Reverse Inflammaging: Long-term effects of HCV cure on biological age

Carlos Oltmanns¹,²,³,⁴, Zhaoli Liu¹,²,⁴, Jasmin Mischke¹,²,³,⁴, Jan Tauwaldt¹,²,³,⁴, Yonatan Ayalew Mekonnen¹,²,⁴,⁵, Melanie Urbanek-Quaing¹,²,³,⁴, Jennifer Debarry¹,⁴, Benjamin Maasoumy²,³, Heiner Wedemeyer²,³, Anke R.M. Kraft¹,²,³,⁴, Cheng-Jian Xu*¹,²,⁴,⁶, Markus Cornberg*¹,²,³,⁴

¹Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany.
²Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
³German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
⁴TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH). Hannover, Germany.
⁵Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
⁶Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands

*shared last authorship

Authors contribution:

MC and CX conceived the project and coordinated the analyses. CO, AK, and MC were involved in designing of experiments. CO, ZL, AK, JD, MU, CX and MC drafted the manuscript. BM and HW were involved in recruitment of patients. JT was involved in creation of the clinical cohort, JM helped acquiring the data. CO acquired and analyzed the data with ZL and YM supervised by CX. All authors read and approved the manuscript.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflicts of interest:

MC reports personal fees from Abbvie, personal fees from Falk Foundation, personal fees from Gilead, personal fees from GlaxoSmithKline, personal fees from Jansen-Cilag, personal fees from Merck/MSD, personal fees from Novartis, personal fees from Roche, personal fees from Spring Bank Pharmaceuticals, and personal fees from Swedish Orphan Biovitrum, outside the submitted work.

BM reports personal fees from Abbott, personal fees from Abbvie, personal fees from Astellas, personal fees from Bristol-Myers Squibb, personal fees from Falk Foundation, personal fees from Fujirebio, personal fees from Gilead, personal fees from Jansen-Cilag, personal fees from Merck/MSD, personal fees from Norgine, personal fees from Roche, outside the submitted work.

HW reports grants and personal fees from Abbvie, grants, personal fees and non-financial support from Abbott, grants, personal fees and non-financial support from Roche Diagnostics, personal fees from Siemens, grants and personal fees from BMS, grants and personal fees from Gilead, grants and personal fees from Novartis, grants and personal fees from Roche, personal fees from Janssen, grants and personal fees from Merck/MSD, grants and personal fees from Eiger, grants and personal fees from Falk and Falk Foundation, other from Transgene, non-financial support and other from Myr-GmbH, outside the submitted work.

CX, YM, ZL, JM, JT, MU, JD, AK, CO have nothing to disclose.
Financial support statement:

This project is part of project A5 in the Collaborative Research Center 900 - Microbial Persistence and its Control.

CO was supported by a grant from the KlinStrucMed program of Hannover Medical School, funded by the Else Kröner-Fresenius Foundation. Additional infrastructural support (MC) was provided by the German Center for Infection Research, DZIF (TTU 05.708_00, TTU-IICh-07-808). Sequencing costs were co-funded by DZIF (TTU 05.708_01). CX was supported by the Helmholtz Initiative and Networking Fund (1800167). ZL was supported by a grant from the China Scholarship Council.

Keywords:

Hepatitis C virus, epigenetic age, direct-acting antiviral, sustained virological response, cirrhosis, Inflammaging, DNA methylation

Abbreviations:

Abstract

Background and Aims: Chronic hepatitis C virus (HCV) infection can be cured with direct-acting antiviral agents (DAA). However, not all sequelae of chronic hepatitis C appear to be completely reversible after sustained virologic response (SVR). Recently, chronic viral infections have been shown to be associated with biological age acceleration defined by the epigenetic clock. The aim of this study was to investigate whether chronic HCV infection is associated with epigenetic changes and biological age acceleration and whether this is reversible after SVR.

Methods: We included 54 well-characterized patients with chronic hepatitis C at three time points: DAA treatment initiation, end of treatment, and long-term follow-up (median 96 weeks after end of treatment). Genome-wide DNA methylation status from peripheral blood mononuclear cells (PBMC) was generated and used to calculate epigenetic age acceleration (EAA) using Horvath's clock.

