Impact of Epstein-Barr virus co-infection on natural acquired \textit{Plasmodium vivax} antibody response

Michelle H F Dias; Luiz F F Guimarães; Matheus G Barcelos; Eduardo U M Moreira; Maria F A do Nascimento; Taís N de Souza; Camilla V Pires; Talita A F Monteiro; Jaap M Middeldorp; Irene S Soares; Francis B Ntumngia; John H Adams; Flora S Kano; Luzia H Carvalho.

1 Instituto René Rachou/FIOCRUZ Minas, Belo Horizonte, MG, Brazil; 2 Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, US; 3 Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde (IEC/SVS/MS), Belém, PA, Brazil; 4 Department of Pathology, Free University Medical Center, Amsterdam, The Netherlands. 5 Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São Paulo - SP, Brazil;

*Corresponding author: luzia.carvalho@fiocruz.br (LHC)
Abstract (word 300)

Background

The simultaneous infection of *Plasmodium falciparum* and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt's Lymphoma (eBL) in children living in *P. falciparum* holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to *P. vivax*, the most widespread human malaria parasite.

Methodology/Principal Findings

The study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term *P. vivax* exposed adults living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of *balf-5* gene) was
persistently detected in the peripheral blood (PersV
DNA, n=27), and an age-
matched malaria-exposed group whose EBV-DNA could never be detected
during the follow-up (NegV
DNA, n=29). During the follow-up period, the serological
detection of EBV antibodies to lytic/ latent viral antigens showed that IgG
antibodies to viral capsid antigen (VCA-p18) were significantly different between
groups (PersV
DNA > NegV
DNA). A panel of blood-stage P. vivax antigens covering
a wide range of immunogenicity confirmed that in general PersV
DNA group
showed low levels of antibodies as compared with NegV
DNA. Interestingly, more
significant differences were observed to a novel DBPII immunogen, named
DEKnull-2, which has been associated with long-term neutralizing antibody
response. Differences between groups were less pronounced with blood-stage
antigens (such as MSP1-19) whose levels can fluctuate according to malaria
transmission.

Conclusions/Significance

In a proof-of-concept study we provide evidence that a persistent detection
of EBV DNA in peripheral blood of adults in a P. vivax semi-immune population
may impact the long-term immune response to major malaria vaccine candidates.

Keywords: P. vivax, Epstein-Barr virus, co-infection, antibody response

Author Summary (word 200)

In the Amazon rain forest, both Plasmodium vivax and Epstein-Barr virus (EBV)
infections are common, yet the Burkitt's lymphoma (BL) is rare, despite an
association between endemic BL with chronic P. falciparum exposure.
Nevertheless, the influence of EBV infection on malaria immunity remains undetermined. Here, we investigated for the first time whether continuous detection of EBV DNA in the peripheral blood of adults exposed to *P. vivax* could impact the antibody response to blood-stage malaria vaccine candidates. The methodological approach involved 12-month follow-up among *P. vivax*-exposed Amazonian classified as persistent EBV-DNA carriers (PersV\textsubscript{DNA}) and an age-matched group with no viral DNA detection (NegV\textsubscript{DNA}); groups were further differentiated based on profile of viral antibodies (mainly IgG VCA-p18). Collectively, our findings demonstrated that antibody levels against *P. vivax* antigens were in general lower in the PersV\textsubscript{DNA} group as compared with NegV\textsubscript{DNA}. More significant differences were observed to a novel vaccine candidate (DEKnull-2) whose antibody response were previously associated with broadly neutralizing *P. vivax* antibodies. Differences between groups were less pronounced with *P. vivax* antigens associated with seasonal changes in the antibody responses. In this conceptual study, we provide evidence that long-term detection of EBV in peripheral blood may impact immune response to major malaria vaccine candidates.

Short title: EBV and immune response to *P. vivax* malaria

Introduction

The impact of malaria infection is greater on populations living in the poorest regions of the globe, where sanitary conditions are precarious, leaving the population subject to possible co-infections with other infectious agents, including parasites [1, 2], bacteria [3, 4] and viruses [5, 6]. Consequently, in malaria endemic areas, the simultaneous infection with multiple pathogens has
implications for understanding the development of protective immunity as well as
the efficacy of antimalarial vaccines [7, 8]. Common co-infections include herpes
viruses as most vertebrates are infected with one or more types that remain for
the rest of their lives [9].

The severe consequence of co-infection involving holoendemic *Plasmodium
falciparum* exposure and the Epstein-Barr virus (EBV) - a gammaherpes virus
that infects B cells and maintains latency throughout the individuals' lifetime [10,
11] - is well established, as the interaction could promote the development of
endemic Burkitt's Lymphoma (eBL) [12, 13]. In Sub-Saharan Africa, eBL is the
most lethal of childhood cancers, with the highest prevalence in children aged 5–
9 years old who are chronically exposed to *P. falciparum* malaria (revised by [14,
15]). Malaria appears to play multiple roles in eBL etiology, including the
expansion of latently infected B-cells and the likelihood of c-myc translocation
that is a hallmark of BL tumors [16-19]. Of relevance, the aggressive eBL
childhood cancer seems to be exclusively linked to *P. falciparum* exposure, but
not to other human malaria parasites [20].

