Interpreting Changes in Life Expectancy During Temporary Mortality Shocks

Patrick Heuveline

California Center for Population Research (CCPR)
4284 Public Affairs Building
University of California, Los Angeles (UCLA)
Los Angeles, CA 90095
(310) 825-6380
Email: heuveline@soc.ucla.edu

Abstract

Life expectancy is the most widely used measure of mortality, largely because of its intuitive interpretation as the expected age at death of an average individual. Changes in life expectancy are also used to assess mortality trends, but mortality change is incompatible with the assumptions underpinning that intuitive interpretation of life expectancy. To provide an alternative, I return to the two main interpretations of the period life table. The first interpretation, as a synthetic-cohort life table, allows for “forward-looking” probabilistic statements regarding the individual life course. The second interpretation, as stationary population characteristics, yields standardized demographic indicators of the (past) reference period. Interpreting life table indicators such as life expectancy in the first manner is often more appealing, but only the second one makes sense during temporary mortality shocks. The absolute change in life expectancy can then be interpreted as the standardized value of the average lifespan reduction in a past death cohort.

Funding Statement

The author benefited from facilities and resources provided by the California Center for Population Research at UCLA (CCPR), which receives core support (P2C-HD041022) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

Conflict of Interest Disclosure

The author has no conflict of interest.

Ethics Approval Statement

The study has no human subjects.

Acknowledgments

The author benefited from facilities and resources provided by the California Center for Population Research at UCLA (CCPR), which receives core support (P2C-HD041022) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). I thank Michael Tzen and Lilian Chen for producing the world map in Figure 4.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Life expectancy is the most widely used measure of mortality. Unless specified otherwise, it implicitly refers to the value at birth (age 0) of one of the functions derived in a period life table. Demographers tend to favor life expectancy because it is a pure measure of mortality in a population, independent of the population’s age structure. Life expectancy also has an intuitive interpretation, conditional on some assumptions, as the expected age at death of an average newborn that can be relatively easily conveyed beyond an inner circle of demographers and actuaries.

As Covid-19 induced mortality increases in many populations, there have been several attempts to express the mortality impact of the pandemic as a difference in life expectancy (Aburto et al. 2021; Andrasfay and Goldman 2021; Castro et al. 2021; Chan, Cheng and Martin 2021; García-Guerrero and Hiram Beltrán-Sánchez 2021; Heuveline and Tzen 2021; Islam et al. 2021; Lima et al. 2021; Murphy et al. 2021). Still attractive to demographers for its independence from age structure, this difference is much more difficult to interpret. The assumptions that condition the intuitive interpretation of life expectancy above entail unchanging mortality conditions over an individual’s lifetime and are difficult to reconcile with the actual mortality changes that the difference in life expectancy purports to describe.

In a search for an alternative interpretation, I return to the two basic interpretations of the period life table. The intuitive interpretation of life expectancy derives from the first of these interpretations, as a representation of the future experience of a synthetic cohort. I argue that, under temporary mortality shocks, a difference in life expectancy can be better understood from the second of these interpretations, as a representation of the characteristics of a stationary population.

The period life table as a synthetic cohort

In a cohort life table, life expectancy at birth is simply “the sum of all person-years lived by the cohort divided by the original number in the cohort” (Preston et al. 2001: 39). In continuous notation, life expectancy at birth \(e_0^0 \) can thus be expressed as:

\[
e_0^0 = \frac{\int_0^\infty D_C(a) \cdot ada}{\int_0^\infty D_C(a) \cdot da}
\]

(1)

where \(D_C(a) \) represents the number of cohort members dying at age \(a \) (and thus living exactly \(a \) years).

A period life table describes what would happen to a hypothetical (“synthetic”) cohort if its members were subjected for their entire lives to the mortality conditions of a period, which is typically operationalized as a set of age-specific death rates for that period (Preston et al. 2001: 42). In the period life table, life expectancy at birth can similarly be expressed as a function of the number of decrements at age \(a, d(a) \):
Life expectancy thus represents the average age at death among members of the synthetic cohort. In a probabilistic sense, it represents the “expected” value of the length of life of a member of the synthetic cohort—an individual subjected throughout their life to the mortality rates from which the period life table is constructed. The very term life expectancy is closely tied to this “forward-looking” interpretation.

