Systematic review and meta-analysis of yellow fever vaccine in elderly population

Ariane de Jesus Lopes de Abreu¹*, João Roberto Cavalcante², Letícia Wigg de Araújo Lagos¹, Rosângela Caetano², José Ueleres Braga²

¹ Instituto Nacional de Cardiologia, Rio de Janeiro, Rio de Janeiro, Brazil;
¹ Instituto de Medicina Social da Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

*Corresponding author: Ariane de Jesus Lopes de Abreu

E-mail: arianeabreu.rj@gmail.com
Abstract

We conducted a systematic review and meta-analysis to assess the risk of serious adverse events in the elderly after yellow fever vaccination compared to the non-elderly population. We searched multiple databases and grey literature and selected research without language and publication date restriction. Studies were analysed in a descriptive way, meta-analysed and expressed in terms of prevalence ratio and risk ratio with a 95% confidence interval, depending on the degree of heterogeneity found. A total of 18 studies were included, of which 10 were meta-analysed. Results obtained through the meta-analysis showed that the risk of serious adverse events after yellow fever vaccination is three times higher for elderlies when compared to non-elderly population and even five times higher for persons >70 years of age. Also, in relation adverse event type a greater risk was for viscerotropic disease associated with yellow fever vaccine up to six times higher when compared to the population under 60 years. The evidence found in this review supports that the vaccine indication in individuals over 60 years of age should be based on a careful analysis of the individual benefit-risk assessment. Results found suggest a higher risk of SAE for individuals over 70 years, especially for viscerotropic and neurotropic disease associated with YFV contraindicating the use of the YFV in this age group.

Keywords: Yellow Fever Vaccine, Adverse Events, Systematic Review, Aged

Introduction

Yellow fever vaccine (YFV) is the most important means of preventing the disease. It is an immunobiological product considered safe and effective, requiring only one dose to ensure protection against the disease[1]. However, some situations may present a higher risk of adverse events (AE), requiring an individualized assessment of the risk-benefit to recommend the vaccine, as is the case of people over 60 years of age, due to the natural process of immunosenescence[2–5]. Another important issue is that elderly people with comorbidities are more susceptible to infectious diseases. Once infected, there is a risk of suffering an exacerbation of clinical symptoms, which can cause other complications.
and death[6].

In the last decades, emergency/re-emergence processes of the yellow fever virus have had an important impact on human and animal populations, represented by extensive outbreaks in humans and epizootics in non-human primates such as the one that affected Angola and the Democratic Republic of Congo in 2015 and 2016[7–10]. From 2017 to December 2020, other outbreaks were reported in Nigeria, Senegal, Suriname, Guinea, French Guiana, Democratic Republic of Congo, Venezuela, Male, Ethiopia, Togo, Gabon, Liberia, Uganda and Brazil[11]. The recent high numbers of yellow fever cases were attributed to low vaccination coverage - lower than that needed to prevent outbreaks. Additionally, the increase in global travel and population movements pose risks of introductions into large urban areas in tropical and subtropical areas that are infested with mosquitoes competent to transmit YF[8,10].

According to the World Health Organization, by 2020 the number of people over 60 will surpass that of children under 5 years for the first time in history[12]. With the increase in life expectancy of the world population and the demographic transition process, resulting in an aging population, it is necessary to discuss prevention and health promotion measures for the elderly[13]. In the current scenario, this includes forms of prevention against yellow fever, such as vaccination.

YFV is recommended for people over 60 years of age through a risk-benefit assessment. Due to the phenomenon of immunosenescence, the risk of occurring AE in elderly is greater than that of young adults[14,15]. The most serious adverse event (SAE) linked with YFV in the elderly is viscerotropic disease, which is the spread of the vaccine virus to several organs, with shock, pleural and abdominal effusion, and multiple organ failure[15,16].
There are systematic reviews that address the analysis of YFV safety in the elderly, however, these included only in articles published until 2012, before the latest major outbreaks of the disease in the world and the increase in vaccine recommendation areas[15,17–19]. These reviews concluded that there is a greater risk among the elderly, with a significant increase in elderly travellers for YFV-related AE compared to other age groups. However, they argue that the existing evidence on this topic is limited and that more research on the subject is needed. Therefore, we conducted a systematic review to assess the safety of YFV in elderly.

