Prior vaccination enables a more robust immune response to Omicron infection

Hye Kyung Lee¹,†, Ludwig Knabl²,†, Mary Walter³, Yuhai Dai³, Ludwig Knabl Sr.⁴, Magdalena Füßl², Yasemin Caf², Claudia Jeller², Philipp Knabl², Martina Obermoser⁵, Christof Baurecht⁶, Norbert Kaiser⁵, August Zabernigg⁶, Gernot M. Wurdinger⁶, Priscilla A. Furth⁷,*,† and Lothar Hennighausen¹,*,†

¹National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
²TyrolPath Obrist Brunhuber GmbH, Zams, Austria.
³Clinical Core, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
⁴Division of Internal Medicine, Krankenhaus St. Vinzenz, Zams, Austria
⁵Division of Internal Medicine, Krankenhaus St. Johann, St. Johann, Austria
⁶Division of Internal Medicine, Krankenhaus Kufstein, Kufstein, Austria
⁷Departments of Oncology & Medicine, Georgetown University, Washington, DC, USA.

*Corresponding authors. HKL: hyekyung.lee@nih.gov; LK: Ludwig.knabl@tyrolpath.at; PAF: paf3@georgetown.edu; LH: lotharh@nih.gov
†These authors contributed equally to this work.

Abstract

The antibody response following Omicron infection has been reported to be less robust than to other variants. Here we compared the immune-transcriptome and antibody responses following Omicron infection in unvaccinated and vaccinated individuals who experienced mild to moderate symptoms. The unvaccinated individuals showed a quantitatively greater transcriptional response but a muted antibody response than vaccinated individuals. Prior vaccination modifies the transcriptional response to Omicron infection with a more robust antibody response.

Introduction
The highly transmissible Omicron (B.1.1.529) variant is less susceptible to neutralizing antibodies elicited by previous vaccination or other variant infection1,2 resulting in a continuation of the COVID-19 pandemic. There is a need to understand how previous vaccination might modify the immune response to the Omicron variant. Here, we investigate the transcriptional and humoral immune response in 57 persons with documented Omicron infection, 34 who had been antigen-naïve and 23 persons who had been vaccinated and boosted with the BNT162b2 mRNA vaccine (Pfizer–BioNTech). None of the study participants had reported a previous SARS-CoV-2 infection and were either asymptomatic or displayed mild to moderate symptoms after the Omicron infection. Demographic and clinical characteristics of the study population are provided in Supplementary Table 1.

Results
First, we measured circulating antibody responses in serum samples obtained from the Omicron patients within the first two days of validated infection and after 13 days (Fig. 1a). The baseline levels (Days 1-2) of anti-spike IgG levels directed against the ancestral strain (WH04) and Omicron were lowest in the naïve group and at least 10-fold higher in the previously vaccinated group (Fig. 1b). A significant increase of anti-Omicron spike, but not anti-ancestral spike, antibodies were observed in the vaccinated group within 13 days following Omicron infection. Antibody levels did not increase in the naïve group within 13 days following infection. These findings are mirrored by anti-spike antibody levels from other variants (Supplementary Fig. 1a).

At this point in the pandemic, a critical question is whether prior BNT162b2 vaccination can prompt development of neutralizing antibodies in Omicron infected individuals. Here, we assessed neutralization capacity using the angiotensin-converting enzyme 2 (ACE2) binding inhibition assay, against the ancestral and Omicron spike proteins in our cohorts shortly after Omicron infection (Days 1-2) and after 13 days (Fig. 1c). A significant increase in neutralizing activity was observed only in the vaccinated group. These findings parallel increases in anti-spike activity levels against other variants as well (Supplementary Fig. 1b).
To understand the impact of prior vaccination on the genomic immune response to Omicron infection, we investigated the immune transcriptome (Fig. 1a). These data sets were compared to reference populations that were naïve (no previous SARS-CoV-2 infection and no vaccination) (Lee et al., Cell Reports, *in press*) and to patients that had been infected with the Alpha variant. Bulk RNA-seq on buffy coats isolated within the first two days after validated Omicron infection was performed with an average sequencing depth of 200 million reads per sample (Supplementary Table 2). First, we directly compared the transcriptomes of the vaccinated and unvaccinated Omicron cohorts with the control cohort of 30 healthy individuals from the same geographic area (Tyrol Control Transcriptomes, TCT). Expression of 489 and 732 genes was induced significantly in the no vaccination and vaccination group, respectively. Expression of 146 and 246 genes was reduced. GSEA analyses linked the induced genes to innate immune responses including interferon response and cytokine signaling through the JAK/STAT pathway (Fig. 2a). Similarly to the immune transcriptome of Omicron infected individuals, a strong enrichment of innate immune genes is also observed in hospitalized patients infected with Alpha variant (Fig. 2a). The differences observed between the three cohorts were of a quantitative rather than a qualitative nature. We directly analyzed the expression of the genes that were preferentially activated in the unvaccinated Omicron patients as compared to the vaccinated ones (Fig. 2b, Supplementary Table 2). Expression of these genes not only increased in the unvaccinated Omicron cohort but were further elevated in the patients infected with the Alpha variant.

