Title

“A qualitative examination of the factors affecting the adoption of injury focused wearable technologies in recreational runners”

Author List

Aisling Lacey. School of Health and Human Performance, Dublin City University, Dublin Ireland. Insight SFI Research Centre for Data Analytics.

Dr. Enda Whyte. Centre for Injury Prevention and Performance, School of Health and Human Performance, Dublin City University, Dublin, Ireland.

Dr. Sinéad O’Keefe. Centre for Injury Prevention and Performance, School of Health and Human Performance, Dublin City University, Dublin, Ireland.

Dr. Siobhán O’Connor. Centre for Injury Prevention and Performance, School of Health and Human Performance, Dublin City University, Dublin, Ireland.

Prof. Kieran Moran. School of Health and Human Performance, Dublin City University, Dublin Ireland. Insight SFI Research Centre for Data Analytics.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
A qualitative examination of the factors affecting the adoption of injury focused wearable technologies in recreational runners

1. Abstract

Purpose: Understanding users’ perceived usefulness and ease of use of technologies will influence their adoption and sustained use. The objectives of this study were to determine the metrics deemed important by runners for monitoring running-related injury (RRI) risk, and identify the barriers and facilitators to their use of injury focused wearable technologies.

Methods: A qualitative focus group study was undertaken. Nine semi-structured focus groups with male (n=13) and female (n=14) recreational runners took place. Focus groups were audio and video recorded, and transcribed verbatim. Transcripts were thematically analysed. A critical friend approach was taken to data coding, and multiple methods of trustworthiness were executed. Results: Excessive loading and inadequate recovery were deemed the most important risk factors to monitor for RRI risk. Other important factors included training activities, injury status and history, and running technique. The location and attachment method of a wearable device and the design of a smartphone application were identified as important barriers and facilitators, with receiving useful injury-related feedback identified as a further facilitator. Conclusions: Overtraining, training-related and individual-related risk factors are essential metrics that need to be monitored for RRI risk. RRI apps should include the metrics deemed important by runners, once there is supporting evidence-based research. The difficulty and/or ease of use of a device, and receiving useful feedback will influence the adoption of injury focused running technologies. There is a clear willingness from recreational runners to adopt injury focused wearable technologies whilst running.
2. Introduction

Wearable technologies, including mobile phones and smart watches, are devices that can be worn or carried by an individual that can include measurement capabilities used to assess and monitor physical activity, movement, health and well-being (1) (2). Advancements in wearable technologies have made it possible for continuous, accurate and objective monitoring of individuals (3). The use of wearable technologies has become increasingly popular within the running community, with approximately 90% of runners using some form of technology to monitor their training (4). Primarily, wearable devices in this market function to collect data and provide summary reports to assist running performance (5,6,7). This is achieved by the tracking of personal running data (8,9), planning of running goals (10), and/or by increasing a runner’s motivation to train (9,11). However, despite the high incidence of running related injuries (RRIs) (12,13), and the popular use of wearable devices to manage other illnesses and injuries (14,15,16), there is a dearth of research investigating the perceived usefulness of injury focused wearable technologies in runners.

Understanding the underlying factors that drive adoption of wearable technologies is a crucial step in ensuring their successful uptake (17). One such factor is the perceived usefulness of a device to the user (18,19). Adapting the six-stage Translating Research into Injury Prevention Practice (TRIPP) framework (20) to the current context, it is clear that understanding and including the factors contributing to RRI’s, while understanding the perceptions and behaviours of potential users in their own sporting context is pivotal in developing a useful device. Therefore, identifying the metrics perceived as important to recreational runners for monitoring injury risk is a crucial step in ensuring successful injury focused technology adoption.

Identifying runners’ perceived barriers and facilitators to the use of wearable technologies is also deemed essential for technology adoption (21); however, the majority of this research
has to date focused on performance insights as motivators to the use of wearable technologies (21,22,23,24,25) rather than on injury. Only one study (Clermont et al., 2019) appears to have examined the barriers and facilitators to the use of running technologies for reducing RRI. This topic clearly requires further investigation.

Previous research investigating runners’ usage of wearable technologies in relation to performance and injury has predominantly used questionnaires and surveys as the methodological approach (8,21,22,23,24). However, to further explore runners’ perceptions of such topics, a qualitative study would provide more insightful and detailed understanding (26,27). Therefore, the aim of this study was to conduct a qualitative examination of the factors affecting the adoption of injury focused technologies in recreational runners, by (i) identifying the metrics perceived as important for monitoring RRI risk, and (ii) identifying the perceived barriers and facilitators to the use of injury focused technologies.

3. Materials & Methods

3.1. Design

Constructivist grounded theory was deemed an appropriate methodological choice for the current study, as a theory addressing the factors affecting the adoption of injury focused running technologies in recreational runners is yet to be identified. Grounded theory (GT) consists of strategies for developing theories through the analysis of qualitative data (28,29). It allows for the investigation of how and why people, communities or organisations experience and respond to events, challenges and problematic situations (30), and elicits rich, narrative accounts of this experience in order to generate an inductive theory (31). Constructivist grounded theory (CGT) is similar to GT in the sense that it involves constant comparative analysis and saturation; however, CGT assumes that rather than theories being discovered as in GT, we construct theories through past and present experiences and
interactions with people, perspectives and practices (31). Constructivist grounded theory is an iterative process that follows repeated cycles of data collection and analysis to allow for continuous improvement, expansion and clarity of the emerging theory (32). There was a need to identify both the perceived barriers and facilitators to adoption as certain factors may act in a bi-directional manner, serving as both barriers and facilitators (33,34). Ethical approval was granted by the local university’s Ethics Committee. A semi-structured focus group schedule was developed by the researchers, and followed an iterative process throughout the pilot study phase (Supplementary Material A).

3.2. Participants

A purposive sample of 27 adult recreational runners were recruited from local running clubs via email. The sample included 13 male and 14 female recreational runners, aged 35.0 years ± 10.7 years. A recreational runner was defined as someone running at least once per week, for at least 6 months (35).

3.3. Pilot study

To educate and train the primary author in efficient focus group moderation techniques, and in the use of an analytical framework for analysing qualitative data for the specific purposes of this study, a pilot study was conducted. Four male and five female recreational runners were recruited as a convenience sample, aged 25.1 years ± 2.2 years. Four separate focus groups were facilitated by the primary author, each taking place via remote video conferencing software (Zoom, version 5.7.0) and lasted 39.1 minutes ± 5.4 minutes.

