Association of assisted reproductive technology with offspring growth and adiposity from infancy to early adulthood

Ahmed Elhakeem PhD, Amy E. Taylor PhD, Hazel M. Inskip PhD, Jonathan Huang PhD, Muriel Tafflet MSc, Johan L. Vinther MSc, Federica Asta MSc, Jan S. Erkamp MD, Luigi Gagliardi MD, Kathrin Guerlich MPH, Jane Halliday PhD, Margreet W. Harskamp-van Ginkel MD, Jian-Rong He MD, Vincent WV. Jaddoe PhD, Gillian M. Maher PhD, Yannis Manios PhD, Toby Mansell PhD, Fergus P McCarthy PhD, Sheila W. McDonald PhD, Emanuela Medda MSc, Lorenza Nisticò MD, Angela Pinot de Moira PhD, Maja Popovic PhD, Irwin KM. Reiss PhD, Carina Rodrigues PhD, Theodosia Salika MSc, Ash Smith BSc, Maria A. Stazi MSc, Caroline Walker PhD, Muci Wu BSc, Björn A. Åsvold PhD, Henrique Barros PhD, Sonia Brescianini MSc, David Burgner PhD, Jerry KY. Chan PhD, Marie-Aline Charles PhD, Johan G. Eriksson PhD, Romy Gaillard PhD, Veit Grote MD, Siri E. Håberg PhD, Barbara Heude PhD, Berthold Koletzko MD, Susan Morton PhD, George Moschonis PhD, Deirdre Murray PhD, Desmond O’ Mahony PhD, Daniela Porta MSc, Xiu Qiu PhD, Lorenzo Richiardi PhD, Franca Rusconi MD, Richard Saffery PhD, Suzanne C. Tough PhD, Tanja GM. Vrijkotte PhD, Scott M. Nelson PhD, Anne-Marie Nybo Andersen PhD, Maria C. Magnus PhD, ART-Health Cohort Collaboration, Deborah A. Lawlor PhD

1MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
2Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
3NIHR Bristol Biomedical Research Centre, Bristol, UK
4MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, UK
5NIHR Southampton Biomedical Research Centre, University of Southampton and University
Hospital Southampton NHS Foundation Trust, Southampton, UK

6. Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore

7. Université de Paris, Inserm, INRAE, Centre for Research in Epidemiology and Statistics (CRESS), Paris, France

8. Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

9. Department of Epidemiology, Lazio Regional Health Service, Rome, Italy

10. The Generation R Study Group, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

11. Department of Paediatrics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

12. Department of Mother and Child Health, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy

13. LMU - Ludwig Maximilians Universität Munich, Division of Metabolic and Nutritional Medicine, Department of Pediatrics, Dr. von Hauner Children’s Hospital, LMU University Hospitals, Munich, Germany

14. Murdoch Childrens Research Institute, Parkville, VIC, Australia

15. University of Melbourne, Parkville, VIC, Australia

16. Amsterdam UMC, University of Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands

17. Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China

18. School of Public Health, University College Cork, Cork, Ireland

19. The Irish Centre for Maternal and Child Health Research (INFANT), University College
University Hospital, Trondheim, Norway

Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia

Department of Paediatrics, Monash University, Clayton, VIC, Australia

Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore

Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore

Ined, Inserm, EFS Joint Unit Elfe, Paris, France

Department of Obstetrics and Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

Folkhälsan Research Center, Helsinki, Finland

Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway

Department of Food, Nutrition and Dietetics, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia

Department of Pediatrics and Child Health, University College Cork, Cork, Ireland

National Longitudinal Study of Children in Ireland, Economic and Social Research Institute, Dublin, Ireland

School of Medicine, University of Glasgow, Glasgow, UK

*Corresponding author:

Dr Ahmed Elhakeem, MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK, a.elhakeem@bristol.ac.uk

Abstract=350 words, Text=3000 words, Figures=5, References=34, Supplementary items=16
ABSTRACT

Importance: People conceived using assisted reproductive technology (ART) make up an increasing proportion of the world’s population, and their numbers are expected to continue rising.

Objective: Investigate association of ART conception with growth and adiposity outcomes from infancy to early adulthood in offspring from a large multinational multi-cohort study.

Design: 26 population-based cohort studies.

Setting: Europe, Asia-Pacific, and North America

Participants: Infants, children, adolescents, and young adults born from 1984 to 2018, with mean ages at assessment of growth/adiposity outcomes ranging from 0.6 month to 27.4 years.

Exposures: Conception by ART (conventional in vitro fertilisation and intracytoplasmic sperm injection) versus natural conception (NC).

Main Outcomes and Measures: Length/height, weight, and body mass index (BMI). Each cohort was analysed separately with adjustment for maternal BMI, age, smoking, education, parity, ethnicity, and offspring sex and age. Cohort results were combined in random effects meta-analysis for thirteen age groups.

