrombocytopenia following statin treatments [70-72]. Depressed individuals exhibit increased platelet activity [73], which is reduced after antidepressant treatment [74, 75]. Platelets play a vital role in regulating blood serotonin levels, and mediate the uptake and release of serotonin via mechanisms similar to serotonergic neurons [76, 77]. Further investigation is required to decipher statin-mediated immune changes and their physiological implications, particularly the link to depression.

In addition to HMGCR inhibition, statins are reported to exhibit \textit{in vitro} binding and off-target inhibition of ITGAL and HDAC2, although \textit{in vitro} interactions do not necessarily translate to \textit{in vivo} pharmacological actions [78-81]. To perform a comprehensive analysis of statin-mediated effects, we used \textit{ITGAL} and \textit{HDAC2} eQTLs in blood to proxy for the off-target effects of statins.
While no association was observed with depression or depressed affect, genetically predicted ITGAL and HDAC2 inhibition was nominally associated with increased worrying and/or increased neuroticism, which was in the opposite direction to HMGCR inhibition. Although ITGAL expression is absent in HA1E cells, and therefore unlikely to contribute to the immunomodulatory effects of statins observed in transcriptomic analysis, genetic evidence demonstrated that lowering of ITGAL expression in blood was associated with extensive changes in immune traits. While we did not observe an association between IL6 and statin target genes, ITGAL inhibition, but not HMGCR inhibition, was genetically associated with reduced CRP levels, suggesting that the CRP-lowering effects of statins could potentially be mediated through off-target pathways [65, 66, 82]. ITGAL is a component of the heterodimeric LFA-1 receptor functionally implicated in diverse immune-related processes [83]. Given its abundant expression in immune cell populations, inhibition of ITGAL likely impacts diverse immune cell types and leads to extensive alterations in immune phenomena. Taken together, our findings suggest that statins exhibit modulatory effects on the immune system and depressive symptoms through both on-target inhibition of HMGCR, and potentially off-target inhibition of ITGAL.

Most previous studies on the association between statins and depression have been observational studies or RCTs. Our study offers a genomics approach to investigating these effects at the molecular level. We used a combined approach of transcriptomic signature matching and genetic association studies to probe the molecular mechanisms behind the anti-depressive properties of statins. By comparing the perturbational effects of statins and antidepressants, we identified potential pharmacological mechanisms shared by the two drug classes. We performed MR analysis using large eQTL and GWAS datasets, which is less prone to unmeasured confounder bias and reverse causality than observational studies.
There are several limitations that need to be acknowledged. Firstly, the dosage of statins used to generate the CMap perturbational profiles might not reflect the usual doses used in treatment, and analysis on perturbational profiles across multiple dosages will provide further insights into any dose-sensitive cellular response to statins. Moreover, the immortalised cell lines used in perturbational profiling may exhibit genomic and transcriptomic variations from biological tissues. Secondly, protein quantitative trait loci (pQTL) may provide better genetic instruments for mimicking statin-mediated target protein inhibition. As we were limited by pQTL data availability, we used strong and previously validated eQTLs as instruments for HMGCR inhibition. Additionally, MR analysis was limited in capturing statin effects that were not mediated through target inhibition, such as drug-drug interactions, which could have explained the anti-depressive effects of statins as add-on treatments for conventional antidepressants. However, currently available pharmacokinetic and pharmacodynamic evidence suggests that interactions between statins and antidepressants are rare or below threshold for clinical significance [84]. Furthermore, the genetic instruments for target genes likely mimic subtle inhibition on targets. Therefore, a lack of association does not necessarily mean a true lack of effect, as exposure to statins may induce stronger inhibitory effects on targets and lead to augmented pharmacological outcome. In addition, the associations observed for genetic variants provide an estimated effect of lifelong statin exposure, and thus may not reflect the effects of short-term treatment. However, individuals who have been prescribed statins frequently take the medication until the end of life [85]; therefore, investigating the long-term effect of statin exposure is clinically relevant. Finally, different types of statins vary in biochemical, structural and pharmacokinetic characteristics [28], and are linked to different ability to cross the blood-brain barrier [86] as well as varying degrees of side effects and association with depression [23,
A comparative analysis between different statins may provide additional insights into the chemical and pharmacological properties that contribute to anti-depressive effects.