3.4. Main Study Procedures
Prior to taking part in a focus group, participants were required to provide informed consent and complete a short pre-focus group questionnaire. The questionnaire was used to gather demographic information, as well as details on participants’ running habits, their usage of running technologies and their experience with RRI’s (Supplementary Material B). A RRI was defined as any musculoskeletal pain in the lower back/lower limbs that causes a restriction to or stoppage of running for at least 7 days or 3 consecutive scheduled sessions, or that causes a runner to consult a healthcare professional (36). On completion of the questionnaire, participants were contacted via email to arrange a suitable focus group time. To encourage as much interaction as possible, the focus groups were stratified to include participants of similar age, with similar running backgrounds.

Nine separate focus groups took place with 27 recreational runners (range= 2-4, median = 3 participants per group). Focus groups were moderated by the primary author and lasted 45.1 minutes ± 11.4 minutes. Each focus group began with a brief introduction to the study and the aims of the focus group were outlined (Supplementary Material A). Participants were encouraged to speak freely and given the opportunity to ask questions throughout. Group discussion began by each participant describing the types of running technologies they use. Following this, a discussion regarding the barriers and facilitators to technology use progressed, with a specific emphasis placed on injury focused running technologies. Conversation then moved to discuss participants’ perceived risk factors for RRI’s, and the metrics they deemed important to monitor for RRI risk. On the closing of the focus groups, participants were given another opportunity to ask questions and to provide further comments or statements that they felt may be important. A reflective and iterative approach was taken with regard to focus group moderation and the content of the focus group schedule. Following each focus group, its success and the success of each discussion topic were
considered by the research team, with any potential changes being discussed and agreed upon, prior to execution.

3.5. Data Analysis

Frequencies and descriptive statistics were generated from the questionnaire responses using SPSS (version 27.0; IBM Corporation). Focus groups were audio and video recorded using built in software available in Zoom (version 5.7.0), and transcribed verbatim by the primary author. Participants were allocated an identification number during transcription to maintain anonymity and protect their confidentiality, with responses coded by participant gender (e.g., male = M; female = F). The transcribed focus groups were coded by the primary author using NVivo (QSR International). Constant comparative analysis was conducted, initiated after transcription of the first focus group, and continued throughout the data collection phase (37), and theoretical sampling continued until data saturation was reached (38). A coding framework was developed and updated by the primary author throughout the data collection phase, and was used in the coding of the transcribed focus groups (Supplementary Material C). Braun and Clarke’s (2006) methodology for thematic analysis was utilised during data analysis, which involved six key features: familiarisation with the data, generating initial codes, searching for themes, reviewing themes, defining and naming themes, and producing the report (39). From the identified codes, core categories were identified, with subsequent themes and sub-themes emerging. The Standards for Reporting Qualitative Research (40) (Supplementary Material D) were adhered to.

3.6. Trustworthiness

Multiple methods of trustworthiness were undertaken to ensure the rigorous and accurate presentation of findings. A critical friend approach was used to enhance the
analytical process (41), and to establish reliability and ensure rigour of results (42). The goal of critical friends is not to reach consensus or agree on all aspects of the findings, but rather ‘encourage reflexivity by challenging each other’s construction of knowledge’ (42,43). The approach also gives the opportunity for researchers to explore multiple interpretations of the data, reducing the effect of researcher bias (42,44). After all transcripts had been coded by the primary author, a percentage of transcripts were coded by an external researcher with experience in qualitative research (SOK). Taking a critical friend approach, researchers (AL and SOK) met on multiple occasions to conduct a coding consistency check on the coded transcripts. Codes, sub-themes, themes and core categories were critically reviewed and discussed. A high level of agreement was reached, while any disagreements during the analysis were discussed, with varying interpretations presented. This stage of analysis led to the development of some additional codes, as well as the merging of existing codes. Following this, trustworthiness was further enhanced through investigator triangulation, in which the primary author met with two other members of the research team (KM and EW). Similar approaches were taken to review and discuss the coded data, with any disagreements discussed and appropriate changes made.

Additionally, in the presentation of the representative and accurate findings, multiple examples and direct quotations from transcripts are provided (Supplementary Material E), indicating a broad and diverse contribution from participants during focus groups, reducing the chance of individual bias (45). Included quotations were agreed upon by researchers.

4. Results

Nine focus groups were conducted with 13 (48.1%) male and 14 (51.9%) female recreational runners. Participants were aged 35.0 years ± 10.7 years (range: 23-53 years). Running and injury histories are detailed in Table 1. All participants were currently using, or
had done so in the past, at least one form of wearable technology to monitor their running, with GPS watches and mobile phones being the most popular devices [used by 55.6% (n=15) and 48.1% (n=13) of participants respectively].

Table 1: Participant running and injury history

<table>
<thead>
<tr>
<th>Running history</th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is running your main sport? (n=27)</td>
<td>63% (n=17)</td>
<td>33.3% (n=9)</td>
<td>3.7% (n=1)</td>
</tr>
<tr>
<td>How long have you been running? (n=27)</td>
<td>Less than 3 years</td>
<td>4-5 years</td>
<td>More than 5 years</td>
</tr>
<tr>
<td></td>
<td>14.8% (n=4)</td>
<td>3.7% (n=1)</td>
<td>81.5% (n=22)</td>
</tr>
<tr>
<td>How often do you run? (n=27)</td>
<td>Once a week or less</td>
<td>2-3 times a week</td>
<td>4 times a week or more</td>
</tr>
<tr>
<td></td>
<td>7.4% (n=2)</td>
<td>44.4% (n=12)</td>
<td>48.1% (n=13)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Injury history</th>
<th>Yes</th>
<th>No</th>
<th>Unsure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you ever had a RRI? (n=27)</td>
<td>81.5% (n=22)</td>
<td>18.5% (n=5)</td>
<td></td>
</tr>
<tr>
<td>Thinking of your worst injury, how much training did you miss? (n=21)</td>
<td>Less than 10 days</td>
<td>2-3 weeks</td>
<td>4 weeks or more</td>
</tr>
<tr>
<td></td>
<td>23.8% (n=5)</td>
<td>23.8% (n=5)</td>
<td>52.4% (n=11)</td>
</tr>
<tr>
<td>How many RRI’s have you had in the last year? (n=21)</td>
<td>None</td>
<td>1 RRI</td>
<td>2 RRI’s</td>
</tr>
<tr>
<td></td>
<td>23.8% (n=5)</td>
<td>33.3% (n=7)</td>
<td>42.9% (n=9)</td>
</tr>
<tr>
<td>How important is injury prevention to you? (n=22)</td>
<td>Moderately important</td>
<td>Very important</td>
<td>Extremely important</td>
</tr>
<tr>
<td></td>
<td>18.2% (n=4)</td>
<td>27.3% (n=6)</td>
<td>54.5% (n=12)</td>
</tr>
</tbody>
</table>