The number of decrements at age \(a \) only depends on the original number of cohort members (the “radix” of the life table) and on the age-specific death rates of the period. Moreover, the radix of the life table is but a scaling factor that similarly affects the numerator and the denominator of life expectancy. This allows treating life expectancy as a “pure” measure of mortality in comparisons of mortality conditions across or within populations, or across periods.

A difference in life expectancy can be written as (Pollard 1988: 266):

\[
(e^0_2)^2 - (e^0_1)^1 = \int_0^\infty (\mu^1(a) - \mu^2(a)).ap^0_0.\,(e^0_a)^1 da
\]

(3)

where \(\mu(a) \) denotes the mortality rate at exact age \(a \), \(p_0 \) the probability to survive from birth to age \(a \), and \(e^0_a \) life expectancy at age \(a \), and the superscripts 1 and 2 refer to two different life tables (corresponding to different populations or sub-populations, or to the same population at two different times). To develop intuition for this formula, the sum can be rewritten as:

\[
(e^0_2)^2 - (e^0_1)^1 = \frac{-\int_0^\infty (\mu^2(a) - \mu^1(a)).l^2(a).\,(e^0_a)^1 da}{\int_0^\infty \mu^2(a).l^2(a)da}
\]

(4)

where \(l(a) \) is the number of survivors to exact age \(a \) in the life table. When mortality rates at age \(a \) are higher in the second population than in the first one, the first product in the numerator’s sum provides the number of decrements at age \(a \) that the mortality differential adds to the second life table. To represent the corresponding reduction in years of life lived by the synthetic cohort in that second life table, each of these additional decrements at age \(a \) is then multiplied by \((e^0_a)^1 \), the number of additional years one reaching age \(a \) could have otherwise been expected to live under the conditions represented in the first table. The difference in life expectancy is in that case negative, and its absolute value the sum of the reductions in years of life lived across the entire lifespan, averaged over the size of the synthetic cohort in the denominator.
In some cases, the probablistic, forward-looking interpretation of this difference in life expectancy is unproblematic. It may represent, for instance, how much longer an individual would live under the mortality conditions experienced by one population, or one sub-population, compared to those experienced by another population, or sub-population, were the mortality conditions of these two populations or sub-populations to remain unchanged throughout the individual’s lifetime.

Another example would be comparing life expectancy under the current mortality regime (assuming no future change) with its counterfactual value assuming one cause of death could be permanently eliminated. In a seminal paper, Keyfitz (1977) analyzed what would happen were the resulting proportional change in mortality is the same at all ages:

$$\frac{\mu^2(a) - \mu^1(a)}{\mu^1(a)} = \delta$$

(5)

where subscripts 1 and 2 refer to the original and the cause-deleted life table respectively, and δ is a small negative quantity.

Noting that equation (4) must be symmetrical with respect to life tables 1 and 2, it can first be re-written as:

$$\left(e^0_0\right)^2 - \left(e^0_0\right)^1 = -\frac{\int_0^\infty \mu^2(a) - \mu^1(a). l^1(a). (e^0_0)^2 da}{\int_0^\infty \mu^1(a). l^1(a) da} = -\delta. \frac{\int_0^\infty \mu^1(a). l^1(a). (e^0_0)^2 da}{\int_0^\infty \mu^1(a). l^1(a) da}$$

Thus:

$$\left(e^0_0\right)^2 - \left(e^0_0\right)^1 = -\delta. \frac{\int_0^\infty d^1(a). (e^0_0)^2 da}{\int_0^\infty d^1(a) da}$$

(6)

As shown in this ratio, the difference in life expectancy is then proportional to a weighted average of cause-deleted life expectancies over the lifespan, with the weights provided by life table decrements in the original table.