Discussion

Many of the genes, including members of the interferon induced gene family and the neutrophil activation marker CD177, are associated with severe COVID-19 disease. Since, in many cases, their expression in hospitalized Alpha patients is equivalent to Omicron patients that are either asymptomatic or mildly symptomatic, their activity might reflect the immune status of the patients, rather disease severity. We also identified genes that had not previously linked to COVID-19, such as USP18, an IFN-induced gene encoding a negative regulator of type I IFN signaling, which highly activated in unvaccinated Omicron patients and Alpha patients.
The antiviral response gene OAS1 is of particular interest as it harbors a mutation traced back to the Neanderthal genome that results in a splice variant associated with protection from severe COVID-19. RNA-seq data revealed that the rs10774671 haplotype was found in 83% of our control population, 86% and 85% in the unvaccinated and vaccinated Omicron population, respectively and 96% of the Alpha population.

Widespread Omicron infection of unvaccinated and vaccinated people, which results in milder disease relative to previous variants, has been reported. However, unlike the response to Delta breakthrough infection, Omicron breakthrough infections result in lower levels of neutralizing antibodies. The muted antibody response may be due to the high share of asymptomatic and mild infections as is also indicated by a less active immune transcriptome shown in our study. However, individuals with prior vaccination showed significant neutralization activity, even with a muted transcriptional response. Naïve individuals demonstrated significantly higher transcriptional response but a less robust humoral response. The response in both groups of individuals was quantitatively less when compared to the transcriptional response of hospitalized individuals with Alpha infection.

In summary, prior vaccination modifies the transcriptional response to Omicron infection but induces a more robust antibody response.

Limitations of the study
There are several limitations to the current study. The study was conducted on volunteers from a specific geographical area, Tyrol (Austria). Another limitation is the confinement of the study to a timeframe of two weeks following Omicron infection. Some of the data collected on breakthrough infections was reliant on retrospective chart review and not collected as part of a prospective study.

Methods
Ethics.
This study was approved (EK Nr: 1064/2021) by the Institutional Review Board (IRB) of the Office of Research Oversight/Regulatory Affairs, Medical University of Innsbruck,
Austria, which is responsible for all human research studies conducted in the State of Tyrol (Austria). Participant information was coded and anonymized.

Study population, study design and recruitment.

A total of 57 patients infected with Omicron, 34 with no history of prior vaccination and 23 patients who had received 2-3 doses of the BNT162b2 vaccine (Table S1), were recruited for the study under informed consent. Recruitment and blood sample collection took place between December 2021 and March 2022. This study was approved (EK Nr: 1064/2021) by the Institutional Review Board (IRB) of the Office of Research Oversight/Regulatory Affairs, Medical University of Innsbruck, Austria, which is responsible for all human research studies conducted in the State of Tyrol (Austria). The investigators do not need to have an affiliation with the University of Innsbruck. A waiver of informed consent was obtained from the Institutional Review Board (IRB) of the Office of Research Oversight/Regulatory Affairs, Medical University of Innsbruck (https://www.i-med.ac.at/ethikkommission/). Written informed consent was obtained from all subjects. This study was determined to impose minimal risk on participants. All methods were carried out in accordance with relevant guidelines and regulations. All research has been performed in accordance with the Declaration of Helsinki (https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/). In addition, we followed the ‘Sex and Gender Equity in Research – SAGER – guidelines’ and included sex and gender considerations where relevant.