n = number of participants, RRI = running-related injury

4.1. Metrics perceived as important for monitoring RRI risk

Three core categories of risk factors were identified as important for monitoring with injury focused running technologies: overtraining, training-related risk factors, and individual-related risk factors. Within each core category, various themes and sub-themes emerged (Table 2).
<table>
<thead>
<tr>
<th>Core categories</th>
<th>Themes</th>
<th>Sub-themes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(number of participants & focus groups to discuss theme)</td>
<td>(number of participants & focus groups to discuss sub-theme)</td>
</tr>
<tr>
<td>Overtraining</td>
<td>Excessive loading</td>
<td>High accumulative load (12 participants in 7 focus groups)</td>
</tr>
<tr>
<td></td>
<td>(17* participants in 9 focus groups)</td>
<td>High intensity training (11 participants in 8 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In-session fatigue (5 participants in 5 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Less running experience (2 participants in 2 focus groups)</td>
</tr>
<tr>
<td></td>
<td>Inadequate recovery</td>
<td>Fatigue & poor sleep (6 participants in 5 focus groups)</td>
</tr>
<tr>
<td></td>
<td>(13 participants in 7 focus groups)</td>
<td>Poor nutrition (6 participants in 4 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insufficient rest days (5 participants in 4 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High stress (1 participant in 1 focus group)</td>
</tr>
<tr>
<td>Training-related risk factors</td>
<td>Training activities</td>
<td>Concurrent training activities (12 participants in 6 focus groups)</td>
</tr>
<tr>
<td></td>
<td>(13 participants in 6 focus groups)</td>
<td>Previous training activities (2 participants in 2 focus groups)</td>
</tr>
<tr>
<td></td>
<td>Running technique</td>
<td>Foot strike technique (5 participants in 4 focus groups)</td>
</tr>
<tr>
<td></td>
<td>(10 participants in 5 focus groups)</td>
<td>Bilateral asymmetry (4 participants in 3 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cadence (3 participants in 3 focus groups)</td>
</tr>
<tr>
<td></td>
<td>Running environment</td>
<td>Terrain (8 participants in 7 focus groups)</td>
</tr>
<tr>
<td></td>
<td>(9 participants in 7 focus groups)</td>
<td>Weather (1 participant in 1 focus group)</td>
</tr>
<tr>
<td>Individual-related risk factors</td>
<td>Footwear (8 participants in 5 focus groups)</td>
<td>Type of footwear (6 participants in 3 focus groups)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Injury status & history (11 participants in 5 focus groups)</td>
<td>Infrequent changing of footwear (4 participants in 4 focus groups)</td>
</tr>
<tr>
<td></td>
<td>Population characteristics (5 participants in 3 focus groups)</td>
<td>Ongoing niggle (7 participants in 6 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Previous injury (6 participants in 3 focus groups)</td>
</tr>
<tr>
<td></td>
<td>Psychological parameters (4 participants in 4 focus group)</td>
<td>Age (4 participants in 3 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Body mass index (3 participants in 2 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sub-optimal biomechanics (1 participant in 1 focus group)</td>
</tr>
<tr>
<td></td>
<td>Type of runner (3 participants in 2 focus group)</td>
<td>Perception of run (2 participants in 2 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mood (2 participants in 1 focus groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychological readiness to run (1 participant in 1 focus group)</td>
</tr>
<tr>
<td></td>
<td>Preferred distance/event (3 participants in 2 focus group)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicates out of 27 participants. * indicates out of 9 focus groups.
4.1.1. Overtraining

Excessive loading and inadequate recovery were perceived to contribute to overtraining, and increase an individual’s risk for sustaining a RRI. Participants suggested that these factors be monitored by injury focused technologies. Overall, the most common theme emerging from the discussion of risk factors for RRI’s was excessive loading. Runners perceived high accumulative loads, high intensity training, in-session fatigue, and lower runner experience to contribute to excessive loading, increasing the risk for sustaining a RRI (Table 2). One participant, for example, perceived the type and intensity of training to impact the risk of injury; F6 - “The type of running you're doing. If you're doing interval training, long distance, sprints, or the volume of training maybe... the impact of that on your injuries”.

Another participant (M2) felt that these factors should be monitored in order to make sure “the body is able to accumulate those miles” and how injury focused technologies could function “to make sure that you’re not going into a red zone” in terms of loading. Some participants also discussed how in-session fatigue can lead to inappropriate running technique, increasing the risk of sustaining an injury - M7- “the more tired I get and if I try and stick to a particular pace, the whole form goes out, and I would think that would lead to more injuries in that regard”. Running experience was also discussed with some participants suggesting that less experienced runners were more at risk for sustaining an injury - M8 - “if you're new to running, you’re far more injury prone... than if you’ve been running for several years”. Inadequate recovery was commonly discussed as a perceived risk factor for developing RRI’s (Table 2). With the first sub-theme of fatigue and poor sleep, one participant (F8) described sleep as having a “huge impact” on injury risk and if they “don't get enough sleep... your muscles just don’t repair as quick, they don't recover as quick.

Insufficient rest days taken was also perceived to increase injury risk. One participant (F3) described how many runners may be “over running” and “probably are injured because
they're not actually taking rest days”, while also describing the importance of monitoring this
to ensure “they’re not over-doing it”. It was also perceived by some that inadequate nutrition
may increase the risk of a RRI, with one participant (F11) suggesting that “so many people
don’t fuel themselves properly” and “so many runners don’t eat enough”, which was
perceived as a “huge factor” for injury risk.

4.1.2. Training-related risk factors

Training-related risk factors for RRI onset included: training activities, running
technique, running environment, and footwear (Table 2). Other training activities that runners
may be participating in, or have done in the past, were commonly discussed. It was perceived
that certain activities may either reduce or increase the likelihood of sustaining a RRI, and
that it is “very important to take into account what other sports they’re doing” (M2). It was
suggested that current and historic participation in various sports (e.g., Gaelic football, rugby,
golf, track events) “predisposed” (M2) runners to injury. Runners’ who had not participated
in previous sports were perceived to be less at risk for injury as they haven’t “put their body
through… [a] hard slog in another sport” (M9). Participation in activities such as yoga,
strength training and swimming were perceived to reduce the likelihood of injury - M3 -
“Certainly with running, I’ve benefited by improving my stretching, by doing yoga, and I
think that makes me less injury prone”. These factors were perceived as important to monitor
using injury focused technologies. With running technique, runners suggested that foot strike
technique, bilateral asymmetries, and cadence may be factors that influence the onset of
RRI’s. Although unclear as to how these factors may influence RRI risk, participants
perceived that they were important metrics to monitor. The terrain on which people ran was
commonly perceived as a potential risk factor for injury, with one participant (M2) describing
this metric as “really important to take into consideration”. Although some participants
suggested that running on harder terrains (such as concrete) increased the risk of sustaining a
RRI, there was generally a lack of consensus between participants as to which surfaces posed
the greatest risk. However, this theme was frequently identified as an important metric to
monitor. Runners also perceived their type of footwear, and how the infrequent changing of
footwear may be important factors in relation to RRI risk. One participant (M7) described
their interest in understanding “how more injury prone you are, dependent on both the age of
the runners you use, and the different brands of runner you use”. Some participants
described how they would regularly change their footwear to reduce the risk of injury, and
how prolonged use of a single pair of shoes can increase the risk of injury; F11 - “I feel like
so many people don't change their runners often enough and I really think that's a huge
factor in injuries”.