Results: HCV patients had an overall significant EAA of 3.12 years at baseline compared with -2.61 years in the age-matched reference group (p<0.00003). HCV elimination resulted in a significant long-term increase in DNA methylation dominated by hypermethylated CpGs in all patient groups. Accordingly, EAA decreased to 1.37 years at long-term follow-up. The decrease in EAA was significant only between the end of treatment and follow-up (p=0.01). Interestingly, eight patients who developed hepatocellular carcinoma after SVR had the highest EAA and showed no evidence of reversal after SVR.

Conclusions: Our data contribute to the understanding of the biological impact of HCV elimination after DAA and demonstrate that HCV elimination can lead to "reverse inflammaging". In addition, we provide new conceptual ideas for the use of biological age as a potential biomarker for HCV sequelae after SVR.
Lay Summary

Chronic hepatitis C virus infection is now curable with direct acting antiviral agents (DAA), but are concomitant and sequelae also fully reversible after cure? Recent data demonstrate that chronic viral infections lead to an increase in biological age as measured by epigenetic DNA methylation status. Using a unique cohort of hepatitis C patients with and without cirrhosis as well as progression to HCC, we demonstrated that these epigenetic changes and concomitant increase in biological age are also observed in chronic HCV infection. Our data further suggest that this effect seems to be partially reversible in the long-term course after sustained virological response (SVR) by DAA therapy and that biological regeneration occurs. In this regard, the recovery effect appears to be dependent on disease course and was significantly lower in patients with progression to HCC. This suggests the use of biological age based on epigenetic state as a potential biomarker for HCV sequelae.
Highlights

- Patients with chronic hepatitis C have accelerated epigenetic age compared with healthy controls.
- DAA treatment and HCV elimination partially reverse the accelerated epigenetic age in the long-term follow-up.
- Patients who developed hepatocellular carcinoma after HCV elimination did not show reversal of accelerated epigenetic aging during the follow-up.

Introduction

Hepatitis C virus (HCV) infection continues to be a major global health burden. According to the World Health Organization (WHO), 1.5 million new HCV infections occur worldwide each year, with 58 million individuals living with chronic HCV infection [1]. The main long-term consequence of chronic hepatitis C is the development of liver cirrhosis, which is associated with a significant risk of hepatocellular carcinoma (HCC) [2]. Furthermore, HCV infection can lead to extrahepatic manifestations such as chronic fatigue, diabetes mellitus or vasculitis [3]. As a result, approximately 290,000 people die each year as a result of HCV infection [1].

Meanwhile, direct acting antivirals (DAA) are available, well tolerated and result in sustained virological response (SVR) rates of more than 95%, leading to a significant reduction of liver morbidity and mortality [4]. However, not all sequelae of chronic hepatitis C seem to be completely reversible after SVR. Patients with advanced fibrosis or cirrhosis have a residual risk for HCC [5]. Impaired quality of life [6] or extrahepatic manifestations such as cryoglobulinemic vasculitis [7] are only partially improved or not reversible in all patients. Interestingly, recently published studies have shown that HCV infection can leave an immunological imprint or scar after SVR, and the impaired immune response characteristic of chronic HCV infection is only partially restored [8] [9] [10].

One mechanism that may explain this is that HCV infection can profoundly affect the epigenome, and it has been shown that much of the epigenetic changes caused by HCV remain as "scars" in different cell types, i.e. CD8 T cells and hepatocytes, after viral elimination [11][12]. Of note, HCV induced epigenetic changes in hepatocytes have been associated with HCC risk and this persisted after SVR [13]. DNA methylation (DNAm), defined as the covalent addition of a methyl group to a DNA nucleotide (usually the cytosine of a cytosine-guanine dinucleotide [CpG]), is the most well-studied epigenetic modification that affects transcription factor binding and controls accessibility to regulatory regions in the DNA, modulating gene expression [14].
Numerous studies have shown that epigenetic changes, particularly DNAm, are affected by aging [15] [16], so DNAm status enables us to estimate an individual's biological age. One of the most widely used and validated methods for estimating biological age is “Horvath’s clock,” which is based on the methylation status of 193 CpGs that gain methylation and 160 CpGs that lose methylation over time [17].