In conclusion, we showed that a combined approach of signature matching and genetic association analysis can yield valuable insights into molecular mechanisms underlying the unintended pharmacological effects of drugs. Our results suggest that anti-depressive effects of statins may be mediated through their extensive immunomodulatory activities. We find no genetic association between statin-mediated target inhibition and depression risk, but provide moderate evidence for genetic association with depressive symptoms, though independent validation would be required for more conclusive evidence. An improved understanding of the effects of cardiovascular disease medications on depression is crucial for guiding clinical decisions on treating comorbid individuals and informing drug repurposing strategies.
Acknowledgements

SS is supported by funding from the National Health and Medical Research Council (NHMRC) Program Grant (1113400), NHMRC Early Career Fellowship (APP1142495) and National Heart Foundation Future Leader Fellowship (105638). JCJ is supported by an NHMRC IDEAS grant (2000637). We thank Professor Naomi Wray for her comments and suggestions for the manuscript. We thank Dr Zhihong Zhu, Dr Zhili Zheng and Dr Yang Wu for their insightful comments on the SMR tool.

Conflict of Interest

The authors declare no conflict of interest.

Supplementary Information

Supplementary information is available at MP’s website.
References

7. U.S. Food & Drug. STELARA (ustekinumab) injection, for subcutaneous or intravenous use 2020.

68. Dahl J, Ormstad H, Aass HCD, Malt UF, Bendz LT, Sandvik L, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. *Psychoneuroendocrinology*. 2014;45:77-86.

Figure Legends

Figure 1. Statins induced concordant transcriptional responses in HA1E cells. Changes in gene expression (z-scores) of 12,328 genes profiled by the L1000 assay were compared for each pair of statins using pairwise correlation. The adjusted R², the regression coefficient (b) and the corresponding p-values (p) are shown.

Figure 2. Genes functionally involved in lipid and immune pathways were widely perturbed by statin exposure in HA1E cells. (A) Biological processes identified as significantly enriched amongst statin-induced differentially expressed genes. A total of 366 biological process terms were identified as significant, and categorised into high-level ancestor terms. Y-axis shows the names and GO accession numbers of the ancestor biological process terms, as well as the child terms of primary metabolic process (GO:0044238) (a child term of “metabolic process”) and immune system process (GO:0002376). The branches indicate ancestor-child relationships of primary metabolic process and immune system process terms. Bar graph shows the percentages of significant GO biological process terms annotated with each ancestor category, with the corresponding counts shown on the graph. The bubble plot shows the statin compounds for which the biological processes were identified as significantly enriched. (B) Expression changes of genes annotated with the lipid metabolic process (GO:0006629) upon statin exposure. Red lines indicate z-scores of 1 and -1, which were used to define up-regulated and down-regulated genes respectively. The total number of genes annotated with the process, as well as the number and percentage of up-regulated and down-regulated genes are shown.

Figure 3. Statins and antidepressants induced similar perturbational profiles in HA1E cells. (A) Statins and antidepressants ranked by connectivity (Tau) scores (averaged across six statins).
Lengths of the coloured bars represent the number of compounds with the corresponding average Tau scores (red: Tau > 90; grey: -90 ≤ Tau ≤ 90; blue: Tau < -90). The ranking of antidepressants with an average Tau score higher than 90 are shown. (B) Biological processes identified as significantly enriched amongst genes perturbed by both statins and antidepressants. A total 179 and 56 GO biological process terms were identified to be significantly enriched amongst genes perturbed in the same (green) and opposite (yellow) directions respectively, and categorised into high-level ancestor terms. Bar graph shows the percentages of significant GO biological process terms annotated with (i) high-level biological process ancestor terms, as well as (ii) child terms of primary metabolic process (GO:0044238) (a child term of “metabolic process”) and (iii) immune system process (GO:0002376).

Figure 4. MR analyses of *HMGCR, ITGAL, HDAC2* and *PCSK9* gene expression in blood with various immune, lipid and depression-related traits. Dot plots show the associations (beta) between gene expression and traits, and error bars show the 95% confidence intervals. The effect sizes were harmonised to represent the changes in trait per 1-SD decrease in gene expression. The beta values thus reflect the direction of association upon genetically proxied target inhibition. Beta values are not standardised. Red dots represent associations with statistical significance after multiple testing correction (p < 0.0005), and yellow dots represent associations with nominal significance (p < 0.05). Associations with significant HEIDI p-values are marked by ×. For *PCSK9*, the genetic instrument was not profiled in T2D and the result was thus labelled with “NA”.