Methods

This systematic review was reported according to the Harms Checklist da Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA harms) guidelines[20] (supplementary table 1). The review guiding question was ‘what is the risk of SAE in adults over the age of 60 years after YFV vaccination and when compared with the population under 60 years?’ We included studies published until September 2020, with no language or geographic restriction. The SAE outcomes were considered as anaphylaxis, neurological manifestations associated with YFV, Vaccine-associated viscerotropic disease and death. This review was registered in the International Prospective Register of Systematic Reviews (PROSPERO) with number CRD42020160430.

Information sources and search strategy

We searched Medline, Embase, Web of Science, Scopus, Lilacs, Database of Abstracts of Review of Effects and Toxiline, as well as sources of grey literature (Open grey, Grey literature report, CDC Morbidity and Mortality Weekly Report, Australian
Adverse Drug Reactions Bulletin, European Database of Suspected Adverse Drug
Reaction Reports, Institutional Repository for Information Sharing of the World Health
Organization, annals of the São Paulo Congress of Infectiology and ClinicalTrials.gov).
We used a combination of search terms related to the population, YFV and outcomes
considering each database specific descriptors and free text to increase the search
strategy sensitivity as provided in the Supplementary table 2. The search was performed
in August 2019 and updated in September 2020. Cross references that fulfil this review
inclusion and exclusion criteria were also included.

Eligibility and selection process

We included studies with original data on SAE from YFV in adults aged more than 60
years, which had a population denominator (as the total number of doses applied for the
population). Study designs considered for inclusion were clinical trials, cohort, case-
control and case series. All different lineages of YFV were considered for inclusion.
Studies were excluded if they referred to multiple publications. In that case only the
publication with the most current data was considered.

Two independent reviewers (A.A. and L.W.) critically appraised each paper and
discussed discrepancies in consensus. We screened titles and abstracts according to
specified inclusion and exclusion criteria, and then selected the full texts.

Data was extracted independently by two reviewers using an electronic form
created in Epidata version 4.6. A pilot was conducted with 10% of the studies included
in the review.

To deal with potential data gaps, authors from the included studies were
contacted in up to three attempts by email to obtain unreported or unclear data. If no
reply was obtained the study was excluded from the review.
Assessment of Bias and Quality

The quality of included studies was assessed in accordance with the methodology recommended in the Cochrane Handbook for Systematic Reviews of Interventions using both Revised Cochrane risk-of-bias tool for randomized trials (RoB 2.0) and Risk of Bias in Non-randomized Studies - of Interventions (ROBINS-I) tools[21,22]. Two independent reviewers (A.A. and J.C.) critically appraised each study and discussed discrepancies in consensus.

The GRADE methodology was used to assess the quality of the evidence of the review[23], using the GRADEpro tool.

Statistical Analysis

Data extracted from the studies were characterized depending on the homogeneity of the study planning, method and outcomes. An evaluation of heterogeneity was carried out using the I² test. The level of heterogeneity was defined as low (I² = 0% to 25%), moderate (I² = >25% to 75%) and high (I² = >75%)[24]. The chi-square test, with a significance level of p = 0.05, was also performed. If heterogeneity were above moderate, a narrative analysis summarizing the findings of the studies was conducted using random effects model[24,25].

A meta-analysis was conducted to assess the relative frequencies of SAE in persons >60 years when compared to those aged under 60 years, using the prevalence rate and 95% confidence interval. Additionally, a meta-analysis of risk factors was conducted for the included studies that presented measures of association, the groups with SAE outcomes were compared with the control group through the Risk Ratio and the 95% confidence interval.
Sensitivity analyses were performed to examine potential explanations of the heterogeneity found between studies by factors related to clinical and methodological characteristics of the studies such as analysis after removal of outliers, subgroup analysis and meta-regression. To examine publication bias, the Egger test and the Begg test were performed, as well as the analysis of the funnel graph. The program R version 4.0.2 was used for statistical analysis of the data.

Results

We identified 1,418 published studies from database searches. No articles were found in the DARE, Open Gray, Gray literature report, Australian Adverse Drug Reactions Bulletin and FAERS databases.