4.1.3. Individual-related risk factors

The final core category of risk factors surrounded individual-related risk factors
(Table 2). Participants discussed the importance of tracking the ongoing injuries and/or
“niggles” (F2) that they may have, and how monitoring these may give further insight into
the development or prevention of a more serious RRI. One participant (M7) queried whether
“niggles” were “precursors to an injury” or if they were “just the little aches and pains that
we all get?”. Some participants also described the impact that previous injuries may have on
the risk for further injuries, suggesting they should be monitored by injury focused
technologies. One participant (M6) described the relationship between previous injuries and
their current running, stating; “the injuries I have, they're all... rugby related and contact
related, so I find the issues I have running are probably tied back to the issues that I’ve had
playing rugby”. In relation to population characteristics, participants generally perceived that
older age increased the risk of injury and how “when you're getting older, you’re probably
going to get more injury prone” (M8). A greater body mass index (BMI) was also perceived
by some to be a risk factor for injury, as “the more you weigh... the higher your impact
forces, and I guess that that will be a straight impact... on the risk factors” (M8). A runner’s
perception of a run was also perceived to be important for monitoring injury risk, as one
participant (F14) described; “how hard did the run feel... were you tired before starting, tired
during, tired after”. Mood and “feelings” (M10) were also discussed by some participants,
with the perception that they “play a part in your training” (M10) and should be monitored.
As the final sub-theme, it was perceived that the “type of runner” (M8) and differences in
preferred running distance may influence susceptibility to injury. It was suggested (M4) that
“different types” of runners “would have different injuries”, and that because of their
differences, runners “don't have a lot in common in relation to the type of injuries that
[they're] likely to pick up” (M9).

4.2. Barriers to the use of injury focused running technologies

Difficulty of use and useless feedback received were identified as core categories of
barriers to the use of injury focused running technologies (Table 3).
Table 3: Core categories, themes and sub-themes of perceived barriers to the use of injury focused running technologies.

<table>
<thead>
<tr>
<th>Core categories</th>
<th>Themes</th>
<th>Sub-themes (number of participants & focus groups to discuss sub-theme)</th>
<th>Secondary sub-themes (number of participants & focus groups to discuss secondary sub-theme)</th>
<th>Tertiary sub-themes (number of participants & focus groups to discuss tertiary sub-theme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty of use</td>
<td>Application design</td>
<td>User input requirement (16* participants in 7* focus groups)</td>
<td>Time consuming (>5 minutes) (13 participants in 6 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High quantity of questions (>4 questions) (6 participants in 4 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Repetitive/Irrelevant data required (6 participants in 3 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High text input requirement (2 participants in 1 focus group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data use (2 participants in 1 focus group)</td>
<td></td>
<td>Ambiguity of data use (2 participants in 1 focus group)</td>
<td></td>
</tr>
<tr>
<td>Device design</td>
<td>Attachment method</td>
<td>Attachment method (12 participants in 6 focus groups)</td>
<td>Uncomfortable/Irritating (8 participants in 5 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Time consuming set up (3 participants in 3 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adapting/Additional clothing required (2 participants 2 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Belt mechanism (5 participants in 3 focus groups)</td>
<td>Irritating/Uncomfortable (4 participants in 2 focus groups)</td>
</tr>
<tr>
<td>Location</td>
<td>Lower back/Waist (8 participants in 3 focus groups)</td>
<td>Not secure (1 participant in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncomfortable/Irritating (4 participants in 3 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not secure (4 participants in 2 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrist/Arm (3 participants in 2 focus groups)</td>
<td>Uncomfortable/Irritating (2 participants in 2 focus groups)</td>
<td>Not secure (1 participant in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obvious/Noticeable to others (3 participants in 2 focus groups)</td>
<td>Inconvenient (1 participant in 1 focus group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot/Shoe (1 participant in 1 focus group)</td>
<td>Uncomfortable/Irritating (1 participant in 1 focus group)</td>
<td>Not secure (1 participant in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest/Torso (1 participant in 1 focus group)</td>
<td>Speculations of device (9 participants in 7 focus groups) Bulky (8 participants in 7 focus groups)</td>
<td>Large (3 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theme</td>
<td>Participants</td>
<td>Focus Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical issues</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequent charging</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bluetooth connection issues</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken device</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unclean device</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irrelevant feedback</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too much feedback</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inaccurate feedback</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback delivery</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicates out of 27 participants. * indicates out of 9 focus groups.
4.2.1. Application design

Participants discussed the potential of the application design acting as a barrier to injury focused technology use, with a high demand on the user serving as a barrier. A large time requirement was identified as a potential barrier to technology use, with M5 suggesting: “realistically if it'll be any more than a couple minutes and people get bored putting in the data”. Participants discussed their tolerance and willingness to engage with such an application, and it was identified that five minutes was deemed the maximum amount of time runners were willing to spend using an application - M6 - “five minutes probably would be my max”. A high quantity of questions was described as “onerous” (F8) therefore identifying a further potential barrier. Questions deemed as irrelevant and repetitive were also described as “tedious” by one participant (M11) and suggest a further potential barrier.

4.2.2. Device design

The second theme of barriers to the use of injury focused wearable technologies was device design. Sub-themes of barriers included: attachment method, location, specifications of the device, and technical issues (Table 3). Personal preference varied in relation to unfavourable device attachment methods. The general consensus suggested that attachment methods which would “take too long to get in place” (F11), required the runner to wear “some contraption” (M8), may “cause any discomfort or blistering” (M10), or one that was loose-fitting, “bouncing around” (F6) or “going to fall off” (F6), were potential barriers to use. Differences in the preferred locations of a wearable device were evident, with some describing the lower back as an undesirable location as it was perceived as uncomfortable or that it may “rub against your skin and get a bit sore” (M8). Others suggested that wrist or arm-based devices would be unsuitable as they “get annoying after a while” (M2). Variance in the opinion made it difficult to determine any specific location as a barrier to use; however,
the general consensus was that locations perceived as uncomfortable, one’s which resulted in excessive movement of the device, or were “very obvious” (F11) to others would result in reduced compliance, and therefore act as barriers to usage. It was frequently suggested that a “bulky” (F9), “clunky” (M13) or “heavy” (F6) device would act as a barrier to technology use, as runners perceived it may “impact their running” (F9) and may “annoy [them] during the run” (M10). Finally, participants reported that a device with a short battery life which would require frequent charging may discourage use as it can “put me off if the battery is low on it” (F3).