The relative change in life expectancy can also be compared to the relative change in mortality rates:

$$\left(e^0_0\right)^2 - \left(e^0_0\right)^1 = -\delta. \frac{\int_0^\infty d^1(a). (e^0_0)^2 da}{\int_0^\infty l^1(a) da}, \frac{\int_0^\infty l^1(a) da}{\int_0^\infty d^1(a) da} = -\delta. \frac{\int_0^\infty d^1(a). (e^0_0)^2 da}{\int_0^\infty l^1(a) da}, (e^0_0)^1$$

Thus:
\[
\frac{(e_0^\delta)^2 - (e_0^0)^1}{(e_0^0)^1} = -\delta \int_0^\infty d^1(a) \cdot \frac{(e_0^\delta)^2}{l^1(a) da} = -\delta \cdot H^1
\]

(7)

To express this ratio only as a function of the original life table, Keyfitz (1977) showed through a Taylor expansion that if \(\delta\) is small:

\[
\frac{(e_0^\delta)^2 - (e_0^0)^1}{(e_0^0)^1} \approx \delta \cdot \int_0^\infty l^1(a) \cdot \ln(l^1(a)) da = -\delta \cdot H^1
\]

(8)

where \(H^1\) is the entropy of the original life table. Goldman and Lord (1986) further show that \(H^1\) can also be written as:

\[
H^1 = \frac{\int_0^\infty d^1(a) \cdot (e_0^\delta)^1 da}{\int_0^\infty l^1(a) da}
\]

(9)

Combining equations (9) and (10) then yields an approximate form of equation (8) for small values of \(\delta\) that only uses functions of the original life table. (This approximate form could also be derived directly from (8) through a Taylor expansion). Both the approximate and the exact form rest on the assumption of proportional mortality changes expressed in equation (5). This assumption is not always tenable, however, and can lead to relatively large estimation biases (Goldstein and Lee 2020).

Moreover, interpretative challenges arise when what separates the mortality conditions being compared is a temporary phenomenon (mortality "shock"). The difference between pre-pandemic life expectancy and life expectancy during the pandemic, for instance, compares a counterfactual expected age at death had the pandemic never occurred (nor any other change in mortality) with a hypothetical age at death if pandemic mortality continues throughout an individual’s lifetime. Perhaps not entirely impossible with the periodic emergence of new variants, this hypothetical scenario is nonetheless relatively unlikely. By removing any influence from the population age structure, calculating this difference in life expectancy still provides a usual metric of this temporary mortality impact, but an alternative interpretation is needed.

The period life table as a stationary population

The second interpretation of the period life table is as a stationary population. The period life table provides the characteristics of a population’s “stationary equivalent,” that is, the underlying stationary population that would have emerged had the population always experienced the mortality conditions of the reference period, with no migration and a constant number of births per unit of time. Among these
population characteristics, life expectancy is the mean age at death in the stationary equivalent population. Equation (2) can be expanded as:

\[
e_0^a = \frac{\int_0^\infty d(a)\, da}{\int_0^\infty l(a)\, da} = \frac{\int_0^\infty \mu(a)\, da}{\int_0^\infty l(a)\, da}
\]

(10)

Life expectancy is indeed an age-standardized equivalent of the mean age at death in the population during the reference period:

\[
\bar{a}_D = \frac{\int_0^\infty N(a)\mu(a)\, da}{\int_0^\infty N(a)\, da}
\]

(11)

where \(N(a)\) is the number of individuals of exact age \(a\) in the population. This standardization uses the distribution of individuals of exact age \(a\) in the stationary equivalent population, which is proportional to number of survivors \(l(a)\) in the period life table.