Thus, the aim of this study was to evaluate if chronic HCV infection is associated with biological age acceleration and if this is reversible after DAA therapy and HCV elimination. For this, we analyzed DNAm on peripheral blood cells isolated from a well-characterized cohort of 54 patients with chronic hepatitis C before, at the end and in the long-term follow-up after DAA therapy.

Methods

Study population and design

Out of 799 patients with chronic HCV infection treated with DAA at Hannover Medical School between January 2014 and March 2021, a total of 54 well-characterized patients were selected for this study (Supplementary Figure 1). The patients are part of a biobank registry and all patients gave written informed consent. Blood samples were collected and stored according to established Standard Operation Procedures (SOP).

The study protocol conformed to the ethical guidelines of the Declaration of Helsinki and the local ethics committee approved this study a priori (Nr. 9474_BO_K_2020).

The study comprises 3 different groups of patients. Cohort A contains 22 patients without liver cirrhosis. Exclusion criteria for this group are depicted in Supplementary Figure 1. The sampling time points for this group included the start of therapy, the end of treatment, and a follow-up period of 96 weeks. Cohort C includes 8 patients who developed HCC after SVR. These 8 patients were matched with 24 other patients (cohort B) using a propensity score (PS) approach [18]. So the total cohort includes 32 patients with cirrhosis. Sampling time points included initiation of therapy, end of treatment, and last available sampling time point (before the development of HCC in the HCC group). The detailed baseline characteristics of the patients are shown in Table 1.

Sample preparation

Peripheral blood was drawn from patients at the Hannover Medical School outpatient clinic at the indicated time points, and peripheral blood mononuclear cells (PBMCs) were isolated according to a standard Ficoll Hypaque density centrifugation protocol (BioColl separating...
solution; Biochrom AG, Berlin, Germany). After isolation, cells were transferred to a freezing medium and stored in liquid nitrogen. For analysis purposes, the cells were thawed, counted and then further processed by us using the Monarch Genomic DNA Purification Kit T3010L (New England Biolabs, Ipswich, MA, USA) according to manufacturers instructions. We normalized the DNA concentration of all samples after elution to 60 ng/µL, randomized the samples on a 96-well plate and stored the plate at -20 degrees Celsius.

Cohort Matching

Cohorts B and C were matched using R Statistical Software (Version 4.0.5.) and the MatchIt package [18]. Nearest neighbor matching was used as the method of matching [19]. Matching variables included sex, age, transient elastography and follow-up length. Following the matching process, we checked for significant differences between the HCC and the control group. There were no significant differences detectable in the matching variables.

DNA methylation measurements and quality control

DNA methylation measurement was performed at the Human Genomics Facility of Erasmus MC, Rotterdam, the Netherlands. 500ng DNA was bisulfite converted using the EZ-96 DNA Methylation kit (Zymo Research Corp., Irvine, CA, USA) with the KingFisher Flex robot (Thermo Fisher Scientific, Breda, the Netherlands). Methylation was assessed for 54 individuals in 8 µL bisulfite treated DNA using the Infinium MethylationEPIC BeadChip, following Illumina’s protocol.

After receiving the raw IDAT files, we started our data preprocessing for each cohort in “R Statistical Software” using the Bioconductor package minfi [20]. We performed an extensive quality control by checking for gender concordance and removing low-quality probes (detection p-value > 0.01 in more than 10% of all samples), SNP-containing probes, cross-reactive probes [21] and sex chromosomal probes. All samples were checked for 20 control metrics generated by the “BeadArray Controls Reporter Software” [22]. From the 162 samples, we excluded three samples not passing the pre-defined cut-off values by Illumina indicating a failed bisulfite conversion.

In the first and second batch of samples, we excluded 1,470 and respectively 1,302 failed probes, 43,254 cross-reactive probes [21], 19,627 sex chromosome probes and 11,681 probes with SNPs at the CpG interrogation or at the single nucleotide extension. Overall, we included 793,532 and 793,365 unique high-quality CpGs from two batches respectively and 162 samples in our analysis.