Results: Up to 158,066 offspring (4,329 conceived by ART) were included in each age-group meta-analysis; 47.6% to 60.6% were female. Compared with NC, ART-conceived offspring were slightly shorter, lighter, and thinner from infancy to early adolescence. The differences in growth/adiposity outcomes were largest at the youngest ages and attenuated with older child age, e.g., adjusted standardised mean differences (95% confidence intervals) in offspring weight at age ‘<3 months’, ‘17 to 23 months’, ‘6 to 9 years’, and ‘14 to 17 years’
were -0.27 standard deviation (SD) units (-0.39 to -0.16), -0.16SD (-0.22 to -0.09), -0.07SD (-0.10 to -0.04), and -0.02SD (-0.15 to 0.12), respectively. There was no evidence that results were driven by parental subfertility or of difference between conventional in vitro fertilisation and intracytoplasmic sperm injection however, smaller offspring size appeared to be limited to offspring conceived by fresh but not frozen embryo transfer, compared with NC. More marked but less precise differences were observed for body fat measurements. There was imprecise evidence that offspring conceived by ART may develop greater adiposity by early adulthood.

Conclusions and Relevance: People conceiving or conceived by ART can be reassured that differences in early growth and adiposity are small and no longer evident by late adolescence.

KEYWORDS

BMI; Cohort; Height; IVF, Weight
KEY POINTS

Question Is conception by assisted reproductive technology associated with growth and adiposity from infancy to early adulthood?

Findings In this multi-cohort study of up to 158,066 European, Asian-Pacific, and Canadian infants, children, adolescents, and young adults, those conceived using assisted reproductive technology were on average shorter, lighter, and thinner from infancy up to early adolescence when compared with their naturally conceived peers though differences were small across all ages and reduced with older age.

Meaning Parents conceiving or hoping to conceive through assisted reproductive technology and their offspring should be reassured that differences in early life growth and adiposity are small and no longer apparent by late adolescence.
Assisted reproductive technology (ART), which mainly involves *in vitro* fertilisation (IVF) and intracytoplasmic sperm injection (ICSI), has resulted in over 8 million births worldwide during the last four decades (1, 2), and use of ART is expected to continue rising for several reasons, including increasingly delayed childbearing (3, 4). Ever since the first ART birth in 1978, the primary research focus has been on improving live-birth rates (5). Now that ART is acknowledged as an effective procedure for infertility treatment, attention has shifted towards identifying and reducing any adverse effects of ART on maternal or offspring health. Studies examining growth-related outcomes have mostly considered perinatal measures, with results showing an increased risk of low birthweight, small-for-gestational-age, and preterm birth in those conceived using ART (6-9). Furthermore, studies comparing ART procedures suggest perinatal differences between conventional IVF and ICSI (10), and between fresh and frozen embryo transfers (11-14).

Besides perinatal outcomes, long-term associations between ART conception and offspring growth and adiposity remain largely unknown, with the few studies that have examined these mostly limited by small sample size, short follow-up, and limited adjustment for confounders or overadjustment for possible mediators (15-17). A recent study which examined trajectories of change in height, weight, and body mass index (BMI) from birth to age 7 years (n=81,461 offspring with 1,721 conceived by ART) in the Norwegian Mother, Father and Child Cohort Study (MoBa) found that ART-conceived offspring started smaller and grew faster than NC offspring (18). Another more recent but considerably smaller Singaporean birth cohort study (n=1,180 offspring with 85 conceived by ART) discovered smaller height and lower skinfold thickness at age 6 years in ART-conceived than NC offspring (19).

Our primary aim was to conduct a multi-cohort study to provide evidence on the associations of ART conception (compared with NC) with offspring growth and adiposity from infancy to...
early adulthood. We additionally compared results according to parental subfertility status, in males and females, in ICSI and conventional IVF, and in fresh and frozen embryo transfers.

METHODS

This multi-cohort study was carried out within the newly established Assisted Reproductive Technology and future Health (ART-Health) consortium, following a pre-specified analysis plan (https://osf.io/qhwvc/), and is reported in line with The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement guidelines (20).

Cohort studies

Eligible cohorts were identified from the European Union Child Cohort Network (21-23) and by searching cohort profile papers. We targeted population-based cohorts without selection or oversampling of ART-conceived offspring to reduce potential for selection bias and to ensure identical growth and adiposity assessments for ART-conceived and NC offspring. All cohorts from any geographical region with birth years from older to more contemporary cohorts were eligible for inclusion provided they had data on whether offspring were conceived by ART or NC, and one or more offspring growth or adiposity outcome measures assessed from age one month (including repeated measurements). A total of thirty cohorts were invited to participate and 26 were included in this study (eTable 1). Detailed description of the 26 included cohorts is provided in the eMethods.