Despite the compelling evidence indicating a role for *P. falciparum* in
impaired immune responses that control EBV infection [21-23], the impact of
acute EBV infection on the generation of anti-malarial immunity is uncertain [24].
Notwithstanding, rodent models of EBV demonstrate that it is possible for a
primary gammaherpes virus infection to negatively modulate the generation of
antimalarial immunity [7]; an outcome that was correlated with a defect on the
generation of humoral immunity to a secondary malaria infection. Evidence of the
immune suppressive nature of an acute EBV infection on the development of
malaria immunity has also been suggested in experimentally marmosets co-infected with EBV and the quartan malaria *P. brasilianum* [25].

Considering the B-cell compartment as the primary niche for EBV persistence [11] and that humoral malaria immunity may be altered during EBV co-infection [7], we hypothesized here that EBV co-infection could impact on the naturally acquired antibody responses to *P. vivax*, the most geographically widespread human malaria parasite [26]. Taken in to account the rapid spread of *P. vivax* drug-resistant strains [27], and the potential for relapse, progress towards the development of a *P. vivax* vaccine is critical (reviewed in [28]). In this perspective, studying *P. vivax* immunity in the context of EBV co-infections can enhance our understanding of malaria-protective immunity and progress towards the design of next-generation malaria vaccines. Here, we took advantage of a longitudinal follow-up study previously carried out in the Amazon rainforest, where different profiles of *P. vivax* IgG responders were identified [29-31]. To investigate whether a persistent EBV infection could interfere with the profile of *P. vivax* antibody response, we examined in the study population the presence of circulating viral DNA over the time as well as EBV antibody response to lytic viral capsid antigen -VCA, replication activator protein – ZEBRA, early diffuse antigen- EAd, and latent EBV nuclear antigen 1 - EBNA-1.

Methods

Area and Study population.

The study was carried-out in the agricultural settlement of Rio Pardo (1°46'S—1°54'S, 60°22'W—60°10'W), Presidente Figueiredo municipality,
Northeast of Amazonas State in the Brazilian Amazon region. The study site and malaria transmission patterns were described in detail elsewhere [29, 32]. In this area, malaria transmission is considered hypo to mesoendemic, and most residents were natives of the Amazon region. Inhabitants of the settlement live on subsistence farming and fishing along the small streams. In the study area, *P. falciparum* malaria incidence has decreased drastically in recent years, and *P. vivax* is now responsible for all clinical malaria cases reported.

Study design and cross-sectional surveys

A population-based open cohort study was initiated in November of 2008 and included three cross-sectional surveys carried at six-months interval (baseline, 6 and 12-months), and distributed in periods of high and low malaria transmission ([S1 Fig. 1](#)), as previously reported [29]. Briefly, (i) interviews were conducted through a structured questionnaire to obtain demographical, epidemiological, and clinical data; (ii) physical examination, including body temperature and spleen/liver size were recorded according to standard clinical protocols; (iii) venous blood was collected for individuals aged five years or older (EDTA, 5 mL); and (iv) examination of Giemsa-stained thick blood smears for the presence of malaria parasites by conventional light microscopy, with *P. vivax* infection confirmed later by a species-specific real-time PCR as described [33]. The geographical location of each dwelling was recorded using a hand-held 12-channel global positioning system (GPS) (Garmin 12XL, Olathe, KS, USA) with a positional accuracy of within 15 m. For the current study, the non-eligible criteria were (i) refusal to sign the informed consent; (ii) children, as clinical immunity is not prevalent in Amazon children [34]; (iii) pregnant women; (iv) any other morbidity that could be traced; and (v) individuals who were unable to be recruited.
during all three consecutive cross-sectional surveys. Initially, 360 participants were eligible to the current study. The methodological strategy further involved screening these malaria-exposed individuals according to the detection of circulating viral DNA during all cross-sectional surveys (baseline, 6-months, 12-months). For the current study, we focused on two sub-groups of malaria-exposed individuals (i) individuals whose EBV-DNA could be persistently detected from peripheral blood (PersV\textsubscript{DNA}) and (ii) an age-matched subgroup whose viral DNA was undetected throughout the follow-up period (NegV\textsubscript{DNA}) (Table 1).

The ethical and methodological aspects of this study were approved by the Ethical Committee of Research on Human Beings from the René Rachou Institute (Reports No. 007/2006, No. 07/2009, No.12/2010, No. 26/2013 and CAAE 50522115.7.0000.5091), according to the Resolutions of the Brazilian Council on Health (CNS-196/96 and CNS-466/2012). Formal written consent was obtained from all participants, which was also obtained from the next of kin, caregivers, or guardians on the behalf of child participants.