After removing duplicated publications, the first step of selecting articles by reading the titles and abstracts identified 47 papers for reading the full text. In this first stage, 14 publications per language were excluded, 6 in Russian, 3 in Arabic and 5 in Chinese.

Eighteen studies were identified for analysis [4,18,34–41,26–33], which eleven presented the necessary calculation information to perform the meta-analysis (Figure 1).

Figure 1. Process of study selection of systematic review and meta-analyses.

Study Characteristics

The studies included were published between 2001 and 2020, most with cross sectional design (61.1%) and with period of data collection greater than 3 years (50.0%). Only three studies were published after the latest yellow fever outbreaks since 2015. Only three studies (16.7%) presented information for a specific age group of the elderly population and 9 (55.6%) did not present information for comorbidities (Table 1).
<table>
<thead>
<tr>
<th>Author</th>
<th>Journal</th>
<th>Data collection period</th>
<th>Study design</th>
<th>Follow up time</th>
<th>Total sample size</th>
<th>Elderly age group assessed</th>
<th>Total number of elders assessed</th>
<th>Comorbidities presented in the studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC, 2002[26]</td>
<td>Morbidity and Mortality Weekly Report</td>
<td>> 1 to 3 years</td>
<td>Case series</td>
<td>> 1 to 3 years</td>
<td>6</td>
<td>70 to 79 years</td>
<td>2</td>
<td>History of cardiovascular disease</td>
</tr>
<tr>
<td>Azevedo et al, 2011[27]</td>
<td>Transplant Infectious Disease Journal</td>
<td>Missing information</td>
<td>Cross sectional</td>
<td>Missing information</td>
<td>19</td>
<td>60 to 69 years</td>
<td>2</td>
<td>History of cardiovascular disease</td>
</tr>
<tr>
<td>Bae et al, 2008[28]</td>
<td>The Journal of Infectious Diseases</td>
<td>> 3 years</td>
<td>Case series</td>
<td>< 6 months</td>
<td>6</td>
<td>60 to 69 years</td>
<td>3</td>
<td>Missing information</td>
</tr>
<tr>
<td>Biscayart et al, 2014[40]</td>
<td>Vaccine</td>
<td>6 months to 1 year</td>
<td>Cross sectional</td>
<td>6 months to 1 year</td>
<td>165</td>
<td>> 60 years</td>
<td>7</td>
<td>History of cardiovascular disease and allergies</td>
</tr>
<tr>
<td>Breugelmans, 2013[29]</td>
<td>Vaccine</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>> 3 years</td>
<td>311</td>
<td>60 years</td>
<td>2</td>
<td>Missing information</td>
</tr>
<tr>
<td>Mota et al, 2009[31]</td>
<td>Revista da Socieda Brasileira de</td>
<td>Missing information</td>
<td>Cross sectional</td>
<td>Missing information</td>
<td>70</td>
<td>> 60 years</td>
<td>3</td>
<td>History of immunosuppressive disease</td>
</tr>
<tr>
<td>Author</td>
<td>Journal</td>
<td>Data collection period</td>
<td>Study design</td>
<td>Follow up time</td>
<td>Total sample size</td>
<td>Elderly age group assessed</td>
<td>Total number of elderly assessed</td>