All cohorts had ethical approval from the relevant local or national ethics committees and all offspring gave informed consent/assent to participate in the respective cohorts and secondary data analyses. Details on ethics approvals and consent are in eMethods.
Mode of conception and fertility treatment

Fertility treatment use was defined according to the International Glossary on Infertility and Fertility Care (1). Information on mode of conception and fertility treatment was collected using questionnaires or by record linkage (eMethods). This information was used to identify if offspring were conceived by ART (i.e., IVF or ICSI) or were naturally conceived (NC) i.e., without any fertility treatment. We additionally identified (i) if ART conception involved IVF or ICSI, (ii) whether fresh embryo transfer (ET) or frozen-thawed embryo transfer (FET) was used, and (iii) whether NC offspring were born to fertile or sub-fertile parents, depending on a time to pregnancy of within 12 months or >12 months after they begun trying, respectively (1, 24).

Offspring growth/adiposity outcomes

Primary outcomes for this study were length/height (centimetre (cm)), weight (kilograms (kg)), BMI (kg/m²), and secondary outcomes were waist circumference (cm), total body fat %, and fat mass index (FMI; kg/m²). Length/height and weight were obtained from research clinics, child health records, and maternal-/self-reports, with BMI calculated from these as weight in kilograms divided by height in metres squared. Waist circumference was mostly measured during research clinics. Body fat % was calculated from bioelectrical impedance analysis done during research clinics, and FMI was derived as fat mass in kilograms from dual-energy x-ray absorptiometry scans divided by height in metres squared. Details on outcome measurements and ages in each cohort are in the eMethods. Descriptive data on outcomes and ages at outcome assessments are in eTable 2.
Outcome age groups for this study were determined by available data from each cohort i.e.,
ages at outcomes assessment. Cohorts were allocated to meta-analysis age groups by mean
age at outcome assessment with the aim of maximising cohort numbers in each age group
meta-analysis. The primary outcomes were allocated to thirteen age groups, and secondary
outcomes (available in 17/26 cohorts) were allocated to four age groups. If a cohort had >1
outcome assessment in an age group, we selected the one with the biggest sample size.

Confounders

We used a Directed Acyclic Graph (eFigure 1) to identify and adjust for confounders i.e.,
anything that could plausibly cause ART use and influence offspring growth/adiposity (25,
26). This process identified the following maternal factors as potential confounders: age at
pregnancy/birth, socioeconomic position (education), pre/early-pregnancy BMI, pre/early-
pregnancy smoking, parity, and ethnicity. Nineteen cohorts were able to adjust for all these
confounders, four did not adjust for ethnicity but were ethnically homogeneous, one did not
adjust for parity because it only included nulliparous women, and two were unable to adjust
for BMI and smoking. Details on the available confounders in each cohort is in eMethods.

Statistical analysis

Analyses were performed separately in each cohort applying standard statistical code, with
results combined using meta-analysis. In cohort-specific analyses, we estimated associations
of ART conception (versus NC) with offspring outcomes using linear regression adjusted for
confounders (plus offspring age and sex). Analysis was done in offspring with data on mode
of conception, ≥1 growth/adiposity outcome, and confounders. To facilitate comparison of
results for different outcomes and ages, outcomes were analysed in age-, sex- cohort-specific
standard deviation (SD) units (mean=0, SD=1). Cohort results were subsequently combined
by random-effects meta-analyses in sub-groups defined by mean age at outcome assessment.
Variability in the pooled estimates that is due to between-cohort heterogeneity was quantified
by the I^2 statistic (27). Influential cohorts (i.e., whose exclusion led to considerable change in
the meta-analysis model) were identified by repeating each meta-analyses with each cohort
left out in turn.

To separate effects of ART from any effects of parental subfertility, we repeated analyses
comparing ART-conceived with NC offspring of sub-fertile parents and separately for NC
offspring from fertile parents. Differences by sex and ART treatment types were explored by
repeating analyses stratified by sex; comparing IVF/ICSI separately with NC; and comparing
fresh ET/FET separately with NC. Lastly, we explored if results reflected effects on multiple
births by repeating analysis in singletons and investigated if results were mediated by birth
size and pregnancy duration by including extra adjustments (on top of confounders) for birth
weight and gestational age.

RESULTS

A total of 26 cohorts with participants from Europe (n=20 cohorts), Australia (n=2 cohorts),
and one each from New Zealand, China, Singapore, and Canada was included in this study
(eTable 1). Most (n=23 cohorts) were population-based cohorts, two were twins register
cohorts, and one was a clinical cohort of ART-conceived young adults and NC controls from
the same source population. Birth years were from 1984-2018, with most (n=19 cohorts) born
>2002. Mean age at outcome ranged from 0.6 month to 27.4 years. Fifteen cohorts included
singletons and multiple births (proportion of multiple births across these ranged from 0.9% to
12.9%), nine included singletons only, and two included twins only. Between 3 to 16 cohorts
were included in each meta-analysis with numbers of participants in each meta-analysis ranging from 158,066 (4,329 ART) for weight at age 3 to 5 months to 3,111 (151 ART) for FMI at age >17 years.