Recombinant blood stage \textit{P. vivax} proteins and IgG antibodies detection

\textbf{DBPII-related antigens. DBPII-Sal1}, a recombinant Duffy binding protein region II (DBPII) including amino acids 243–573 of the Sal-1 reference strain [35], and recombinant \textbf{DEKnull-2}, an engineered DBPII immunogen [36]. These proteins were expressed as a 39kDa 6xHis fusion protein, properly refolded, as previously described [36, 37]. \textbf{MSP1-19 antigen}. The 19-kDa C-terminal region of the Merozoite Surface Protein-1 of \textit{P. vivax} (MSP1-19), which represents amino
acids 1616–1704 of the full-length MSP-1 polypeptide, has been described elsewhere [38]. **AMA-1 antigen.** The ectodomain of *P. vivax* Apical Membrane Antigen-1 (AMA-1, encompassing amino acids 43 to 487, were produced as previously described [39]. To enable purification, MSP1-19 and AMA-1 constructs were also produced as carboxyl-terminal 6xHis-tag fusion proteins from *Escherichia coli* and *Pichia pastoris*, respectively. **Conventional Enzyme-Linked Immunoassays (ELISA) for *P. vivax* IgG antibodies** was carried out using *P. vivax* blood-stage recombinant proteins as previously described [30], with serum samples at a dilution of 1:100. Recombinant proteins were used at a final concentration of either 3 μg/mL (DBPII and DEKnull-2) or 1 μg/mL (MSP1-19 and AMA-1). For each protein, the results were expressed as ELISA reactivity index (RI), calculated as the ratio of the mean optical density (OD at 492 nm) of each sample to the mean OD plus three standard deviations of samples from 30 unexposed volunteers. Values of RI > 1.0 were considered seropositive.

EBV antigens and serostatus

EBV-specific antibodies were detected using 4 synthetic peptides covering immunodominant epitopes of the viral capsid antigen P18 (VCA-p18 [BFRF3]), EBV nuclear antigen 1 (EBNA1 [BKRF1]), early diffuse antigen complex (EAd-p45/52 [BMRF1]) and BZLF1-encoded replication activator protein of EBV (Zebra [BZLF1]) [40, 41]. All synthetic peptides were kindly provided by Dr. J. M. Middeldorp (VU University Medical Center, Amsterdam, Netherland). For the assessment of the levels of antibodies to lytic (VCA-p18, EAd and Zebra) and latent EBV antigens (EBNA1), we used synthetic peptide-based ELISA assays as described [42, 43]. Briefly, each peptide was used at final concentration of 1 μg/mL with plasma samples diluted 1:100. IgM (VCA, Zebra and EAd) and IgG
(VCA and EBNA-1) reactivities were determined using commercial anti-human IgM and IgG secondary antibodies conjugated to horseradish to peroxidase (HRP) (Sigma-Aldrich). For each peptide, EBV seronegative (n=5) and positive controls (n=8) were used on each experiment. Receiver-operating characteristic (ROC) curves was used to determine optimal cutoff points for each peptide (S2 Fig.). Based on the area under the ROC curve (AUC) the follow ELISA’s cutoff were established: (i) 0.38 for VCA IgG (82% sensitivity; 83% specificity), (ii) 0.20 for EBNA-1 IgG (75% sensitivity; 100% specificity), (iii) 0.43 for VCA IgM (82% sensitivity; 100% specificity), (iv) 0.37 for ZEBRA IgM (90% sensitivity; 100% specificity) and (v) 0.44 for EA-d IgM (85% sensitivity; 100% specificity).

EBV DNA detection by real-time PCR

The PCR primers for this assay were previously selected in the BALF-5 gene encoding the viral DNA polymerase [44]; the upstream and downstream primer sequences were 5′-CGGAAGCCCTCTGGACTTC-3′ and 5′-CCCTGTTTATCCGTATGGAATG-3′, respectively, with a fluorogenic probe (5′-TGTACACGCACGAGAAATGCGCC-3′) with a sequence located between the PCR primers. Detectable DNA from EBV was identified by a real-time PCR assay as previously described [45, 46]. Briefly, DNA from whole blood samples collected in EDTA was extracted using Purogene blood core kit B (Qiagen, Minneapolis, MN, USA). The PCR reaction was performed using a mixture containing 1μL of DNA, 0.2 μM each primer, 0.1 μM fluorogenic probe, and 5 μL of TaqMan Master Mix (PE Applied Biosystems), and the PCR cycle was performed as follows: 2 min at 50 ºC, 10 min at 95 ºC, and 40 cycles of 15 s at 95 ºC and 1 min at 60 ºC. The TaqMan Master mix (PE Applied Biosystems) was used for all reactions. For all PCR analysis, water was used as negative control,
and B958 and P3HR1 viral DNA were used as positive controls. The B958 and P3HR1 viral strains were kindly provided by Dr. Talita A. F. Monteiro (Federal University of Pará, PA, Brazil) and were described elsewhere [47]. Samples were defined as negative if the C_T values exceeded 40 cycles.