Antibody assay.

End-point binding IgG antibody titers to various SARS-CoV-2–derived antigens were measured using the Meso Scale Discovery (MSD) platform. SARS-CoV-2 spike, nucleocapsid, Alpha, Beta, Gamma, Delta, and Omicron spike subdomains were assayed using the V-plex multispot COVID-19 serology kits (Panel 23 (IgG) Kit, K15567U). Plates were coated with the specific antigen on spots in the 96 well plate and the bound antibodies in the samples (1:50000 dilution) were then detected by anti-human IgG
antibodies conjugated with the MSD SULPHO-TAG which is then read on the MSD instrument which measures the light emitted from the tag.

ACE2 binding inhibition (Neutralization) ELISA.
The V-PLEX COVID-19 ACE2 Neutralization kit (Meso Scale Discovery, Panel 23 (ACE2) Kit, K15570U) was used to quantitatively measure antibodies that block the binding of ACE2 to its cognate ligands (SARS-CoV-2 and variant spike subdomains). Plates were coated with the specific antigen on spots in the 96 well plate and the bound antibodies in the samples (1:10 dilution) were then detected by Human ACE2 protein conjugated with the MSD SULPHO-TAG which is then read on the MSD instrument which measures the light emitted from the tag.

Extraction of the buffy coat and purification of RNA.
Whole blood was collected, and total RNA was extracted from the buffy coat and purified using the Maxwell RSC simply RNA Blood Kit (Promega) according to the manufacturer's instructions. The concentration and quality of RNA were assessed by an Agilent Bioanalyzer 2100 (Agilent Technologies, CA).

mRNA sequencing (mRNA-seq) and data analysis.
The Poly-A containing mRNA was purified by poly-T oligo hybridization from 1 µg of total RNA and cDNA was synthesized using SuperScript III (Invitrogen, MA). Libraries for sequencing were prepared according to the manufacturer's instructions with TruSeq Stranded mRNA Library Prep Kit (Illumina, CA, RS-20020595) and paired-end sequencing was done with a NovaSeq 6000 instrument (Illumina) yielding 200-350 million reads per sample.

The raw data were subjected to QC analyses using the FastQC tool (version 0.11.9) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). mRNA-seq read quality control was done using Trimmomatic ([version 0.36](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)) and STAR RNA-seq ([version STAR 2.5.4a](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)) using 150 bp paired-end mode was used to align the reads (hg19). HTSeq ([version 0.9.1](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)) was to retrieve the raw counts and subsequently, Bioconductor package DESeq ([version 1.11.9](https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)) in R (https://www.R-project.org/) was used to normalize the counts.
across samples and perform differential expression gene analysis. Additionally, the RUVSeq15 package was applied to remove confounding factors. The data were pre-filtered keeping only genes with at least ten reads in total. The visualization was done using dplyr (https://CRAN.R-project.org/package=dplyr) and ggplot216. The genes with log2 fold change >1 or < -1 and adjusted p-value (pAdj) <0.05 corrected for multiple testing using the Benjamini-Hochberg method were considered significant and then conducted gene enrichment analysis (GSEA, https://www.gsea-msigdb.org/gsea/msigdb).

Quantification and statistical analysis.

Differential expression gene (DEG) identification used Bioconductor package DESeq2 in R. P-values were calculated using a paired, two-side Wilcoxon test and adjusted p-value (pAdj) corrected using the Benjamini–Hochberg method. Genes with log2 fold change >1 or < -1, pAdj <0.05 and without 0 value from all sample were considered significant. For significance of each GSEA category, significantly regulated gene sets were evaluated with the Kolmogorov-Smirnov statistic. P-values of antibody between two groups were calculated using one-tailed Wilcoxon rank t-test on GraphPad Prism software (version 9.0.0). A value of *$P < 0.05$, **$P < 0.01$, ***$P < 0.001$, ****$P < 0.0001$ was considered statistically significant.

Data availability

RNA-seq data from buffy coat of healthy control and COVID-19 Alpha patients were obtained GSE189039, GSE190747 and GSE190680. The RNA-seq data from this study will be uploaded in GEO before publishing the manuscript.