Mean length/height was on average smaller in ART-conceived than NC offspring across all age groups, although for some ages, point estimates were close to the null value which was included in the CIs (Figure 1). The largest differences in length/height were at the youngest ages and these differences attenuated with older child age. ART-conceived offspring were more similar in height to NC older adolescents and young adults although estimates were imprecise (Figure 1).

Mean weight was lower in ART-conceived than NC offspring from age <3 months up to age 10 to 13 years though CIs included the null at ages 6 to 8 months, 9 to 11 months, and 10 to 13 years (Figure 1). As for length/height, differences were greatest at the youngest ages and smaller at older offspring ages. The difference in mean weight was close to the null in older adolescents and mean weight in young adults was slightly higher in ART-conceived than NC offspring but with wide CIs (Figure 1).

Differences in mean BMI followed a similar pattern to that of weight, with mean BMI lower in ART-conceived than NC offspring up to age 10 to 13 years, with differences being greatest at youngest ages but with wide CIs that included the null value for some results (Figure 1).

As for weight, difference in mean BMI was closest to the null in older adolescents and mean BMI was somewhat slightly higher for ART-conceived than NC young adults although this was imprecisely estimated (Figure 1).

Results for waist circumference, total body fat %, and FMI were like those observed for weight and BMI, with lower mean adiposity measurements in ART-conceived than NC offspring during childhood and adolescence, though with larger differences that were
imprecisely estimated for several time points (Figure 2). As for weight and BMI, adiposity measures were higher in ART-conceived than NC adults, but with larger mean differences and wider CI’s that included the null (Figure 2).

Between-cohort heterogeneity was low to moderate for all outcomes at all ages, with a few exceptions. There was substantial between-cohort heterogeneity in results for length/height, weight, and BMI at ages <3 months and 3-5 months (Figure 1). Sensitivity analysis showed that results for outcomes at both ages were robust to influential cohorts, although they were slightly attenuated when the MoBa cohort was omitted (eFigure 8).

For some additional analyses there were too few ART conceptions to include all older age groups. Results were similar when ART was compared with sub-fertile NC and fertile NC (Figure 3), when ICSI and IVF were compared with NC (Figure 4), and in females and males (eFigure 9). Mean length/height, weight, and BMI were on average lower in those conceived by fresh ET compared with NC offspring across all available age groups i.e., from age <3 months to age 6 to 9 years (Figure 5). Conversely, differences were closer to the null for FET compared with NC, though results were imprecise (Figure 5). The differences in all growth and adiposity outcomes were only partially attenuated when analyses were restricted to singletons (eFigure 10), whereas differences between ART-conceived and NC offspring (eFigure 11), and between fresh ET and NC offspring (eFigure 12) were considerably attenuated after further adjustment for birth weight and gestational age, particularly at younger ages.

DISCUSSION

We used data from 26 multinational cohort studies to investigate the association between ART conception and offspring growth and adiposity. The large number of offspring, and
length of follow-up, allowed us to explore findings in subgroups by age from infancy to early
adulthood. We found that offspring conceived by ART were on average shorter, lighter, and
thinner from infancy to early adolescence than NC offspring. Differences were largest earlier
in life but were small in magnitude across all ages. There was little evidence that differences
were driven by parental subfertility given similar results when we compared ART with NC
where parents conceived after 12 months and where conception occurred within a shorter
period since start of trying. Those conceived from fresh embryos were smaller than NC
offspring whereas frozen-thawed embryos were comparable to NC. Results appeared
independent of multiple births and were at least partly mediated by birth weight and
estational age, particularly at younger ages.

Our findings are in line with previous studies and reviews of outcomes at birth and in young
children (6, 15-17). Although not directly comparable with our study, our finding of smaller
associations among older children is consistent with results from a recent study that found
more rapid growth from birth to 3 years in ART-conceived than NC offspring (18). That
study also examined outcomes at age 17 years in individuals screened for conscription in
Norway and found no difference between ART-conceived and NC offspring at that age,
which is consistent with our finding of no difference in growth in older adolescence.