Statistical analysis

A database was created using Epidata software (http://www.epidata.dk). The graphics and the statistical analysis were performed using GraphPad Prism version 9.1.2 - GraphPad Software, La Jolla California USA. Receiver operating characteristic curves (ROC) analysis was used to determine optimal Cut-off values for EBV peptides in ELISA assays; Kruska-Wallis or Mann-Whitney test were used to compare median values; chi-square test or Fisher's exact test were used to compare proportions; and correlations between P. vivax and EBV antibody responses were examined by Pearson’s or Spearman’s matrices. In all analysis, a significance level of 5 % was considered, i.e., values of P < 0.05.

Results

Characteristic of P. vivax malaria-exposed groups

At the time of the first cross-sectional survey, 123 (34%) out of 360 Amazonian individuals initially eligible for the study had detectable EBV-DNA in the peripheral blood. Further surveys (6- and 12-month later) identified 27 out of 123 individuals as persistent viral DNA carriers, i.e., individuals whose EBV-DNA was amplified (balf-5 gene) from the peripheral blood during all follow-up period (PersV_DNA). In
parallel, we selected a group of 29 age-matched malaria-exposed individuals with no detectable viral DNA in the peripheral blood (NegV\textsubscript{DNA}) (Table 1). Demographic, parasitological, and epidemiological variables were comparable between groups. Accordingly, most individuals were adults with similar proportion of male: female, and their age basically corresponding to their lifetime exposure to malaria in the Amazon area (medians of 32 and 33 years for PersV\textsubscript{DNA} and NegV\textsubscript{DNA}, respectively). In this long-term malaria exposed individuals, few acute malaria infections were detected during the follow-up period (all \textit{P. vivax}, as detected by microscopy and/or species-specific PCR assay) (Table 1).
Table 1. Demographic, epidemiological, and parasitological data of malaria-exposed individuals whose EBV-DNA could be detected (PersV\textsubscript{DNA}) or not (NegV\textsubscript{DNA}) in the peripheral blood during the 12-month follow-up period

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PersV\textsubscript{DNA} (n = 27)</th>
<th>NegV\textsubscript{DNA} (n = 29)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median, years (IQR) a</td>
<td>38 (22-54)</td>
<td>33 (27-42)</td>
<td>0.1227</td>
</tr>
<tr>
<td>Gender ratio, male:female</td>
<td>1.5/1</td>
<td>0.9/1</td>
<td>0.4357</td>
</tr>
<tr>
<td>Years of malaria exposure, median (IQR) b</td>
<td>32 (16-51)</td>
<td>33 (25-40)</td>
<td>0.7233</td>
</tr>
<tr>
<td>Years of residence in Rio Pardo, median (IQR) c</td>
<td>8 (4-10)</td>
<td>9 (3-14)</td>
<td>0.2326</td>
</tr>
<tr>
<td>Riverine population, n (%) d</td>
<td>4 (15%)</td>
<td>6 (21%)</td>
<td>0.7308</td>
</tr>
<tr>
<td>Self-reported malaria episodes, median (IQR)</td>
<td>5 (2-11)</td>
<td>11 (3-21)</td>
<td>0.1410</td>
</tr>
<tr>
<td>Acute Plasmodium vivax infection, n (%) e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6 (22%)</td>
<td>6 (21%)</td>
<td></td>
</tr>
<tr>
<td>6 months</td>
<td>1 (4%)</td>
<td>3 (10%)</td>
<td></td>
</tr>
<tr>
<td>12 months</td>
<td>4 (15%)</td>
<td>5 (17%)</td>
<td></td>
</tr>
</tbody>
</table>

a IQR = interquartile range
b Time living in the endemic area (Brazilian Amazon)
c Time living in the agricultural settlement area
d Population that living along the Rio Pardo stream.
e Asymptomatic malaria infection was detected by conventional light microscopy and real-time PCR

EBV serostatus of \textit{P. vivax} malaria-exposed groups

In these immunocompetent adults, all individuals were seropositive for at least one EBV peptide during the follow-up period (S3 Fig.). Despite of that, individuals categorized as PersV\textsubscript{DNA} had a much broader EBV antibody response than NegV\textsubscript{DNA} group; specifically, while 42\% of EBV-DNA carriers respond to all five EBV-ELISA markers, only 15\% of NegV\textsubscript{DNA} group responded to these markers (chi-square test = 4.276; \textit{p} = 0.038). A similar profile of response was detected over the time (S3 Fig.). From the panel of 4 EBV antigens, only IgG response to the lytic antigen VCA-p18 showed a clear differentiation between PersV\textsubscript{DNA} and
Neg\textsubscript{DNA} groups (Figure 1). At enrollment, while 89\% of Pers\textsubscript{DNA} had a positive IgG antibody response to VCA-p18, only 45\% of Neg\textsubscript{DNA} had IgG VCA-p18 (chi-square test; \(p= 0.0006\)). Of interest, the difference in response between groups remained constant throughout the follow-up period. The levels of antibodies to VCA-p18 were also significantly different between groups (Mann-Whitney test), with levels ranging from 0.70 to 0.77 for Pers\textsubscript{DNA} and from 0.34 to 0.40 for Neg\textsubscript{DNA} groups (Figure 1).