<td>Comorbidities presented in the studies</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Khromava et al, 2005 [18]</td>
<td>Medicina Tropica</td>
<td>> 3 years</td>
<td>Cohort</td>
<td>> 3 years</td>
<td>722</td>
<td>> 60 years</td>
<td>58</td>
<td>Missing information</td>
</tr>
<tr>
<td>Lawrence et al, 2004 [32]</td>
<td>Communicable Disease Intelligence Quarterly Report</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>< 6 years</td>
<td>42</td>
<td>> 60 years</td>
<td>Missing information*</td>
<td>Missing information</td>
</tr>
<tr>
<td>Lindsey et al, 2016 [33]</td>
<td>Journal of Travel Medicine</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>> 3 years</td>
<td>938</td>
<td>> 60 years</td>
<td>Missing information*</td>
<td>Missing information</td>
</tr>
<tr>
<td>Martin et al, 2001 [38]</td>
<td>Emerging infectious diseases</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>> 3 years</td>
<td>512</td>
<td>5</td>
<td>> 60 years</td>
<td>285</td>
</tr>
<tr>
<td>Martins et al, 2014 [35]</td>
<td>Vaccine</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>> 3 years</td>
<td>67</td>
<td>> 60 years</td>
<td>Missing information*</td>
<td>History of immunosuppressive disease</td>
</tr>
<tr>
<td>Lindsey et al, 2008 [4]</td>
<td>Vaccine</td>
<td>> 3 years</td>
<td>Cross sectional</td>
<td>> 3 years</td>
<td>660</td>
<td>> 60 years</td>
<td>97</td>
<td>Missing information</td>
</tr>
<tr>
<td>Monath et al, 2002 [36]</td>
<td>The American journal of tropical medicine and hygiene</td>
<td>< 6 months</td>
<td>Randomized clinical trial</td>
<td>< 6 months</td>
<td>1440</td>
<td>> 60 years</td>
<td>123</td>
<td>Missing information</td>
</tr>
<tr>
<td>Author</td>
<td>Journal</td>
<td>Data collection period</td>
<td>Study design</td>
<td>Follow up time</td>
<td>Total sample size</td>
<td>Elderly age group assessed</td>
<td>Total number of elderly assessed</td>
<td>Comorbidities presented in the studies</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Araujo et al, 2018[37]</td>
<td>The Brazilian Journal of Infectious Diseases</td>
<td>6 months to 1 year</td>
<td>Cohort</td>
<td>6 months to 1 year</td>
<td>131</td>
<td>> 60 years</td>
<td>131</td>
<td>History of immunosuppressive and cardiovascular diseases and diabetes</td>
</tr>
<tr>
<td>Martin et al, 2001[38]</td>
<td>The Lancet</td>
<td>6 months to 1 year</td>
<td>Case series</td>
<td>< 6 months</td>
<td>4</td>
<td>> 60 years</td>
<td>4</td>
<td>History of cardiovascular disease and chronic kidney disease</td>
</tr>
<tr>
<td>McMahon et al, 2006[39]</td>
<td>Vaccine</td>
<td>6 months to 1 year</td>
<td>Cross sectional</td>
<td>6 months to 1 year</td>
<td>15</td>
<td>> 60 years</td>
<td>6</td>
<td>Missing information</td>
</tr>
<tr>
<td>Lucena et al, 2020[41]</td>
<td>Epidemiologia e Serviços de Saúde</td>
<td>> 1 to 3 years</td>
<td>Case control</td>
<td>> 1 to 3 years</td>
<td>NA</td>
<td>> 60 years</td>
<td>NA</td>
<td>Missing information</td>
</tr>
</tbody>
</table>