The most common form of standardization involves the substitution of the actual population distribution with an external standard distribution. The form of standardization life expectancy entails can be described as an internal standardization to the extent that the age distribution being used, the stationary equivalent population distribution, derives instead from the population’s own mortality rates:

\[
l(a) = l(0)\, e^{-\int_0^a \mu(x)\, dx}
\]

(12)

Contrary to external standardization, comparing two “internally standardized” populations thus involve applying potentially different population distributions to the two populations being compared (Modig, Rau and Ahlbom 2020). Both approaches have their merit, however, and with both the actual age distributions of the two populations no longer matter. Internal standardization is also immune to one issue potentially encountered with external standardization. If population \(A\) has twice the mortality rates of population \(B\) at every age, an externally standardized mean age at death would be the same in the two populations. This is counterintuitive as one would expect individuals to die younger, on average, in population \(A\). The intuition is largely correct, however, because higher mortality would typically induce a “younger” age distribution in population \(A\) than in population \(B\). While analysts often treat age distribution as a demographic parameter whose influence needs to be purged to obtain a pure measure of the phenomenon of interest, here mortality, age distribution reflects the population’s history of fertility, mortality, and migration. While external standardization removes all traces of this demographic history, the internal standardization life expectancy performs only removes those related to fertility and migration but maintains some coherence between current mortality levels and age structure. Under these conditions, life expectancy in population \(A\) would indeed be lower than in population \(B\).
While the probabilistic, forward-looking interpretation of life expectancy is more powerful, and understandably preferred when the assumption of unchanged conditions is plausible, there are several situations in which an alternative interpretation can be useful. First, the internally standardized interpretation applies equally well to very short reference periods. When mortality conditions change rapidly, one may want to track these changes with high frequency, for periods shorter than a full year (Trias-Llimos, Riffe and Bilal. 2020; Ghislandi et al. 2022). Due to the seasonality of mortality conditions, however, the probabilistic interpretation of life expectancy for reference periods shorter than a full year implies an implausible lifetime experience, looping conditions in some seasons while skipping conditions in other seasons. Ho and Noymer (2017) refer to such period life expectancies as “pseudo seasonal” expectancies.

Second, the probabilistic interpretation is again problematic when considering differences in life expectancy resulting from temporary mortality changes. Extending the stationary equivalent interpretation of the life table, the difference in life expectancy shown in equation (4) can be seen instead as the internally standardized equivalent of the following ratio:

\[
\frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a). (e_0^a)^1 da}{\int_0^\infty \mu^2(a). N^2(a) da}
\]

(13)

When mortality rates at age \(a\) are higher in the second than in the first life table, the first product in the numerator relates to the concept of “excess deaths” at age \(a\), \(D^f(a)\), that is, the difference between the actual number of deaths at age \(a\) in population 2, \(D^2(a)\), and a counterfactual number of deaths in population 2 had the (typically lower) mortality rate of population 1 prevailed instead at that age. Had there been no difference in mortality between the two populations, an individual still alive at age \(a\) would have been expected to live an additional \((e_0^a)^1\) years. The above denominator thus represents the total years of life lost (YLL) to the difference in mortality between the two populations:

\[
YLL = \int_0^\infty D^f(a). (e_0^a)^1 da
\]

(14)

Meanwhile, the sum in the denominator adds up to deaths of all ages in population 2, \(D^2\). Averaging \(YLL\) over the total number of deaths thus indicates the expected years of life lost per death in population 2, or Mean Unfulfilled Lifespan (\(MUL\), Heuveline 2021):

\[
MUL = \frac{YLL}{D^2} = \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a). (e_0^a)^1 da}{\int_0^\infty \mu^2(a). N^2(a) da}
\]

(15)
The \textit{MUL} can be expressed as a function of two other indicators already in use. From the literature on premature mortality, the first of these indicators is the average years of life lost to death from a specific cause per death from that cause (AYLL). There have been several approaches to calculate YLL and thus its average. A first approach uses a single “standard” life table (and life expectancies by age), which has the advantage of making YLL estimates additive across populations (Martinez et al. 2019). A second approach uses different population-specific tables for different populations, which provides a more accurate measure of the actual number of years lost to a specific cause in a population. To emphasize that YLL and its average are here based on the latter approach, the average will be denoted \textit{PAYLL} for Population-specific Average Years of Life Lost. Treating all excess deaths as if due to a single (new) cause of death, the \textit{PAYLL} indicator of excess mortality is:

\[
\text{PAYLL} = \frac{\int_0^\infty D^E(a). (e^g_a)^1 \, da}{\int_0^\infty D^E(a) \, da} = \int_0^\infty \frac{D^E(a)}{\int_0^\infty D^E(a) \, da}. (e^g_a)^1 \, da
\]