Fig 1. Profile of IgG antibody response against EBV capsid antigen p18 (VCA-p18) in individuals whose EBV-DNA could be detected (Pers\textsubscript{DNA}) or not (Neg\textsubscript{DNA}) over the follow-up period. For each graphic, individual datapoints were expressed as ELISA absorbance (OD) and shown here as a scatter dot plots with lines showing the median with interquartile range (IQR). Numbers represented in the top and bottom of graphics represent the proportion of responders (%) and median (OD) with IQR values, respectively; p-values for significant difference between groups were included and calculated as described in methods. The proportion of responders was determined by considering an OD > 0.38 as ELISA-positive response (S2 Fig.). All raw data are available in the S1 Table.

Although IgM antibodies to EBV lytic antigens (VCA-p18, EAd-p45/52 and Zebra) did not show any differences between the study groups, at the individual level, a positive IgM response for one EBV antigen was related to positivity for the others (Fig. S4); of note, this IgM response profile was sustained throughout the study.
period. Further, we compared the pattern of humoral antibody responses to all EBV antigens between PersV$_{DNA}$ and NegV$_{DNA}$ (Figure 2). In the PersV$_{DNA}$ group, there was a tendency of positive correlation between EBV-specific antibodies, specially to IgM antibodies. On the contrary, NegV$_{DNA}$ group was characterized by a predominance of negative antibody correlations to several EBV antigens.

Fig 2. Pairwise correlations between EBV antibody levels in individuals whose EBV-DNA could be detected (PersV$_{DNA}$) or not (NegV$_{DNA}$) over the follow-up period. Clustering was based on the Spearman correlation coefficient for assays measuring anti-EBV antibodies in plasma samples [IgM (VCA-p18, Zebra and EAd-p45/52) and IgG (VCA-p18 and EBNA-1)]. Matrix heatmaps were shown for each cross-sectional survey (baseline, 6- and 12-months), with top and bottom panels representing PersV$_{DNA}$ and NegV$_{DNA}$ groups, respectively. Positive correlations shown in blue and negative correlations shown in red, with numbers in bold statistically significant differences.

Plasmodium vivax antigen-specific antibody responses in persistent viral DNA carriers

To investigate whether the continuous detection of EBV-DNA in the peripheral blood would impact the humoral response to *P. vivax* malaria, we evaluated antibodies to leading *P. vivax* blood-stage vaccine candidates (DBPII-related antigens, AMA-1 and MSP1-19). In general, there was no clear difference in the proportion of responders between groups, however, the levels of antibody
response to different *P. vivax* antigens were significantly different between PersV_{DNA} and NegV_{DNA}. The antibody response to the engineered DBPII immunogen (DEKnull-2) showed a trend towards lower antibody levels in PersV_{DNA} compared with NegV_{DNA} (Figure 3). Specifically, while DEKnull-2 serological reactivity index (RI) ranged from 0.59 to 0.95 for PersV_{DNA}, RI values ranged from 2.11 to 3 for NegV_{DNA} group. Considering all samples assayed, the frequency of positivity was 40% vs. 61% (chi-square test, *p*=0.0079) for PersV_{DNA} and NegV_{DNA} samples, respectively. A similar pattern was observed with the original DBPII protein (Fig. S5). For *P. vivax* MSP1-19, the differences between the groups was less pronounced (Figure 4), with statistically significant differences observed only during high transmission period at the study baseline (Figure 4). Circulating antibodies against AMA-1 showed a similar pattern of response as MSP1-19 (Fig. S6).

Fig 3. Profile of IgG antibody response against the surface-engineered DEKnull-2 vaccine of *P. vivax* in individuals with (PersV_{DNA}) or without (NegV_{DNA}) persistent viral DNA over the follow-up period. In A, results are shown by cross-sectional surveys (baseline, 6- and 12-month), with individual datapoints expressed as ELISA Reactivity Index (RI) and shown here as a scatter dot plots with lines showing the median with interquartile range (IQR). In B, distribution shape of data (all samples) is represented by violin plots with medians and IQR ranges represented as dotted lines. Numbers in the top and bottom of each graphic represent the proportion of responders (%) and median (RI) with IQR values, respectively; p-values for significant difference between groups were included and calculated as described in methods. Reactivity Index (RI) was
calculated as described in methods and RI > 1 corresponded to an ELISA-positive response.

Fig 4. Profile of IgG antibody response against the 19-kDa C-terminal region of the Merozoite Surface Protein-1 (MSP1-19) in individuals with (PersV\textsubscript{DNA}) or without (NegV\textsubscript{DNA}) persistent viral DNA over the follow-up period. In A, results are shown by cross-sectional surveys (baseline, 6- and 12-month), with individual datapoints expressed as ELISA Reactivity Index (RI) and shown here as a scatter dot plots with lines showing the median with interquartile range (IQR). In B, distribution shape of data (all samples) is represented by violin plots with medians and IQR ranges represented as dotted lines. Numbers in the top and bottom of each graphic represent the proportion of responders (%) and median (RI) with IQR values, respectively; p-values for significant difference between groups were included and calculated as described in methods. Reactivity Index (RI) was calculated as described in methods and RI > 1 corresponded to an ELISA-positive response.