* The study assessed elderly but did not present the total sample size for this population in the text; NA: note applicable (population not available; only adverse events number were presented).

Regarding the country of conduct of the selected studies, four were multi-country studies[28–30,32]. The most frequent countries analysed by the studies included in the review were the United States (33.3%) and Brazil (18.5%).

In total, 322,759,087 doses of YFV were administered in the studies evaluated.

Table 2 shows the characteristics of the interventions assessed in the studies included in the review. The most frequent vaccine strain among the studies was 17D (38.9%). Most studies did not have information on the type of dose administered (88.9%) and type of...
vaccination performed (61.1%). In total, eight studies (44.4%) evaluated co-
administration with other vaccines, most of them with Hepatitis A (24.2%) and typhoid
fever (18.2%), generally related to traveller vaccination.

Table 2. Characteristics of the interventions evaluated in the studies included in
the review.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine lineage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17D</td>
<td>7</td>
<td>38.9</td>
</tr>
<tr>
<td>17DD</td>
<td>3</td>
<td>16.7</td>
</tr>
<tr>
<td>17D-204</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>More than one lineage assessed</td>
<td>1</td>
<td>5.6</td>
</tr>
<tr>
<td>Missing information</td>
<td>7</td>
<td>38.9</td>
</tr>
<tr>
<td>Type of dose administrated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>2</td>
<td>11.1</td>
</tr>
<tr>
<td>Booster</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Missing information</td>
<td>16</td>
<td>88.9</td>
</tr>
<tr>
<td>Vaccination type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campaign</td>
<td>1</td>
<td>5.6</td>
</tr>
<tr>
<td>Routine</td>
<td>2</td>
<td>11.1</td>
</tr>
<tr>
<td>Traveller</td>
<td>4</td>
<td>22.5</td>
</tr>
<tr>
<td>Missing information</td>
<td>11</td>
<td>61.1</td>
</tr>
<tr>
<td>Co-administration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>5.6</td>
</tr>
<tr>
<td>Yes</td>
<td>8</td>
<td>44.4</td>
</tr>
<tr>
<td>Missing information</td>
<td>9</td>
<td>50.0</td>
</tr>
<tr>
<td>Vaccine coadministration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhoid fever</td>
<td>6</td>
<td>18.2</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>8</td>
<td>24.2</td>
</tr>
<tr>
<td>Hepatitis B</td>
<td>3</td>
<td>9.1</td>
</tr>
<tr>
<td>Meningococcal</td>
<td>2</td>
<td>6.1</td>
</tr>
<tr>
<td>Polio</td>
<td>4</td>
<td>12.1</td>
</tr>
<tr>
<td>Missing information</td>
<td>10</td>
<td>30.1</td>
</tr>
</tbody>
</table>

Of the studies included in the review, eight did not have information to enable
the combined analysis of the data and, therefore, were excluded from the meta-
analysis [26,28,30,31,38,39,41]. The total number of serious adverse events present in
those seven studies is summarized in Supplementary table 3. No cases of anaphylaxis
were reported in the studies presented.
Considering that the samples of the studies included in this review presented data by number of participants or distributed/administered doses. Thus, the prevalence was adopted as a frequency measure for the meta-analysis of the ten studies[4,18,29,32–37,40] evaluated (Supplementary Figure 1). The meta-analysis showed a prevalence of 32 cases for every 1,000,000 vaccinated (95% CI 0.006 – 0.171). However, given the high risk of heterogeneity between the studies presented by the value of I² = 98% and the chi-square (p < 0.01), as well as the visual highlight presented in the forest plot of one study as an outlier [36], a new analysis was performed with the removal of this study (Figure 2). Despite a small reduction in heterogeneity (I²= 96% and p < 0.01), there was an increase in the value found for prevalence, with a value of 14 cases for every 1,000,000 vaccinated (CI 95% 0.003 – 0.068).

Figure 2. Forest plot of prevalence meta-analysis for serious adverse events after yellow fever vaccine use in the elderly after outlier study removal

Of the ten studies evaluated, seven[4,18,32–36] had data referring to a comparison group (age group <60 years) and were evaluated through meta-analysis for risk factors for SAE (Figure 3). The result of the analysis for heterogeneity (I² = 60%, p=0.02) indicates that there are important differences between the results of the studies for this outcome. The identified that the risk was 2.51 higher for the age group of people ≥60 years old (95% CI 1.71 – 3.69) when compared to the population <60 years old.

Figure 3. Forest plot of risk factor meta-analysis for serious adverse events after yellow fever vaccine use in the elderly

To explore possible clinical and methodological factors that could explain the degree of heterogeneity presented in the previous meta-analysis, subgroup analysis was
performed considering factors related to population, intervention and study methodology. A subgroup analysis was conducted considering the different age groups of elderly population to explore the high heterogeneity found in the previous analysis and a potential “dose-response” relationship between the age groups (Supplementary Figure 2). The analysis showed greater homogeneity between studies for the groups <70 years (I²= 30%, p=0.20) and ≥70 years (I²= 23%, p=0.27). Overall, the analysis reveals that the risk of SAE increases with age. The risk of SAE found was 2.32 times higher for <70 years old (95% CI 1.44 – 3.72) and 4.84 times higher for the age group ≥70 years old (95% CI 2.82 – 8.31) when compared to the population <60 years old. The type of SAE reported was also evaluated in a subgroup analysis (Supplementary Figure 3). There was a reduction in heterogeneity (I²=44%; p=0.17) for studies that reported SAE related to viscerotropic disease associated with YFV. For this group, the risk was 6.59 times higher (95% CI 2.14 – 20.28) for elderlies when compared to the group aged <60 years. For neurological manifestations associated with YFV, although heterogeneity remained high (I² = 79%; p < 0.01), the risk was 4.45 times higher (95% CI 1.14 - 17.38). Moreover, a subgroup analysis for the study design type was performed (Supplementary Figure 4). The degree of heterogeneity was high for the longitudinal study group (I²=89%; p<0.01), which can be explained by their distinct study designs (cohort[18] and experimental[36]). Other subgroup analysis was also performed for comorbidity presence, vaccine lineage used and coadministration. However, the data available in the included studies were not enough to perform the analysis with details that could find a clinical or methodological explanation for the heterogeneity found.
A meta-regression was performed to examine the individual contributions of the studies in the heterogeneity found and potential associations with age, SAE type and study design (Supplementary Table 4). Age was the characteristic that was associated with the heterogeneity initially found in the risk factor meta-analysis. The age groups <70 years (p= 0.0250) and elderly without age specification (p= 0.0089) showed a greater association with the heterogeneity found when compared to the age group above 70 years. No association was found between heterogeneity and the characteristics assessed for study design and type of SAE.