Our results for fresh ET and FET are consistent with previous studies showing smaller birth
weight in fresh ET compared with NC, and higher birth weight and large-for-gestational-age
in FET compared with fresh ET (12, 13). Our study also agrees with results from a UK record
linkage study that assessed birth size and body size at 6-8 weeks and 5 years in offspring born
between 1997-2009, showing that compared with NC, offspring born by fresh embryos were
lighter, and those born by FET were heavier at birth and 6-8 weeks, and that all groups had
similar weight at 5 years (16).
The reasons for lower birth weight and higher risk of small-for-gestational-age shown in previous studies (8, 15) and the (modestly) smaller infant/child size in our study in ART-conceived offspring are not fully understood. The gametic and embryonic manipulations associated with ART may impact embryonic/fetal development in a manner that is reflected in different growth patterns relative to NC individuals. Growth differences could also reflect physiological responses to ART-induced lower birth size (and gestational age), and unlikely to be sex-specific or differ by ART type given our finding of broadly similar results in males and females and conventional IVF and ICSI. This is supported by our finding that differences attenuate by adjustment for birthweight and gestational age, though, this should be interpreted with caution since assumptions for such analyses and potential for collider bias makes them difficult to interpret (25, 26, 28). Other possible explanations include effects of ART-induced epigenetic alterations (29, 30), and effects of the ovarian stimulating hormones administered prior to ART. The different findings for fresh ET and FET may reflect effects of ovarian stimulation on endometrium and corpus luteum when using fresh embryos (31) or the impact of freezing on embryos.

Ours is the first study to date to explore long-term associations with waist circumference, body fat % and FMI, with results suggesting ART-conceived individuals had lower central and total adiposity in childhood, and possibly higher levels in adulthood. Our early life results agree with findings from 85 Singaporean ART-conceived offspring showing smaller skinfold thickness than NC offspring at 6 years (19). Our finding suggestive of an association between ART and higher adiposity in young adults agrees with results from a Nordic registry study showing slightly increased obesity risk in young ART-conceived adults (32). One possible reason for this result is that the rapid infant growth we observed in ART-conceived offspring continues (at a decelerating rate) for extended time. This is consistent with prior evidence of
an association between rapid infant growth and adult overweight and obesity (33), and with cardiovascular disease risk in later adulthood (34).

It is important to note that our pooled effect sizes were small across all age groups, including at the youngest ages where they were largest in magnitude. For example, when expressed in its natural units, the largest differences in weight, observed at age <3 months, was 183 grams (95%CI: 105 to 261) lower in those conceived by ART. Therefore, it is unlikely that these differences will result in any clinically meaningful differences at any age. It is also worth acknowledging that our pooled results represent average differences in outcomes across all populations from all included cohorts, and there was some evidence of heterogeneity for some outcomes. However, sensitivity analyses indicated results were robust to influential cohorts and heterogeneity was due to differences in directionally consistent effect sizes.

Strengths of this study include the large sample size and inclusion of cohorts from different geographic regions which should make our findings generalisable to more populations. The large numbers allowed an assessment of heterogeneity in the main results, an exploration of potential roles of subfertility, different ART treatments, multiple births, and indirect effects through prematurity. Use of birth cohorts with comparison with NC children from the same underlying population as those conceived by ART and with identical baseline data collection, follow-up periods, and assessments in ART-conceived and NC children, is another important strength. Many previous studies compared clinical ART cohorts with a comparator group selected at the time of outcome assessment, thus lacking early data on potential confounders, and these were often selected from relatives/friends of the couples undergoing ART, which may introduce a selection bias (17). Record linkage studies mostly avoid this selection bias but are generally limited in the extent to which they can adjust for confounding or explore role of sub-fertility.
Limitations include low precision/power at older ages, which highlights the importance of measuring outcomes in adult life. Those with outcomes at older ages were exposed to ART some decades ago using treatments and embryo culture techniques that are less relevant to contemporary practices, thus making it difficult to know the extent to which findings would generalise to more recently born cohorts. Therefore, there is a need to promote collection of data on mode of conception from birth cohorts and to ensure those conceived by ART are included so that future analyses can continually add new cohorts to examine changes in associations by birth years and age. Our analysis was restricted to those with complete data on mode of conception, outcomes, and confounders which may have reduced precision of estimates and introduced bias due to missing data. Residual confounding by unmeasured factors (e.g., paternal health) is possible and might influence our findings.

In conclusion, we found that ART-conceived offspring were on average slightly smaller and had modestly lower adiposity than NC offspring during early life, with associations reduced with older child age, with some imprecise evidence for higher adiposity by early adulthood with ART conception. Overall, our findings are reassuring since differences in early growth were small though, there is a need for additional follow-up and studies with larger numbers into older ages to investigate the possibility of greater adiposity in adulthood.

ACKNOWLEDGEMENTS

Cohort-specific acknowledgements and finding statements are provided in the supplement. The research leading to these results has received funding from the European Research Council under agreement No 101021566 (ART-HEALTH), the European Union’s Horizon 2020 research and innovation programme under grant agreement No 733206 (LifeCycle), the Medical Research Council (MC_UU_00011/6), British Heart Foundation (CH/F/20/90003
and AA/18/7/34219), and Bristol National Institute of Health Research Biomedical Research Centre (NF-0616-10102). DAL has received support from Medtronic and Roche Diagnostics for research unrelated to that presented here. SMN has received support from Roche Diagnostics, Access Fertility, Modern Fertility, Ferring Pharmaceuticals, TFP, and Merck for research unrelated to that presented here. All the other authors declare no competing interests. AE had full access to the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

REFERENCES

frozen embryo transfer in assisted reproduction: A cohort study with within-sibship analysis.