Regardless, the detection of EBV-DNA in peripheral blood, antibodies against *P. vivax* blood antigens did not correlate with EBV antibody pattern. In both groups, antibody response to *P. vivax* blood-stage antigens showed overall a weak correlation with IgG EBV pattern (sometimes negative associations were also observed) (**Fig. S7**).

Discussion
In the Amazon rain forest both malaria and EBV infections are common, yet Burkitt’s lymphoma (BL) is rare [48]; this is not unexpected as endemic BL (eBL) is linked to *P. falciparum* exposure, but not to other malaria parasites [20]. While *P. vivax* malaria is a public health problem in the Amazon, immunological outcomes of prevalent viral co-infections are often neglected [49-51]. Here, we sought to investigate whether a continuous detection of EBV-DNA in peripheral blood of *P. vivax* malaria-exposed adults (PersV\textsubscript{DNA}) could impact antibody response to key *P. vivax* blood-stage vaccine candidates. In this context, it is possible to speculate that a positive PersV\textsubscript{DNA} status may reflect a reactive EBV persistence with associated deregulated (activated) B-cell function. A 12-month follow-up study demonstrated that levels of *P. vivax*-specific antibodies were in general lower in the PersV\textsubscript{DNA} group compared with age-matched negative DNA carriers living in the same malaria-endemic village (NegV\textsubscript{DNA}). Interestingly, significant differences in antibody levels were observed against a novel DBPII immunogen, DEKnull-2, that has been associated with stronger, broader, and long-term neutralizing antibody response in the study area [31, 36]. For DEKnull-2, the difference in the magnitude of the antibody response between PersV\textsubscript{DNA} and NegV\textsubscript{DNA} groups ranged from two to four-fold, and these differences were maintained throughout the follow-up period. While DEKnull-2 was developed to overcome the inherent DBPII bias towards developing strain-specific immunity associated with poor immunogenicity [52], our methodological approach also included a common DBPII variant (Sal1) circulating in the Amazon area [29]. A similar profile of response was observed for the native Sal1-DBPII variant, in which less reactivity was observed in the PersV\textsubscript{DNA} group. Taken together, the
results suggested that long episodes of EBV-DNA detection may influence the levels of both strain-specific and strain-transcending DBPII immune responses.

With respect to more immunogenic blood stage *P. vivax* antigens, such as MSP1-19 [53], the difference in the magnitude of antibody response between the groups was less pronounced and observed only in samples collected at baseline (PersV_{DNA} < NegV_{DNA}), when malaria transmission was more evident in the study area. Although the reasons for the difference in the profile of antibody response between *P. vivax* antigens are not known, we can speculate that local seasonal variation in malaria transmission may have played a role, as antibodies against MSP1-19/AMA-1 may fluctuate considerably according to malaria transmission [54-56]. In accordance, we previously demonstrated that levels of MSP1-19/AMA-1 (but not DBPII-specific antigens) dropped when malaria transmission was reduced [30]. Considering that our study design involved temporal variation in malaria transmission profile (S1 Fig.), it is reasonable to consider that lowest levels of these antibodies detected at 6 and 12 months of the follow-up (i.e., in the NegV_{DNA} group) may have masked the difference between PersVDNA and NegVDNA groups. Even though our sample size precluded a more robust statistical analysis, the median for MSP1-19 dropped from 3.7 (at enrollment) to 0.8-1.16 (6 and 12 months, respectively), and for AMA-1 from 2.82 to 1.48-1.05. Future studies should consider the wide range of immunogenicity between *P. vivax* blood stage proteins.

It is also worth mentioning that in this immunocompetent malaria-exposed adult population, we avoid to staging EBV infection based on serology. However, EBV serological profile was only used here as complementary tool to describe the serostatus of PersV_{DNA} versus NegV_{DNA} group. Despite this, PersV_{DNA} had a
much broader EBV antibody response than the NegVDNA group, with a significant proportion of viral DNA carriers recognizing all 5 serological markers used here. Considering individual EBV serological markers, only IgG VCA-p18 distinguished PersVDNA and NegVDNA groups during the follow-up study, (85-89% vs. 38-45%, respectively). Interestingly, measuring VCA-IgG antibodies seems to be a best single test to indicate a previous EBV infection [57]. Notwithstanding, in the PersVDNA group, IgG-VCA antibodies tended to be associated with IgM antibodies to lytic antigens (VCA-p18, EAd-p45/52 and Zebra). Intriguingly, EBV-IgM responses were relatively stable during the follow-up period (in both groups for all EBV antigens). Although the reasons for these findings are unclear, concerns have been raised about possible cross-reactivities of EBV-IgM antibodies with other antigenically related viral infections [58-60], such as CMV that is prevalent in the Amazon area [61]. Although IgM cross-reactivity could not be ruled out, the tendency of correlation with EBV-DNA may reflect constant EBV activation-triggering of B-cells; in fact, EBV persistently infecting naive or anti-EBV B-cells leading to increased IgM levels [62, 63]. Finally, it is important to clarify about the high sensitivity and specificity of the EBV-peptides used in our ELISA assays. According, in a group of 34 Amazonian children (median age 9 years, IQR 8-11) whose plasma samples were screened for anti-EBV antibodies using the same peptide-based ELISA protocol, we found that VCA-IgM and Zebra-IgM antibodies decreased over time while VCA-IgG and EBNA-IgG increased within same period of time (12-month follow-up), and remained positive throughout the observation period (Fig.S8). These results confirmed the typical pattern of seroconversion of young children with low socioeconomic status [64], correlating with an early EBV seroconversion for Latin America population [65].
Consequently, the reason for the persistence of the IgM response in our adult cohort merits further investigations.