4.2.3. Useless feedback received

It was also mentioned by some participants that irrelevant or inaccurate data, or what they perceived to be “too much” feedback would potentially discourage their use of injury focused technologies. Some participants discussed their perception that useless data wasn’t “going to help [them]” (F1) in their training or recovery from injury.

4.3. Facilitators to the use of injury focused running technologies

Finally, ease of use and receiving useful feedback were identified as core categories of facilitators to the use of injury focused running technologies (Table 4).
Table 4: Core categories, themes and sub-themes of perceived facilitators to the use of injury focused running technologies.

<table>
<thead>
<tr>
<th>Core categories</th>
<th>Themes (number of participants & focus groups to discuss sub-theme)</th>
<th>Sub-themes (number of participants & focus groups to discuss sub-theme)</th>
<th>Secondary sub-themes (number of participants & focus groups to discuss secondary sub-theme)</th>
<th>Tertiary sub-themes (number of participants & focus groups to discuss tertiary sub-theme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td>Application design (25* participants in 9* focus groups)</td>
<td>User-friendly system (22 participants in 9 focus groups)</td>
<td>Quick input session (17 participants in 9 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multiple choice questions (7 participants in 5 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Synced with other applications/devices (7 participants in 5 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Notification reminders (6 participants in 4 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Automatic downloading of data from device (5 participants in 3 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current usage habits (13 participants in 8 focus groups)</td>
<td>Fits with current usage habits (13 participants in 8 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device design</td>
<td>Location (13 participants in 8 focus groups)</td>
<td>Lower back/Waist (8 participants in 6 focus groups)</td>
<td>Conventional (7 participants in 5 focus groups)</td>
<td></td>
</tr>
<tr>
<td>(20 participants in 8 focus groups)</td>
<td></td>
<td></td>
<td>Discrete (2 participants in 2 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foot/Shoe (8 participants in 5 focus groups)</td>
<td></td>
<td>Conventional (8 participants in 5 focus groups)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wrist/Arm (5 participants in 5 focus groups)</td>
<td></td>
<td>Stable (1 participant in 1 focus group)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chest/Torso (5 participants in 4 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ankle (2 participants in 2 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specifications of device</td>
<td>Small (5 participants in 4 focus groups)</td>
<td>Lightweight (5 participants in 4 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good technical features</td>
<td>Infrequent charging of device (3 participants in 2 focus groups)</td>
<td>Strong Bluetooth connection (1 participants in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiving useful feedback</td>
<td>Reduce injury risk (11 participants in 7 focus groups)</td>
<td>Monitor rehabilitation from injury (10 participants in 5 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachment method</td>
<td>Discrete (non-specific attachment method) (7 participants in 5 focus groups)</td>
<td>Comfortable (non-specific attachment method) (6 participants in 5 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convenient (non-specific attachment method) (6 participants in 5 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clip mechanism (3 participants in 2 focus groups)</td>
<td>Convenient (3 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belt mechanism (5 participants in 4 focus groups)</td>
<td>Convenient (3 participants in 3 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stable (2 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attachment method</td>
<td>Discrete (2 participants in 2 focus groups)</td>
<td>Thigh (1 participant in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1 participant in 1 focus group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete (non-specific attachment method)</td>
<td>(7 participants in 5 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comfortable (non-specific attachment method)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6 participants in 5 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convenient (non-specific attachment method)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(6 participants in 5 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Belt mechanism (5 participants in 4 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Convenient (3 participants in 2 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small (5 participants in 4 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lightweight (5 participants in 4 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Infrequent charging of device (3 participants in 2 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strong Bluetooth connection (1 participants in 1 focus group)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce injury risk (11 participants in 7 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitor rehabilitation from injury (10 participants in 5 focus groups)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enhanced data (8 participants in 4 focus groups)</td>
<td>Performance insights (4 participants in 4 focus groups)</td>
<td>Performance progressions (2 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optimizing performance (2 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional data (3 participants in 3 focus groups)</td>
<td>Cadence/Stride information (3 participants in 3 focus groups)</td>
<td>Technique (2 participants in 2 focus groups)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power (1 participant in 1 focus group)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedback delivery (2 participants in 1 focus group)</td>
<td>WhatsApp/Text (2 participants in 1 focus group)</td>
<td>Choice of feedback delivery (2 participants in 1 focus group)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Understand injury mechanisms (7 participants in 6 focus groups)

Advice/Recommendations (6 participants in 3 focus groups)

Extend running career (3 participants in 1 focus group)

Comparison to other users (2 participants in 2 focus groups)

Performance progressions (2 participants in 2 focus groups)

Optimizing performance (2 participants in 2 focus groups)

Cadence/Stride information (3 participants in 3 focus groups)

Technique (2 participants in 2 focus groups)

Power (1 participant in 1 focus group)

Comparison to other users (1 participant in 1 focus group)

Monitor recovery from training (1 participant in 1 focus group)

WhatsApp/Text (2 participants in 1 focus group)

Choice of feedback delivery (2 participants in 1 focus group)

Note: Themes and sub-themes are presented in order of those most frequently discussed. * indicated out of 27 participants. # indicates out of 9 focus groups.
4.3.1. Ease of use

Perceived ease of use was the first core category identified, with application design and device design emerging as themes (Table 4). In relation to the application design, participants suggested a “user-friendly system” (M2) that fitted with their current usage habits would facilitate use. In particular, technologies with quick and easy input sessions, multiple choice and visual-based questions would encourage use. Participants suggested that a time requirement of 30 seconds to 2 minutes would be optimal and facilitate their use. The ability to sync a runner’s current applications and technologies with a new device was suggested by many as a facilitator. This was perceived to reduce the burden placed on users, while optimizing the reception of new and useful data; M3 - “especially if the information is already there, maybe you can get it from Strava and tie it in”. Participants suggested that being prompted by their smartphone would enhance engagement and facilitate their use of an application; F9 - “a reminder... a notification coming up is really handy, because it's easy to forget”. It was suggested (M5) that data collected by a wearable device that “updates automatically” would be “great” as reducing user demand would increase compliance; M5 - “the less that data we have to put in, the better”. It was also commonly suggested that a system and device that fitted into participants’ current technology usage habits would be easily adoptable. One runner described how “at the end of the training session or running session, I would automatically go to my smartphone, look at the Garmin app” (F8).

With regard to device design, the location, attachment method, and specifications of the device were sub-themes of facilitators identified (Table 4). Although some locations were deemed more preferable than others, there was a lack of agreement between participants on the most preferable location. Participants suggested that once the location was comfortable, convenient and allowed for the device to be stable, this would facilitate their use. One
participant (F11) described their perception of the lower back as a potential location and felt that “your shorts would hold it in place” and “it wouldn’t be moving around too much”.