FIGURE LEGENDS

Figure 1 Parts A-C. Mean difference in (A) length/height, (B) weight, and (C) body mass index between ART-conceived and NC offspring. Figure shows the pooled adjusted mean differences in SD units [and 95% confidence intervals] in (A) length/height, (B) weight, and (C) body mass index at each age group between ART-conceived and NC offspring (ART minus NC). Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, education, ethnicity/country of birth, plus offspring sex and age. St. is the number of cohort studies; NC is the number of NC offspring; ART is the number of ART-conceived offspring; ΔP represents the percentage of total variability that is due to between cohort heterogeneity. Cohort-specific results are provided in eFigure 2-4.
Figure 2 Parts A-C. Mean difference in (A) waist circumference, (B) body fat %, and (C) fat mass index between ART-conceived and NC offspring. Figure shows the pooled adjusted mean differences in SD units [and 95% confidence intervals] in (A) waist circumference, (B) body fat %, and (C) fat mass index at each age group between ART-conceived and NC offspring (ART minus NC). Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, education, ethnicity/country of birth, plus offspring sex and age. St. is the number of cohort studies; NC is the number of NC offspring; ART is the number of ART-conceived offspring; I² represents the percentage of total variability that is due to between cohort heterogeneity. Cohort-specific results are provided in eFigure 5-7.

Figure 3. Mean difference in growth and adiposity outcomes between ART-conceived and NC offspring, separately for NC offspring of sub-fertile and fertile parents. Figure shows the pooled adjusted mean differences in SD units and 95% confidence intervals in growth and adiposity outcomes at each age group between ART-conceived and NC offspring (ART minus NC) of fertile parents (≤12 months to pregnancy and sub-fertile parents (>12 months to pregnancy). Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, education, ethnicity/country of birth, plus offspring sex and age. The number of offspring at each age for the primary outcomes (length/height, weight and BMI) varied from 2,955 ART, 93,877 fertile NC, and 11,153 sub-fertile NC for weight at age 3 to 5 months to 51 ART, 3,350 fertile NC, and 494 sub-fertile NC for BMI at >17 years.

Figure 4. Mean difference in growth and adiposity outcomes between ART-conceived and NC offspring, separately for offspring conceived by conventional IVF and ICSI. Figure shows the pooled adjusted mean differences in SD units and 95% confidence intervals in growth and adiposity outcomes at each age group between ART-conceived and NC offspring (ART minus NC), separately for offspring conceived by conventional IVF and ICSI. Cohort-specific results were adjusted for maternal age, parity, BMI, smoking,
education, ethnicity/country of birth, plus offspring sex and age. St. is the number of cohort studies. The number of offspring at each age for the primary outcomes (length/height, weight, and BMI) varied from 1,517 conventional IVF, 1,382 ICSI, and 102,386 NC for weight at age 3 to 5 months to 105 conventional IVF, 37 ICSI, and 11,164 NC for BMI at age 14 to 17 years.

Figure 5. Mean difference in length/height, weight, and body mass index between ART-conceived and NC offspring, separately for offspring conceived using fresh and frozen-thawed embryo transfer. Figure shows the pooled adjusted mean differences in SD units and 95% confidence intervals in length/height, weight, and body mass index at each age group between ART-conceived and NC offspring (ART minus NC), separately for offspring conceived using fresh embryo transfer and frozen-thawed embryo transfer. Cohort-specific results were adjusted for maternal age, parity, BMI, smoking, education, ethnicity/country of birth, plus offspring sex and age. The number of offspring at each age varied from 1,904 fresh embryo transfer, 303 frozen-thawed embryo transfer, and 78,128 NC for weight at age 3 to 5 months to 433 conventional fresh embryo transfer, 84 frozen-thawed embryo transfer, and 15,490 NC for BMI at age 17 to 23 months.
A. length/height