As expected, few malaria cases were detected in our malaria semi-immune study population, which precluded our ability to evaluate an association between acute *P. vivax* infection and persistent detection of EBV-DNA. Although the current study was not designed to investigate whether EBV can change the course of an acute *P. vivax* malaria infection, scant data from Indonesia suggest that whereas EBV-DNA levels were significantly elevated in high parasitemic *P. vivax* individuals, EBV-DNA levels were not related to age, gender, or malaria symptoms [66]. To properly address the influence of the persistence of EBV-DNA detection in the course of vivax malaria, a non-immune symptomatic *P. vivax* population should be investigated that was out of the scope of the current MS.

Our study has limitations that should be considered when interpreting the results. First, a relatively small number of malaria-exposed residents were eligible to participate in the study, which may have underpowered some statistical analyses. Specifically, the 12-month cohort study demonstrated that only 27 out of 123 individuals presented persistent detection of EBV-DNA in peripheral blood. Despite this limitation, we are confident about the robustness of the study design, which allowed us to demonstrate for the first time that antibody levels to different *P. vivax* antigens were significantly lower in subjects with persistent EBV “DNAmia”. As the main host cell of the EBV is the human B cell (reviewed by [67]), ongoing experiments are in progress to evaluate on the role of a persistent detection of EBV-DNA in the long-term *P. vivax*-specific B cell response. In this proof of concept study, we provide evidence that a persistent detection of EBV
in peripheral blood of an adult *P. vivax* semi-immune population may impact the long-term malaria immune response to major malaria vaccine candidates.

Acknowledgments

We thank the inhabitants of Rio Pardo for enthusiastic participation in the study; the local malaria control team in Presidente Fiqueiredo for their logistic support; the units of Fundação Oswaldo Cruz in Manaus, AM (Fiocruz Amazonia), and Belo Horizonte, MG (Fiocruz Minas), for overall support. The Program for Technological Development in Tools for Health- PDTIS-FIOCRUZ for use of its facilities at René Rachou Institute (Real-Time PCR Facility; RPT09D). The Coordination for the Improvement of Higher Education Personnel (CAPES) and the Program for Institutional Internationalization of CAPES-PrInt/ FIOCRUZ is also acknowledged.
References

Supporting Information Citations

S1 Fig. Monthly-time series of malaria cases in the agricultural settlement of Rio Pardo (Amazonas, Brazil) during the study period, 2008–2009. The current study included three cross-sectional surveys at six-month intervals (Baseline, Bs; 6- and 12-months latter). Malaria cases were based on results of conventional microscopy provided by the National Malaria Surveillance System Registry (SIVEP-Malaria), with cases of *P. falciparum* (light blue) and *P. vivax* (dark blue) plotted per month.

S2 Fig. Two-graph receiver operating characteristic curves (TG-ROC) to EBV proteins. For ELISA-detected antibodies [IgM (VCA-p18, Zebra and EAd-p45/52) and IgG (VCA-p18 and EBNA-1)], the best cutoff values was determined through sensibility and specificity calculated by TG-ROC curves in GraphPad Prism 9.2, as described in material and methods.

S3 Fig. Frequency of anti-EBV antibodies according to the number of serological markers recognized by individuals whose EBV-DNA could be detected (PersV\textsubscript{DNA}) or not (NegV\textsubscript{DNA}) over the follow-up period. For each group, results were presented as the proportion of responders for one (1), two (2), three (3), four (4) or five (5) EBV serological markers [IgM (VCA-p18, Zebra and EAd-p45/52) and IgG (VCA-p18 and EBNA-1)]. All raw data are available in the S1 Table.
S4 Fig. Individual antibody response to Epstein-Barr virus (EBV) peptides (VCA-p18, ZEBRA, EAd-p45/52 and EBNA-1) during the cross-sectional surveys. Heatmaps illustrated individual antibody response of each malaria-exposed individuals classified according to the detection (PersV_DNA) or not (NegV_DNA) of EBV-DNA over the follow-up period. According to EBV antibody response, individuals were categorized as non-responder (negative) or responders (stratified as low, medium or high, according to EBV antibody reactivity). The missing values are recorded as blank spaces.