Another other (M9) participant described the convenience of the foot/shoe as a potential location because “if it's on my runners... I'm much more likely to just leave it there... rather than forget about it”. Similar to that identified as a barrier, participants felt the attachment method of a device may act as a facilitator to device use. Personal preference varied amongst participants, however the overwhelming consensus suggests that a stable, comfortable, discrete and convenient attachment method would facilitate device use. Participants suggested that “if it fits... properly” (M6), and “can be easily worn and it's not... impacting you in any way” (F8), and “as long as it's not a cumbersome thing that's interfering with the running” (M1), they would have “no problem wearing it” (M1). Participants discussed the favourability of a “lightweight” (M8) and “unobtrusive” (M8) device, where “the smaller [it was] the better” (M10), and how this would facilitate use. Finally, it was suggested that a device with a “good battery life” (F1) would enhance user compliance and facilitate device use.

4.3.2. Receiving useful feedback

Participants discussed their willingness to engage with a device should it reduce their risk of sustaining an injury and how potentially beneficial “a device that you can put in your back pocket that will measure when you're putting your body under a level of stress that is likely to cause an injury” (M1) could be. Others discussed the commonality of injury and how “everyone picks up a few niggles a year” (F11), or how there is “always that chance that you're going to get injured” (F1), and their interest in using such a device to reduce this risk; “I think we've all had our fair share of niggles and injuries that you'd rather not have” (F1). Others discussed the benefits of a device that could monitor their rehabilitation from
injury and potentially provide them with data to explain the mechanics of injury; “I'm sure often there's obvious reasons that we don't even notice, but sure by having an app you'd be like ‘Oh well, I did this, and I did this and I shouldn't have done this’” (F11). Others described their interest in a device that could provide recommendations for “preventing the injury developing further” (F5), or receiving advice on “whatever you should do” (F5) to best manage injuries. One final facilitator to encourage use of injury focused technologies was enhanced data that runners could receive. Some participants described the desire for additional data that may give them “an edge” (F2) and that could potentially “improve [them] as a runner” (M2). Participants suggested that receiving data related to performance progressions would facilitate their use, while some expressed their interest in receiving “the extra thing” (F1) that they may not be getting with their current devices. Examples included information regarding cadence, stride length, or the “biomechanics” (M13) of running technique, while others were interested in “reaffirming some data that I'm collecting already” (M13).

5. Discussion

The main objectives of the current study were to provide a qualitative examination of recreational runners’ opinions on: (i) the important metrics to monitor for RRI risk, and (ii) the perceived barriers and facilitators to the use of injury focused running technologies. Overtraining, training-related, and individual-related risk factors are essential metrics that need to be monitored for RRI risk. The most common metrics deemed important to monitor were excessive loading, followed by inadequate recovery, running environment, and training activities. Injury status and history, running technique, footwear, and population characteristics were less commonly discussed. Difficulty of use of a device may act as a barrier to the use of injury focused running technologies, while ease of use and receiving
useful feedback will act as facilitators. Common themes of barriers and facilitators were
identified, implying that many factors can act as barriers as well as facilitators (33). These are
important findings as the Technology Acceptance Model (TAM) (18) and the Unified Theory
of Acceptance and Use of Technology (UTAUT) (19) indicate that the perceived ease of use
and perceived usefulness of a device will influence usage behaviour and technology adoption
(46).

5.1. Metrics important for monitoring RRI risk

The broad range metrics perceived as important for monitoring RRI risk highlights
participants’ awareness of the multifactorial aetiology associated with RRI’s, as shown by
multiple systematic reviews (47,48,49,50). Overtraining, consisting of excessive loading and
inadequate recovery, was perceived as a leading risk factor for the development of RRI’s in
the current study, similar to the perceptions of recreational runners in previous studies
(27,47,52). Also similar to the findings of Clermont and colleagues (8), the current
participants identified longer distances and higher intensity sessions to be important metrics
to monitor for excessive load, and subsequent injury risk. Inadequate recovery, which
included the sub-themes of fatigue and poor sleep, insufficient rest days, and poor nutrition
were also perceived to contribute to overtraining. Similar perceptions of the importance of
sleep and food intake for preventing injury have previously been reported by recreational
runners (8). Our findings in relation to overtraining also map to the biomechanical model of
injury, whereby loading of tissues beyond their adaptive capability, combined with
insufficient recovery, results in injury (51,53).

Participants also identified the importance of monitoring certain training-related
metrics for risk of RRI’s. It was perceived that terrain, concurrent and previous training
activities, running technique and footwear should be included in injury focused technologies.

Terrain received significant attention as an important risk factor. While some perceived
harder terrains to increase the risk of injury, there was a lack of consensus as to which type of
terrain poses greater risks. Harder terrains with less deformation have been hypothesized to
result in higher impact forces, increasing the risk of injury (54,55). However, while some
individual studies have found harder surfaces to produce higher loading (54,56,57), other
studies have not (55,58). Previous systematic reviews (50,59) have not found terrain to be a
significant risk factor for injury. Our participants perceived that participation in other sports
(such as rugby, Gaelic football, golf and track events), both concurrently and in the past,
increased a runner’s risk of RRI’s. It has been suggested that additional participation in other
sports adds to the cumulative stress placed on the body (60); however, a recent systematic
review identified high quality evidence to indicate that previous sport activity is not
associated with increased RRI risk (50). Furthermore, a prospective study found that
increased weekly volume of other sport participation (i.e., concurrent training) reduced the
risk of RRI’s (61). Running technique was also perceived as important to monitor by
participants. They suggested foot strike technique, cadence, and bilateral asymmetry are
important, although they did not describe how these factors influenced RRI risk. In a similar
study, certain aspects of running technique (such as joint motion, ground contact time, and
centre of mass motion) were actually the lowest ranked metrics by participants amongst a list
of factors presented to them by the authors as potentially preventing RRI’s (8). Systematic
reviews and meta-analyses have been unable to identify strong justifications for the role of
specific biomechanical risk factors in the onset of RRI’s (62,63). Regarding foot strike
technique, while it has been suggested to be causative of RRI’s, based on the increased load
that some techniques produce [especially rear-foot strike (64,65)], a systematic review
concluded that there is very low evidence to suggest a relationship with RRI’s in general
In relation to increased cadence, while a systematic review found that increasing cadence reduces the magnitude of key biomechanical factors (such as joint kinematics and kinetics, and whole body loading) associated with RRI’s, a recent systematic review and meta-analysis concluded that average cadence does not differ between injured and uninjured runners. Regarding bilateral asymmetry, it has been suggested as a risk factor for RRI’s based on the premise that because one leg is subjected to more loading, it is predisposed to injury. Again the literature is contrasting, with some studies finding significant limb asymmetries in injured runners both retrospectively and prospectively compared to uninjured runners, while some studies report no differences in asymmetry. No systematic review drawing an overall conclusion has been published to date. Footwear was the final sub-theme of training-related metrics identified, with perceptions that older shoe age increased injury risk. This perception may be associated with the theory that shoe cushioning decreases loading on the body, and a decrease in cushioning capacity with extended use increases the risk of RRI’s. However, a recent systematic review concluded that no evidence-based recommendations could be made for shoe age and preventing RRI’s.