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 months</td>
<td>79.7%</td>
<td>10</td>
<td>90629</td>
<td>2308</td>
<td>-0.27 [-0.40, -0.14]</td>
</tr>
<tr>
<td>3 to 5 months</td>
<td>87.7%</td>
<td>11</td>
<td>150987</td>
<td>4237</td>
<td>-0.17 [-0.29, -0.06]</td>
</tr>
<tr>
<td>6 to 8 months</td>
<td>27.2%</td>
<td>13</td>
<td>94022</td>
<td>2761</td>
<td>-0.10 [-0.16, -0.04]</td>
</tr>
<tr>
<td>9 to 11 months</td>
<td>0%</td>
<td>9</td>
<td>107979</td>
<td>2808</td>
<td>-0.08 [-0.12, -0.04]</td>
</tr>
<tr>
<td>12 to 16 months</td>
<td>55.1%</td>
<td>16</td>
<td>122491</td>
<td>3550</td>
<td>-0.06 [-0.14, 0.01]</td>
</tr>
<tr>
<td>17 to 23 months</td>
<td>56.1%</td>
<td>8</td>
<td>37690</td>
<td>1034</td>
<td>-0.12 [-0.23, 0.00]</td>
</tr>
<tr>
<td>2 years</td>
<td>68.4%</td>
<td>14</td>
<td>67081</td>
<td>2037</td>
<td>0.05 [-0.14, 0.05]</td>
</tr>
<tr>
<td>3 years</td>
<td>36.2%</td>
<td>13</td>
<td>75044</td>
<td>2036</td>
<td>-0.08 [-0.15, 0.00]</td>
</tr>
<tr>
<td>4 to 5 years</td>
<td>19.8%</td>
<td>16</td>
<td>66949</td>
<td>1835</td>
<td>-0.05 [-0.12, 0.01]</td>
</tr>
<tr>
<td>6 to 9 years</td>
<td>4.3%</td>
<td>13</td>
<td>110234</td>
<td>3394</td>
<td>-0.07 [-0.11, -0.03]</td>
</tr>
<tr>
<td>7 to 10 years</td>
<td>0%</td>
<td>10</td>
<td>58749</td>
<td>1784</td>
<td>-0.07 [-0.12, -0.02]</td>
</tr>
<tr>
<td>11 to 13 years</td>
<td>0%</td>
<td>3</td>
<td>15281</td>
<td>178</td>
<td>-0.03 [-0.17, 0.10]</td>
</tr>
<tr>
<td>>17 years</td>
<td>1.1%</td>
<td>3</td>
<td>10336</td>
<td>203</td>
<td>-0.06 [-0.24, 0.12]</td>
</tr>
</tbody>
</table>

B weight

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 months</td>
<td>80.7%</td>
<td>10</td>
<td>107071</td>
<td>2764</td>
<td>-0.27 [-0.39, -0.16]</td>
</tr>
<tr>
<td>3 to 5 months</td>
<td>79%</td>
<td>11</td>
<td>153737</td>
<td>4329</td>
<td>-0.20 [-0.29, -0.11]</td>
</tr>
<tr>
<td>6 to 8 months</td>
<td>67%</td>
<td>13</td>
<td>91858</td>
<td>2706</td>
<td>-0.09 [-0.18, 0.00]</td>
</tr>
<tr>
<td>9 to 11 months</td>
<td>66.5%</td>
<td>9</td>
<td>110997</td>
<td>2918</td>
<td>-0.09 [-0.18, 0.00]</td>
</tr>
<tr>
<td>12 to 16 months</td>
<td>37%</td>
<td>16</td>
<td>124113</td>
<td>3613</td>
<td>-0.10 [-0.16, -0.04]</td>
</tr>
<tr>
<td>17 to 23 months</td>
<td>0%</td>
<td>8</td>
<td>38426</td>
<td>1064</td>
<td>-0.16 [-0.22, -0.09]</td>
</tr>
<tr>
<td>2 years</td>
<td>32.2%</td>
<td>14</td>
<td>67509</td>
<td>2044</td>
<td>-0.08 [-0.14, -0.01]</td>
</tr>
<tr>
<td>3 years</td>
<td>0%</td>
<td>13</td>
<td>75836</td>
<td>2072</td>
<td>-0.11 [-0.16, -0.07]</td>
</tr>
<tr>
<td>4 to 5 years</td>
<td>0%</td>
<td>16</td>
<td>66587</td>
<td>1824</td>
<td>-0.11 [-0.16, -0.07]</td>
</tr>
<tr>
<td>6 to 9 years</td>
<td>0%</td>
<td>13</td>
<td>109294</td>
<td>3368</td>
<td>-0.07 [-0.10, -0.04]</td>
</tr>
<tr>
<td>10 to 13 years</td>
<td>49%</td>
<td>10</td>
<td>58444</td>
<td>1781</td>
<td>-0.08 [-0.18, 0.03]</td>
</tr>
<tr>
<td>14 to 17 years</td>
<td>0%</td>
<td>3</td>
<td>15211</td>
<td>178</td>
<td>-0.02 [-0.15, 0.12]</td>
</tr>
<tr>
<td>>17 years</td>
<td>0%</td>
<td>3</td>
<td>10330</td>
<td>203</td>
<td>0.07 [-0.14, 0.27]</td>
</tr>
</tbody>
</table>