Acknowledgments

This work was supported by the Intramural Research Program (IRP) of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Our gratitude goes to the participants who contributed to this study to advance our understanding of Omicron and COVID-19. This work was utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov). RNA-sequencing was conducted in the NIH Intramural Sequencing Center, NISC (https://www.nisc.nih.gov/contact.htm).
Author contributions

Competing interests
The authors declare not competing interests.

References

Fig. 1 Study design and antibody analysis. **a**, Schematic presentation of the experimental workflow. All 57 study subjects were infected by the SARS-CoV-2 Omicron variant. Of them, 23 had received two or three doses of the BNT162b2 vaccines and 34 were unvaccinated (Table S1). Blood was collected from study participants at two timepoints after testing PCR positive. **b**, Plasma IgG antibody binding the SARS-CoV-2 RBD (spike) from the ancestral and Omicron strains in the unvaccinated and vaccinated Omicron patients. **c**, Neutralizing antibody response to virus spike protein of the ancestral and Omicron variants. *p*-value between two groups is from one-tailed Wilcoxon rank t-test. *p < 0.05, **p < 0.01, ***p < 0, ****P < 0.0001. Line at median.
Fig. 2 Immune transcriptomes following Omicron infection. a, Genes expressed at significantly higher levels in unvaccinated and vaccinated Omicron patients, and COVID-19 patients who were infected by the Alpha variant were significantly enriched in interferon-activated and inflammatory pathways. X-axis denotes statistical significance as measured by minus logarithm of FDR q-values. Y-axis ranked the terms by q values. b-c, Bar plots with the relative mRNA levels of fifteen innate immune response genes of the 29 genes that are significantly induced in all cohorts and higher in the no vaccination group compared to vaccination group (b) and seven that are significantly induced in No vaccination group, but not Vaccination group, and higher in No vaccination group compared to Vaccination group (c).
Supplementary Table 1. Characteristics of Omicron study population

<table>
<thead>
<tr>
<th></th>
<th>No vaccination</th>
<th>Vaccination</th>
<th>Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>No vaccination</td>
<td>34</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Age (years), mean (range)</td>
<td>45 (9-83)</td>
<td>38 (17-82)</td>
<td>0.41</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>26 (76%)</td>
<td>13 (57%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Male</td>
<td>8 (24%)</td>
<td>10 (43%)</td>
<td>1.28</td>
</tr>
<tr>
<td>Medical condition</td>
<td></td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>Auto-immune Disease</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic Heart Disease</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chronic Pulmonary Disease</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dementia</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gout</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hypothyroid</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Kidney Disease</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S/P Cancer</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>COVID-19 vaccine history</td>
<td></td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>3 doses</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2 doses</td>
<td>0</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>COVID-19 disease severity</td>
<td></td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>3 (9%)</td>
<td>3 (13%)</td>
<td>0.21</td>
</tr>
<tr>
<td>Mild-Moderate</td>
<td>30 (88%)</td>
<td>20 (87%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Hospitalized</td>
<td>1 (3%)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Days from last vaccine dose to positive PCR test, mean (range)</td>
<td>N/A</td>
<td>111 (1-294)</td>
<td></td>
</tr>
<tr>
<td>Days from positive PCR test to sampling, mean (range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st sampling</td>
<td>2 (0-5)</td>
<td>1 (0-3)</td>
<td></td>
</tr>
<tr>
<td>2nd sampling</td>
<td>13 (6-17)</td>
<td>13 (6-14)</td>
<td></td>
</tr>
</tbody>
</table>

Supplementary Table 2. List of significantly up-regulated genes in no vaccination cohort compared to vaccination cohort at Days1-2 after infection, log2 (fold change) and adjusted p-value.
Supplementary Fig. 1 Antibody response of Omicron patients.

a, Plasma IgG antibody binding the SARS-CoV-2 RBD (spike) from different strains in the no vaccinated and vaccinated Omicron patients. **b,** Neutralizing antibody response to virus spike protein of SARS-CoV-2 variants. *p*-value between two groups is from one-tailed Wilcoxon rank t-test. *p* < 0.05, **p** < 0.01, ***p*** < 0.001, *****P*** < 0.0001. Line at median.