The final core category identified as important for monitoring RRI risk was individual-related factors, including injury status and history, and population characteristics. As a sub-theme of injury status and history, previous injury was only discussed in one third of focus groups, despite being found to be the strongest risk factor for further RRI’s in a recent systematic review. A failure of runners to acknowledge the importance of previous injury has also been reported. While this may reflect a sense of being ‘unable to change’ the occurrence of having a previous injury, it clearly should be taken into account when monitoring for the purpose of preventing re-injury. A second sub-theme of injury status and history was ongoing ‘niggles’, which was mentioned more than previous injury.
Different from an injury, in which a runner is forced to reduce or stop training for a period of time (36), our participants’ perception of ‘niggles’ is similar to previous research where runners described ‘complaints’ as ‘small pains’ which they can continue to run with (27).

Population characteristics, including age and BMI, were mentioned by some participants in the current study. It was perceived that older age and greater BMI increased the risk of RRI; however a recent systematic review found conflicting and inconsistent findings for both age and BMI as a risk factor for RRI in short and long-distance runners (50).

It is also important to note that some risk factors for RRI’s were not mentioned in the current study, despite being shown as potential risk factors in the literature. For example, sex was not mentioned but has received some attention in the literature. Although findings are mixed, systematic reviews have reported males (50, 79) and females (80,81) to be at a greater risk for specific RRI’s. Additionally, monitoring ground reaction forces (peak and rate) as an indication of how hard someone strikes the ground was not mentioned by participants in the current study, but previous systematic reviews (82) and meta-analyses (62,75) have investigated the relationship to RRI risk. While there are ‘conflicting’ (62) and ‘inconsistent’ (Ceyssens et al., 2019) results for a relationship with general RRI’s, high peak and rates of loading have been found to contribute to the development of specific RRI’s (74,75).

The findings of the current study both expand on the current evidence and report new findings in relation to the metrics deemed important by runners for monitoring RRI risk when using wearable technologies. Clearly, injury focused technologies should monitor risk factors that are deemed important by runners, where evidence-based research supports their relevance (e.g. excessive loading and inadequate recovery). The question for manufacturers is whether to monitor risk factors that are: (i) not deemed important by runners, but research...
does support their relevance (e.g. previous injury), or/and (ii) that are deemed important by
runners, but current research does not support their relevance (e.g. terrain and foot strike
technique). In the case of the first point, the authors would strongly advocate for including
factors supported by evidence-based research, with efforts made by manufacturers to educate
runners to why the metrics are potentially valuable. This is important in order to improve the
perceived usefulness of devices (18,19,20). In the case of the second point, the inclusion of
these metrics may be useful if they encourage technology adoption and uptake. However, this
must be balanced against overly complicating data capture, especially if monitoring the
metric requires the user to wear additional or more bulky sensors, or requires the input of
additional data, both of which can act as barriers to technology usage (discussed below).
Also, a lack of research evidence (or mixed evidence) to support a relationship between a
metric and an increased risk of a RRI may not indicate that the relationship does not exist, but
may more reflect the limitations of current research. For example, examining the relationship
between running impact loading and injury has been predominantly limited to a one-off
assessment, frequently in a laboratory environment (83). Development of an app which
incorporates a wearable sensor (e.g. an accelerometer) to monitor impact loading and collect
user input data on injury status would allow long-term and ongoing monitoring of runners in
their natural environment. This would provide more precise and ecologically valid data to
better explore whether a relationship does exist.

The above findings are not only relevant to manufacturers, they are also important to
coaches and clinicians in developing intervention strategies for injury prevention, where
uptake and adherence by runners is improved when runner perception and intervention design
are aligned (20). The findings also raise the question about how runners form their opinions
that a metric is a risk factor for RRIs, when the research evidence would suggest it is not a
These perceptions may be due to available information on popular running websites. For example, a low cadence (84), heel-striking (85), and harder terrains such as concrete (86) have been described as risk factors for RRI’s on such websites. Clearly there is a need for the science community to better educate runners.

5.2. Difficulty/Ease of use

The first identified core category of both barriers and facilitators was in relation to the perceived difficulty and ease of use of injury focused technologies.

5.2.1. Device design

Participants indicated that excessive device weight and size are potential barriers to technology use, with unobtrusive and comfortable devices facilitating use. They also suggested that the attachment method of a device could act as a potential barrier and/or facilitator to use. Varied preferences existed, however the overwhelming consensus suggested that if a device caused irritation or was excessively mobile on the body and interfered with running, this would act as a barrier to use; while a device that was stable and discrete would facilitate use. These perceptions align with previous findings for comfort (87,88,89,90,91), obtrusiveness (90,91) and device aesthetics (91) in wearable technologies in general.

One sub-theme which generated a large amount of discussion was where the device was to be worn (wear-location); however no one location dominated as either a barrier or facilitator. For example, some participants perceived the foot or shoe to be a highly suitable location (a facilitator), while others perceived this location to be very unsuitable (a barrier).

To the best of the authors’ knowledge, sensor location has not been previously investigated in
runners. However, it has been suggested that athletes of varying sports (e.g., volleyball) may find device location to be a potential barrier to use (92). Additionally, some participants suggested that they would not like a device to be noticeable or obvious to others as they would not like to be seen to be self-monitoring, a finding that has not previously been identified in recreational runners but has been found in relation to health based monitoring with wearables (93). Therefore a device that could be worn on a variety of locations without negatively impacting on the accuracy of the captured information would be advantageous. Finally, a device with a short battery life was identified as a further barrier to technology use, in line with previous studies on wearable devices (87,90,94).

5.2.2. Application design

Participants reported that their use of a device would be positively influenced by a user-friendly system, with minimal user input requirement, in line with previous findings for sport tracking technologies (92). Our participants suggested that as the time requirement and manual input demand to engage with an application increased, their interest and tolerance to engage would decrease. Additionally, it was found that the format of questions within an application could influence compliance. Questions requiring a high amount of text input would discourage engagement, whereas questions formatted visually, with a quick response-time (e.g., tick-the-box) would encourage engagement. These findings have been reported in previous research for users of a weight-loss application (95), and an athlete self-reported measure (monitoring metrics including training, well-being, injury and nutrition) (96).