C. body mass index

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 months</td>
<td>66.9%</td>
<td>10</td>
<td>89936</td>
<td>2297</td>
<td>-0.18 [-0.28, -0.08]</td>
</tr>
<tr>
<td>3 to 5 months</td>
<td>66.1%</td>
<td>11</td>
<td>150220</td>
<td>4222</td>
<td>-0.10 [-0.18, -0.02]</td>
</tr>
<tr>
<td>6 to 8 months</td>
<td>12.7%</td>
<td>13</td>
<td>92806</td>
<td>2726</td>
<td>-0.05 [-0.11, 0.00]</td>
</tr>
<tr>
<td>9 to 11 months</td>
<td>39.2%</td>
<td>9</td>
<td>106487</td>
<td>2774</td>
<td>-0.04 [-0.11, 0.02]</td>
</tr>
<tr>
<td>12 to 16 months</td>
<td>28.5%</td>
<td>16</td>
<td>121195</td>
<td>3524</td>
<td>-0.06 [-0.11, 0.00]</td>
</tr>
<tr>
<td>17 to 23 months</td>
<td>0%</td>
<td>8</td>
<td>37070</td>
<td>1014</td>
<td>-0.08 [-0.15, -0.01]</td>
</tr>
<tr>
<td>2 years</td>
<td>16.1%</td>
<td>14</td>
<td>65882</td>
<td>1988</td>
<td>-0.08 [-0.13, -0.02]</td>
</tr>
<tr>
<td>3 years</td>
<td>0.1%</td>
<td>13</td>
<td>73928</td>
<td>1981</td>
<td>-0.10 [-0.14, -0.05]</td>
</tr>
<tr>
<td>4 to 5 years</td>
<td>0%</td>
<td>16</td>
<td>65324</td>
<td>1799</td>
<td>-0.10 [-0.15, -0.06]</td>
</tr>
<tr>
<td>6 to 9 years</td>
<td>36.7%</td>
<td>13</td>
<td>107750</td>
<td>3337</td>
<td>-0.06 [-0.12, -0.01]</td>
</tr>
<tr>
<td>10 to 13 years</td>
<td>38%</td>
<td>10</td>
<td>58353</td>
<td>1776</td>
<td>-0.07 [-0.16, 0.03]</td>
</tr>
<tr>
<td>14 to 17 years</td>
<td>0%</td>
<td>3</td>
<td>15203</td>
<td>178</td>
<td>0.01 [-0.13, 0.15]</td>
</tr>
<tr>
<td>>17 years</td>
<td>0%</td>
<td>3</td>
<td>10320</td>
<td>193</td>
<td>0.09 [-0.14, 0.31]</td>
</tr>
</tbody>
</table>
A. waist circumference

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td>0%</td>
<td>10</td>
<td>26254</td>
<td>621</td>
<td>-0.13 [-0.21, -0.05]</td>
</tr>
<tr>
<td>5 to 9 years</td>
<td>57.7%</td>
<td>11</td>
<td>70721</td>
<td>2228</td>
<td>-0.15 [-0.25, -0.05]</td>
</tr>
<tr>
<td>10 to 17 years</td>
<td>45.5%</td>
<td>6</td>
<td>23748</td>
<td>354</td>
<td>-0.08 [-0.22, 0.06]</td>
</tr>
<tr>
<td>>17 years</td>
<td>0%</td>
<td>3</td>
<td>10287</td>
<td>190</td>
<td>0.14 [-0.07, 0.36]</td>
</tr>
</tbody>
</table>

B. body fat %

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td>0%</td>
<td>3</td>
<td>5463</td>
<td>110</td>
<td>-0.06 [-0.24, 0.13]</td>
</tr>
<tr>
<td>5 to 9 years</td>
<td>0%</td>
<td>6</td>
<td>17319</td>
<td>213</td>
<td>-0.12 [-0.25, 0.01]</td>
</tr>
<tr>
<td>10 to 17 years</td>
<td>28.1%</td>
<td>6</td>
<td>15421</td>
<td>255</td>
<td>-0.15 [-0.31, 0.00]</td>
</tr>
<tr>
<td>>17 years</td>
<td>20.2%</td>
<td>3</td>
<td>5161</td>
<td>171</td>
<td>0.14 [-0.11, 0.39]</td>
</tr>
</tbody>
</table>

C. fat mass index

<table>
<thead>
<tr>
<th>Age Group</th>
<th>I²</th>
<th>St.</th>
<th>NC</th>
<th>ART</th>
<th>Estimate [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td><5 years</td>
<td>0%</td>
<td>3</td>
<td>5899</td>
<td>106</td>
<td>-0.10 [-0.27, 0.08]</td>
</tr>
<tr>
<td>5 to 9 years</td>
<td>13.4%</td>
<td>8</td>
<td>19856</td>
<td>245</td>
<td>-0.15 [-0.28, -0.02]</td>
</tr>
<tr>
<td>10 to 17 years</td>
<td>36.3%</td>
<td>6</td>
<td>17551</td>
<td>266</td>
<td>-0.15 [-0.30, 0.00]</td>
</tr>
<tr>
<td>>17 years</td>
<td>0%</td>
<td>2</td>
<td>2960</td>
<td>151</td>
<td>0.23 [-0.04, 0.50]</td>
</tr>
</tbody>
</table>

mean difference in SD units