Figure 5. Summary of study design and main findings. We explored the transcriptomic perturbations induced by statins using the pre-compiled CMap perturbational signatures, and identified biological processes perturbed by statins and antidepressants in the same or opposite
direction. We performed MR analysis to investigate the association of genetically predicted statin target inhibition with various immune and depression-related traits.
A

<table>
<thead>
<tr>
<th>Z-scores</th>
<th>atorvastatin</th>
<th>fluvastatin</th>
<th>lovastatin</th>
<th>mevastatin</th>
<th>rosvastatin</th>
<th>simvastatin</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1</td>
<td>186 (17.16%)</td>
<td>400 (36.9%)</td>
<td>285 (26.29%)</td>
<td>461 (42.53%)</td>
<td>209 (19.28%)</td>
<td>320 (29.52%)</td>
</tr>
<tr>
<td><−1</td>
<td>105 (9.69%)</td>
<td>130 (11.99%)</td>
<td>144 (13.28%)</td>
<td>125 (11.53%)</td>
<td>143 (13.19%)</td>
<td>133 (12.27%)</td>
</tr>
</tbody>
</table>

B

GO:0006629 Lipid metabolic process (total genes = 1084)

- **Cellular process**
 - **Metabolic process**
 - Nucleobase-containing compound metabolic process
 - Protein metabolic process
 - Lipid metabolic process
 - Cellular amino acid metabolic process
- **Biological regulation**
 - Localisation
 - Response to stimulus
- **Immune system process**
 - Immune response
 - Activation of immune response
 - Antigen processing and presentation
 - Immune system development
 - Immune effector process
- **Signaling**
- **Multicellular organismal process**
- **Developmental process**

Percentage of significant biological pathways (%) (n = 366)

- **atorvastatin**
 - >1 = 272
 - <−1 = 182
- **fluvastatin**
 - >1 = 81
 - <−1 = 51
- **lovastatin**
 - >1 = 49
 - <−1 = 22
- **mevastatin**
 - >1 = 49
 - <−1 = 22
- **rosuvastatin**
 - >1 = 81
 - <−1 = 51
- **simvastatin**
 - >1 = 49
 - <−1 = 22

Biological process involved in interspecies interaction between organisms

- GO:0044238 Primary metabolic process
 - GO:0006629 Lipid metabolic process
 - GO:0006520 Cellular amino acid metabolic process
 - GO:0006099 TCA cycle
 - GO:0019882 Antigen processing and presentation
Average Tau scores

A

paroxetine
sertraline
maprotiline
nortriptyline
trimipramine
desipramine
amoxapine
amitriptyline
fluoxetine
duloxetine
amitriptyline
atorvastatin
fluvastatin
lovastatin
mevastatin
rosuvastatin
simvastatin

B

i) Biological processes

90 < Tau
-90 ≤ Tau ≤ 90
Tau < -90

ii) Primary metabolic processes (GO:0044238)

iii) Immune system process (GO:0002376)
HA1E cell line selected;
Six statins with concordant gene expression signatures selected.

Transcriptomic Signature Matching (CMap analysis)

Mendelian Randomisation
Identification of statin targets using DrugBank and literature review
Identification of genetic instruments for statin-mediated target inhibition
1. Identification of strong eQTLs for HMGCR, ITGAL and HDAC2 expression using eQTLGen (Blood), GTEx (Muscle) and PsychENCODE (Brain) datasets
2. Validation of instrument strength (F-statistic > 10)

MR analysis of statin target genes with immune and depression-related traits
1. SMR analysis (significance threshold: p < 0.0005 (31 traits and 3 genes) and HEIDI p > 0.01))
 -- Exposure: HMGCR, ITGAL and HDAC2 expression in blood
 -- Outcome: immune and depression-related traits

Identification of compounds showing high connectivity with statins
1. Computation of connectivity scores (Tauc) based on top 50 differentially expressed landmark genes using CLUE (https://clue.io)
2. Compounds with average Tau > 90 identified

Quality control
1. Extraction of statin perturbational signatures in different cell lines
2. Selection of appropriate cell line and statin compounds for analysis based on within-statin connectivity scores

Pathway analysis of statin signatures
1. Identification of up- (z > 1) and down-regulated (z < -1) genes upon exposure to each of the six statin compounds
2. Pathway enrichment analysis of up- and down-regulated genes using gProfiler2 in R

Pathway analysis of genes commonly perturbed by statins and antidepressants
Pairwise pathway enrichment analysis on genes perturbed in the same or opposite directions by statins and antidepressants

Pathways in lipid and immune processes significantly enriched
• Enrichment of antidepressants with high connectivity to statins (p < 0.00001; 12 out of 38 antidepressants with average Tau > 90);
• Five antidepressants with the highest mean connectivity with statins selected.

Potential mechanisms for anti-depressive effects of statins

Reduced depressive symptoms (worrying) on-target (nominal significance) Reduced CRP level off-target (nominal significance) Genetically predicted statin target inhibition

Haematological traits

Depression risk

No association

on-target and off-target