S5 Fig. Profile of IgG antibody response against *P. vivax* Duffy Binding Protein region II (DBPII) in individuals with (PersV_DNA) or without (NegV_DNA) persistent viral DNA over the follow-up period. In A, results are shown by cross-sectional surveys (baseline, 6- and 12-month), with individual datapoints expressed as ELISA Reactivity Index (RI) and shown here as a scatter dot plots with lines showing the median with interquartile range (IQR). In B, distribution shape of data (all samples) is represented by violin plots with medians and IQR ranges represented as dotted lines. Numbers in the top and bottom of each graphic represent the proportion of responders (%) and median (RI) with IQR values, respectively; p-values for significant difference between groups were included and calculated as described in methods. Reactivity Index (RI) was calculated as described in methods and RI > 1 corresponded to an ELISA-positive response.
S6 Fig. Profile of IgG antibody response against *P. vivax* Apical Membrane Antigen-1 (AMA-1), in individuals with (PersV\textsubscript{DNA}) or without (NegV\textsubscript{DNA}) persistent viral DNA over the follow-up period. In A, results are shown by cross-sectional surveys (baseline, 6- and 12-month), with individual datapoints expressed as ELISA Reactivity Index (RI) and shown here as a scatter dot plots with lines showing the median with interquartile range (IQR). In B, distribution shape of data (all samples) is represented by violin plots with medians and IQR ranges represented as dotted lines. Numbers in the top and bottom of each graphic represent the proportion of responders (%) and median (RI) with IQR values, respectively; p-values for significant difference between groups were included and calculated as described in methods. Reactivity Index (RI) was calculated as described in methods and RI > 1 corresponded to an ELISA-positive response.

S7 Fig. Pairwise correlations between EBV and *P. vivax* antibody levels in individuals with (PersV\textsubscript{DNA}) or without (NegV\textsubscript{DNA}) persistent viral DNA during the cross-sectional surveys. Clustering was based on the Spearman correlation coefficient for assays measuring anti-EBV antibodies in serum. Matrix heatmaps were shown for each cross-sectional survey (baseline, 6- and 12-months), with top and bottom panels representing Pers V\textsubscript{DNA} and Neg V\textsubscript{DNA} groups, respectively. Positive correlations shown in blue and negative correlations shown in orange, with numbers in bold statistically significant differences.
S8 Fig. IgM and IgG antibody response against Epstein-Barr virus peptides in Amazonian children over time. For each EBV-peptide (VCA-p18; Zebra, EAd-p45/52 and EBNA-1) antibody response was represented by frequency of responders (bar) and magnitude of response (optical density-OD median, lines). The results represented three cross-sectional surveys carried out at 6-month intervals, i.e., at enrollment (0m) and six (6m) and 12-month latter (12m). ELISA assays were carried out as described in the methods.
Figure 1

Baseline

<table>
<thead>
<tr>
<th>Pers V_{DNA}</th>
<th>Neg V_{DNA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 27</td>
<td></td>
</tr>
<tr>
<td>Median (OD)</td>
<td>0.77</td>
</tr>
<tr>
<td>IQR</td>
<td>(0.54 - 1.16)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00001</td>
</tr>
</tbody>
</table>

6 months

<table>
<thead>
<tr>
<th>Pers V_{DNA}</th>
<th>Neg V_{DNA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 27</td>
<td></td>
</tr>
<tr>
<td>Median (OD)</td>
<td>0.77</td>
</tr>
<tr>
<td>IQR</td>
<td>(0.54 - 1.16)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.00002</td>
</tr>
</tbody>
</table>

12 months

<table>
<thead>
<tr>
<th>Pers V_{DNA}</th>
<th>Neg V_{DNA}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 27</td>
<td></td>
</tr>
<tr>
<td>Median (OD)</td>
<td>0.70</td>
</tr>
<tr>
<td>IQR</td>
<td>(0.56 - 1.16)</td>
</tr>
<tr>
<td>p-value</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>
Figure 2
Figure 3
Figure 4

(A) Baseline, 6 months, and 12 months comparison of RI MSP1-19 for Pers V_{DNA} and Neg V_{DNA}.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>6 months</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pers V_{DNA}</td>
<td>65%</td>
<td>58%</td>
<td>38%</td>
</tr>
<tr>
<td>Neg V_{DNA}</td>
<td>71%</td>
<td>69%</td>
<td>58%</td>
</tr>
</tbody>
</table>

For each time point:
- Pers V_{DNA}: N=27, Median (IR) = 1.23 (0.84 - 1.66), IQR = 2.82 (0.82 - 4.06), p=0.0027
- Neg V_{DNA}: N=29, Median (IR) = 1.13 (0.77 - 1.79), IQR = 1.48 (0.75 - 3.94)

(B) Total comparison of RI MSP1-19 for Pers V_{DNA} and Neg V_{DNA}.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>54%</td>
<td>66%</td>
<td></td>
</tr>
</tbody>
</table>

For the total:
- Pers V_{DNA}: N=78, Median (IR) = 1.06 (0.73 - 1.74), IQR = 1.58 (0.76 - 3.89), p=0.0005
- Neg V_{DNA}: N=86, Median (IR) = 1.05 (0.56 - 1.83), IQR = 1.05 (0.68 - 3.51)