As for the publication bias analysis, for the prevalence meta-analysis both the asymmetry shown in the funnel graph and the result found for the Begg test (p = 0.2637) suggest publication bias, indicating a greater uptake of studies that showed a greater effect related to the risk of SAE. For the risk factor meta-analysis, the symmetry found in the funnel graph and the result found by both tests (p=0.5961) do not suggest a publication bias.

Risk of Bias within studies and across studies

Considering the quality of the studies included in the review, no study presented a low risk of bias for the domains evaluated with the ROBINS-I. Most studies did not provide enough information to judge the different types of bias, mainly Confounding (87.5%), not receiving the assigned intervention (87.5%) and measuring the intervention (81.2%). The domain with the highest number of studies with a critical bias level was selection (56.2%) (Supplementary Figure 5). Only one study included in the review had a randomized clinical trial as a study design and was assessed using the RoB 2.0 tool and presented a moderate risk of bias for most domains (Supplementary Figure 6). The quality of the evidence analysed through the GRADE system from the review data
suggests low and moderate confidence in the estimated effect from the studies included in the review.

Discussion

In general, the findings of this literature review showed a higher risk of SAE for the population over 60 years, with that being, elderly population had a risk three times higher of developing SAE when compared to non-elderly population.

Furthermore, the results obtained through the meta-analysis showed that this risk is almost five times higher for the age group over 70 years old when compared to those aged 60 to 69 years. These findings are in line with previous research on this topic[18,19,36], although none had metanalyzed data. Thomas et al (2012) reports that only five passive surveillance databases identified a small number of cases of yellow fever vaccine-associated viscerotropic disease, yellow fever vaccine-associated neurotropic disease, and anaphylaxis in persons ≥ 60 years, which is aligned with the result found the meta-analysis of prevalence ratio. In accordance with our results for the comparison of SAE after yellow fever vaccination between elderly and non-elderly population, Khromava et al (2005) found that the reporting rates of serious adverse events were significantly higher among vaccinees aged ≥60 years than among those 19–29 years of age (reporting rate ratio = 5.9, 95% CI 1.6–22.2) for both viscerotropic disease and neurological events after yellow fever vaccination. A similar result was found by Monath et al (2005), which the incidence of significant neurologic and multisystem AEs reporting ratio was 3-fold higher for the 65–74-year-old age group (Report Risk Ratio 2.82; 95% CI 0.81, 9.81).

Among the types of SAE analysed in the review, the greatest risk was for viscerotropic disease associated with YFV up to six times higher when compared to the
population under 60 years. Other studies carried out for this target population found a
similar tendency of a higher risk for both viscerotropic diseases associated with YFV
and neurotropic disease associated with YFV compared to other types of
SAE[15,18,38,42].

Concerning the presence of heterogeneity found, subgroup analysis and meta-
regression showed that age is associated with the degree of heterogeneity found in the
meta-analysis of risk factors. This may be related to some of the characteristics of the
immunosenescence process, in addition to other possible individual characteristics of
the elderly <70 years old present in the studies when compared to those aged ≥70 years
old[2–5].