(16)

The \textit{PAYLL} is a weighted average of the initial life expectancies in the population and a younger age distribution of excess deaths would shift the weights in the weighted average toward life expectancies at younger ages. All else equal, the \textit{PAYLL} would then be higher because life expectancies decline with age (unless mortality is declining quickly with age, which typically only happens at very young ages).

Averaging YLL by excess deaths only, in the \textit{PAYLL}, rather than by all deaths in the period, in the \textit{MUL}, might make the value of the \textit{PAYLL} more intuitive, but a limitation as an indicator of premature mortality is that it does not depend on the incidence of excess mortality. The relative incidence of excess and all-cause mortality is often expressed via the \textit{P-score}, the ratio of excess to expected deaths in the absence of mortality changes:

\[
P = \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a) \, da}{\int_0^\infty \mu^1(a). N^2(a) \, da}
\]

(17)

In the case of an identical proportional increase in mortality at all ages, the \textit{P-score} equals the scalar δ in equation (5), which is then positive. To derive the relationship between the \textit{MUL}, the \textit{PAYLL} and the \textit{P-score}, equation (15) can first be expanded:

\[
\text{MUL} = \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a). (e^g_a)^1 \, da}{\int_0^\infty \mu^2(a). N^2(a) \, da} = \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a) \, da}{\int_0^\infty \mu^2(a). N^2(a) \, da} \cdot \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a). (e^g_a)^1 \, da}{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a) \, da} = \frac{\int_0^\infty (\mu^2(a) - \mu^1(a)). N^2(a) \, da}{\int_0^\infty \mu^1(a). N^2(a) \, da} \cdot \frac{\int_0^\infty \mu^1(a). N^2(a) \, da}{\int_0^\infty \mu^2(a). N^2(a) \, da}. \text{PAYLL}
\]
The relationship is thus:

\[MUL = \frac{P}{1 + P} \cdot PAYLL \]

(18)

where the ratio involving the \(P \)-score indicate how common excess deaths were among all deaths in the period with higher mortality, and the \(PAYLL \) indicating how many years of life were lost for each excess death.

The \(MUL \) is an easily interpretable indicator of the impact of a mortality increase on longevity: the average reduction in the length of life lived among individuals who have died during the mortality increase. This indicator, however, depends on demographic characteristics other than mortality, such as the population age distribution. As noted above, in the case of an identical proportional change in mortality at all ages, the \(P \)-score is a constant, and the \(MUL \) would be proportional to the \(PAYLL \). As mentioned above with respect to equation (16), all else equal, both would take larger values in populations with younger age structures. In other cases, however, the value of the \(P \)-score itself depends on the population age structure.

As life expectancy with respect to the mean age at death, the difference in life expectancy (negative when mortality increases) provides a useful internal standardization of the opposite of the (positive) value of the \(MUL \) by substituting the stationary equivalent distribution to the actual population distribution. When mortality surges are expected to be temporary, the forward-looking interpretation of life expectancy that refers to the hypothetical, future survival of a current birth cohort exposed to unchanging mortality conditions throughout their lifetime becomes problematic. A backward-looking interpretation that refers to the actual experience of a recent “death cohort” (Riffe, Schöley, and Villavicencio 2017) then provides a useful alternative. The absolute change in life expectancy can thus be interpreted as the standardized value of the \(MUL \), an indicator of premature mortality that depends on population characteristics.

References

Martinez, Ramon, Patricia Soliz, Roberta Caixeta and Pedro Ordunez. 2019. “Reflection on Modern Methods: Years of Life Lost Due to Premature Mortality—A Versatile and Comprehensive