It was identified that if the use of an injury focused device could conform with participants’ current usage habits, it would also facilitate use. Similarly, easily integrating new technologies with existing routines, and the absence of a need for behavioural change
has been reported as means of enhancing technology adoption (97,98). Compatibility between participants’ current wearable devices and/or monitoring applications and a new injury focused device was also identified as a facilitator. Our participants perceived that this would reduce the manual input demand on the user, and result in more accurate and useful information; factors which have been found to enhance wearable technology use (25,87,89,96,98). This is important as minimising burden and maximising interest in users leads to improved initial and sustained device compliance (96).

5.3. Receiving useful feedback

One final core category of facilitators identified was receiving useful feedback. Receiving relevant, useful and accurate data regarding RRI risk was identified as a facilitator, with participants describing their desire for feedback that could reduce their injury risk, monitor their rehabilitation from injury, and help them understand the mechanisms of injury. It is well understood that maintaining user interest (94,99) and receiving useful and accurate data (89,98) can facilitate the use of wearable technologies; while the collection and reporting of inaccurate data and useless information have been suggested as barriers to use of physical activity tracking technologies (25,87,88,89,90,92). In line with the TRIPP model for enhancing injury prevention practices (20), and considering the TAM (18) and UTAUT (19) models for predicting technology usage, runners are more likely to use technologies if they provide runners with an understanding of the mechanisms of injury, and prove to be useful in preventing injury. Additionally, some participants suggested that receiving enhanced data, specifically related to running performance, beyond what they are currently collecting would facilitate their use of injury focused technologies. In the interest of developing a useful injury focused device, these findings are particularly beneficial as they may help to improve perceived usefulness, and ultimately adoption and usage behaviour.
6. Strengths and Limitations

The current study provides a qualitative informative insight into the factors affecting the adoption of injury focused technologies in recreational runners. A representative sample was included, gathering the perceptions of runners of various ages and running backgrounds. Constant comparative analysis throughout the data collection phase, prior to data saturation, highlights another strength. Furthermore, during data analysis, the involvement of multiple coders with different research and lifestyle backgrounds reduced the impact of potential researcher biases on the interpretation of findings, enhancing the credibility of results.

Although all participants in the current study had used at least one form of wearable technology to monitor their running, bringing valuable experiences in the formation of opinions; the authors believe that the thoughts and opinions of non-users, and those who stopped using wearable technologies are equally as valuable, and should be included in further research. Participants were recruited from Irish running clubs, and therefore findings may not accurately represent the opinions of the global population of recreational runners.

The current study did not stratify participants into ‘type of runner’ (e.g., casual, social or competitive) as in previous studies of recreational runners (8,21). Variance in opinion may potentially exist between types of recreational runner, and to examine this could yield further insights into the means of enhancing compliance. Finally, there was potential scope for additional probing during the data collection phase, with some topics requiring further exploration and explanation. This may potentially yield further information; an observation that should be considered by future researchers.

7. Conclusion

Overtraining, training-related, and individual-related risk factors are essential metrics that need to be monitored using wearable technologies for RRI risk. Some of the metrics
valued by participants are supported by scientific evidence (e.g., excessive loading and inadequate recovery); however, they also identified factors that are not clearly supported by scientific evidence (e.g., terrain and foot strike technique), and placed less importance on some factors that are more strongly supported by scientific evidence (e.g., previous injury). Technology developers should include metrics deemed important by runners, once there is supporting evidence-based research. Manufacturers should consider the impact of the inclusion of any additional metrics (i.e., those perceived as useful but not supported by evidence, and those supported by evidence but not perceived as useful) and their effect on sensor wearability and excessive user input requirement. Difficulty of use of a device will act as a barrier to the use of injury focused running technologies, while ease of use and receiving useful feedback will act as facilitators. To further enhance user compliance, the authors suggest technology developers manufacture an unobtrusive, discrete and comfortable device, designed with a user-friendly system. Findings suggest that if individual users could dictate device location and attachment method, without affecting the accuracy of the technology to monitor risk of injury, this would address these barriers. Preference was given to devices that would also provide runners with information on reducing their individual injury risk, monitor rehabilitation from injury, and provide insight into the mechanisms of injury. Overall, there is a clear willingness from recreational runners to adopt an injury focused wearable device whilst running.
8. Acknowledgements

The authors would like to thank the focus groups participants for their participation.

This publication has emanated from research supported by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_P2, co-founded by the European Regional Development Fund.

9. Author Contributions

Conceptualization: AL, EW, KM
Data curation: AL, EW, KM
Formal analysis: AL, EW, SOK, KM
Funding acquisition: KM
Investigation: AL
Methodology: AL, EW, SOK, KM
Supervision: EW, KM
Visualisation: AL, EW, SOK, SOC, KM
Writing - original draft: AL, EW, KM
Writing - review & editing: AL, EW, SOK, SOC, KM
10. References

26. Verhagen E, Bolling C. We are to ask new questions. Are we also brave enough to change our approaches. Translational Sports Medicine. 2018; 1(1):54-5.

temporal spatial parameters and overuse injury history in runners: A

differences in overuse running injury susceptibility: A retrospective study.

70. Furlong LAM, Egginton NL. Kinetic asymmetry during running at preferred
and nonpreferred speeds. Medicine and Science in Sports and Exercise. 2018;

Lower between-limb asymmetry during running on treadmill compared to
overground in subjects with laterally pronounced knee osteoarthritis. PLoS
One. 2018; 13(10):e0205191.

72. Bredeweg SW, Buist I, Kluitenberg B. Differences in kinetic asymmetry
between injured and noninjured novice runners: A prospective cohort study.

73. Zifchock RA, Davis I, Hamill J. Kinetic asymmetry in female runners with
74. Davis IS, Bowser BJ, Mullineaux DR. Greater vertical impact loading in
female runners with medically diagnosed injuries: a prospective investigation.

75. Van der Worp H, Vrielink JW, Bredeweg SW. Do runners who suffer injuries
have higher vertical ground reaction forces than those who remain injury-free?

76. Baltich J, Maurer C, Nigg BM. Increased vertical impact forces and altered
running mechanics with softer midsole shoes. PLoS One. 2015;
10(4):e0125196.

77. Nigg BM, Baltich J, Maurer C, Federolf P. Shoe midsole hardness, sex and
age effects on lower extremity kinematics during running. Journal of

78. Malisoux L, Delattre N, Urhausen A, Theisen D. Shoe cushioning influences
the running injury risk according to body mass: a randomized controlled trial
involving 848 recreational runners. The American journal of sports medicine.

79. Van der Worp MP, Ten Haaf DS, van Cingel R, de Wijer A, Nijhuis-van der
Sanden MW, Staal JB. Injuries in runners; a systematic review on risk factors