As for the methodological quality of the studies included in the review, this
ranged from moderate to critical depending on the assessment tool used. The most
frequent included study designs were non-experimental, such as the transversal ones.
This characteristic can also be associated with the high degree of heterogeneity found in
the meta-analysis, since the highest risks of bias were related to the selection of
participants and losses.

The same was reflected in the general analysis of the quality of the review's
evidence that suggests low and moderate confidence in the estimated effect from the
included studies. Despite this, it was observed that the evidence evaluated in this study
has a strong recommendation against the use of YFV in the target population of the
review because it presents a higher risk of SAE, especially in the age group above 70
years.

Our study has some limitations. The studies include in this review might have
different bias affecting the denominators used, among them the differences between the
study designs, the selection of the participants, the loss of information and the
participants, which directly influences the confidence of the conclusions generated in the results found. The same also occurred for the numerators used since the classification of some types of SAE varied between studies.

Another limitation is related to the difficulty of investigating SAE for this specific population. This is because the events found may be associated with other pre-existing factors for these individuals, such as comorbidities, which can make it challenging to prove causality between the application of the vaccine and the involvement of the AE itself[14,19,43]. It is also important to highlight that misclassification of cases due to flavivirus cross-reactivity that could occur during the investigation of SAE, as tests for other flavivirus were not always done, leading to cases that could have been incorrectly classified as related to YFV[44].

The yellow fever vaccine research program has some inherent limitations which might be reflected on the findings of this review. Even Though we developed a sensitive search strategy and included several database sources, few publications were found on this topic for this specific population. Furthermore, only three studies included were published after the latest outbreaks of the disease, since 2015.

This fact can be related to two main factors. First, YFV is not routinely recommended for the target population of this review, but only under medical judgment[1,2] and, secondly, YFV is considered an effective old technology and widely used, which has generated over the years a confidence in the safety of the vaccine[45].

Thus, the evidence found in this review supports the indication of YFV in individuals over 60 years of age must be based on a careful analysis of the individual benefit-risk assessment. However, it is necessary to highlight that the results found suggest a higher risk of SAE for individuals over 70 years, especially for viscerotropic
and neurotropic disease associated with YFV contraindicating the use of the YFV in this age group.

It is noteworthy that the individual benefit-risk analysis must be carried out with a particular perspective in regions where the epidemiological scenario reinforces a high risk of contracting the disease, such as in endemic regions, where the population is naturally exposed for a longer period. This question should be taken as a basis for users, health professionals and other decision makers on the use of this technology. Advances in the development of new yellow fever vaccines can be a strategy that could avoid serious adverse events. One approach can be inactivated vaccines currently under early-phase clinical studies[46].

Yellow fever is a serious public health concern and without YFV the risk of an increase in outbreaks and large-scale epidemics would be high, mostly related to the widespread of disease vectors and due to an ever-increasing movement of people around the globe. Even though YFV adverse events need to be considered, the vaccine is the best way to avoid the disease and should be used in endemic areas and in populations that could potentially be exposed, considering a careful risk-benefit analysis. More research to increase knowledge about the potential risk of SAE for the population studied in specific contexts and for new vaccine technologies for the disease with a lower, such as inactivated vaccines against YF already underway, are needed to guide the best recommendation for this population.

Supporting information

Supplementary table 1: Prisma checklist

Supplementary table 2: List of search terms per database assessed for the review from January 2019 to September 2020.
Supplementary table 3: Total serious adverse events reported in studies not included for the meta-analysis.

Supplementary table 4: Result of meta-regression between characteristics of age, study design and type of serious adverse event.

Supplementary figure 1. Forest plot of prevalence meta-analysis for serious adverse events after yellow fever vaccine use in the elderly.

Supplementary figure 2. Forest plot of risk factor meta-analysis for adverse events after yellow fever vaccine use in participant subgroups by age group.

Supplementary figure 3. Forest plot of risk factor meta-analysis for adverse events after yellow fever vaccine use in participant subgroups by type of serious adverse event.

Supplementary figure 4. Forest plot of risk factor meta-analysis for adverse events after yellow fever vaccine use in participant subgroups by type of study design.

Supplementary figure 5. Risk of bias assessment results according to domain and study included in the systematic review for the ROBINS-I tool.

Supplementary figure 6. Risk of assessment results according to domain and study included in the systematic review for the RoB 2.0 tool.

Acknowledgements

The authors would like to thank Ms. Kristi Prifti for the support with the translation of this manuscript. The authors would also like to thank Dr. Bernardo Tura, Márcia Pinto and Luiz Antonio Bastos Camacho for their contributions to this paper discussion.

Author Contributions

Conceptualization: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Data curation: Ariane de Jesus Lopes de Abreu, Letícia Wigg de Araújo Lagos, João Roberto Cavalcante

Formal analysis: Ariane de Jesus Lopes de Abreu

Investigation: Ariane de Jesus Lopes de Abreu, Letícia Wigg de Araújo Lagos, João Roberto Cavalcante, Rosângela Caetano, José Ueleres Braga
Methodology: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Project administration: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Supervision: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Validation: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Visualization: Ariane de Jesus Lopes de Abreu, Rosângela Caetano, José Ueleres Braga

Writing ± original draft: Ariane de Jesus Lopes de Abreu

Writing ± review & editing: Ariane de Jesus Lopes de Abreu, Letícia Wigg de Araújo Lagos, João Roberto Cavalcante, Rosângela Caetano, José Ueleres Braga

References

23. Brasil. Ministério da Saúde. DIRETRIZES METODOLÓGICAS Sistema GRADE-manual de graduação da qualidade da evidência e força de...

37. Ujo ESAA, Lima WJR, Correia AMMS. SEGURANÇA DA VACINA CONTRA FEBRE AMARELA EM IDOSOS. REGISTRO DA EXPERIÊNCIA
doi:10.1016/S0140-6736(01)05327-2

doi:10.1016/J.VACCINE.2014.01.015

43. Jaeger VK, Tschudi N, Rüegg R, Hatz C, Bühler S. The elderly, the young and the pregnant traveler -- A retrospective data analysis from a large Swiss Travel Center with a special focus on malaria prophylaxis and yellow fever vaccination.

Figure 1. Process of study selection of systematic review and meta-analysis.
<table>
<thead>
<tr>
<th>Study</th>
<th>Events</th>
<th>Total</th>
<th>Events per 1000 observations</th>
<th>Events</th>
<th>95%-CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biscayart et al 2014</td>
<td>14</td>
<td>1943000</td>
<td></td>
<td>0.007</td>
<td>[0.004; 0.012]</td>
</tr>
<tr>
<td>Breugelmans 2013</td>
<td>2</td>
<td>3800941</td>
<td></td>
<td>0.000</td>
<td>[0.000; 0.000]</td>
</tr>
<tr>
<td>Khromava et al 2005</td>
<td>15</td>
<td>282435</td>
<td></td>
<td>0.053</td>
<td>[0.030; 0.088]</td>
</tr>
<tr>
<td>Lawrence et al 2004</td>
<td>8</td>
<td>117291</td>
<td></td>
<td>0.068</td>
<td>[0.029; 0.134]</td>
</tr>
<tr>
<td>Lindsey et al 2016</td>
<td>31</td>
<td>403437</td>
<td></td>
<td>0.077</td>
<td>[0.052; 0.109]</td>
</tr>
<tr>
<td>Martin et al 2001</td>
<td>9</td>
<td>108307</td>
<td></td>
<td>0.083</td>
<td>[0.038; 0.158]</td>
</tr>
<tr>
<td>Martins et al 2014</td>
<td>5</td>
<td>2169568</td>
<td></td>
<td>0.002</td>
<td>[0.001; 0.005]</td>
</tr>
<tr>
<td>Lindsey et al 2008</td>
<td>23</td>
<td>278202</td>
<td></td>
<td>0.083</td>
<td>[0.052; 0.124]</td>
</tr>
<tr>
<td>Araujo et al 2018</td>
<td>0</td>
<td>131</td>
<td></td>
<td>0.000</td>
<td>[0.000; 27.767]</td>
</tr>
</tbody>
</table>

Random effects model 43311782 0.014 [0.003; 0.068]

Heterogeneity: $I^2 = 96\%$, $\tau^2 = 5.7287$, $p < 0.01$

Figure 2. Forest plot of prevalence meta-analysis
Figure 3. Forest plot of risk factor meta-analysis for serious