For normalization of the data, we used “dasen” from the “wateRmelon” R package [23]. We used the “IlluminaHumanMethylationEPICanno.ilm10b4.hg19” package to annotate all CpGs.
passing our quality control. In our downstream analysis we used M values for all of our analysis.

Biological age prediction

We used “agep” function from “wateRmelon” R package [23] to predict the biological (epigenetic) age of samples using Horvath's coefficients. Epigenetic age acceleration (EAA) was defined as the difference between epigenetic and chronological age. The age-matched healthy cohort from a publicly available dataset (GSE40279) [24] has been used to obtain the expected distribution of EAA in healthy population. Cell proportion was obtained via https://dnamage.genetics.ucla.edu/new.

Global methylation trends

We aimed to understand the global methylation trends by taking a look at the most changed CpGs over course of treatment and follow-up. To detect those differences we designed a linear mixed effects model (lmer(methylation ~ time point + AST + CD8 T-cells + CD4 T-cells + NK cells + B cells + (1|Patient ID)), which included inflammation as well as immune phenotype parameters as covariates. Finally, two-sided proportion test was used to determine whether in- and decrease in methylation differed at different p-value thresholds.

Statistical analysis

We used R Statistical Software (Version 4.0.5.) to conduct our analyses. Based on this, we created all graphics in either R with “ggplot” and “ggpubr” packages or in GraphPad Prism (Version 8.3.1.). For detection of differences between dependent sample groups, “Wilcoxon signed-rank test” was used. Correspondingly, we used “Mann-Whitney U test” for differences between independent sample groups. “Spearman” method was used for calculating the correlation between EAA and estimated cell proportions as well as clinical lab parameters. P-values. P-values for correlations between EAA and clinical lab parameters were adjusted using false discovery rate.

Results

Characteristics of the study cohort

Patients in cohort A (no cirrhosis) included 12 females and 10 males with a mean age of 55.0 years. AST and ALT levels at baseline were elevated and declined during treatment and all patients had normal levels at follow-up (Supplementary Figure 2). All patients of this cohort had a transient elastography (FibroScan) value of less than 11.0 kPa indicating that no liver cirrhosis was apparent at treatment start. Patients in cohorts B and C (HCC after SVR and...
matched controls without HCC) were all male and had significantly lower platelet counts, albumin and INR levels (Table 1). In addition, the patients had higher levels of AST, ALT and higher transient elastography (FibroScan) values, which also declined during therapy (Supplementary Figure 2). At follow-up, 26/32 patients in cohorts B and C had normal ALT level.

Importantly, the propensity score matched control cohort B (no HCC) showed no significant differences in all lab parameters compared to cohort C (HCC after SVR), allowing a solid comparison. All patients were HCV-RNA positive at treatment start but reached SVR.

Patients with chronic hepatitis C show an accelerated epigenetic age

To understand the impact of chronic HCV infection on biological aging, we calculated epigenetic age of all HCV patients and their age-matched control by using Horvath’s epigenetic clock. Horvath’s clock showed strong correlations between biological and chronological age, independent of the analyzed time point (p<2.2×10^{-16}) (Figure 1).

HCV patients showed an accelerated epigenetic age (EAA) at treatment start (median EAA = 3.12 years) compared to our age-matched reference group (median EAA = -2.61 years) (p=2.96×10^{-5}) (Figure 2A). Further analysis revealed that EAA differed among the three patient groups studied. While chronic HCV patients without cirrhosis tended to have the lowest age acceleration at baseline (p=0.004, median EAA = 2.45 years), patients who developed HCC after SVR tended to have the highest age accelerations (p=0.004, median EAA = 4.85 years) (Figure 2B).

Epigenetic age acceleration decreases after DAA therapy

Our longitudinal analysis over the course of DAA treatment and long-term follow-up showed that EAA is decreasing from baseline until the long-term follow-up (Figure 3A). While the median age acceleration at baseline was 3.12 years, it decreased to only 1.37 years at long-term follow-up (n=54, p=0.07). The decrease in EAA was particularly significant between the end of therapy and the long-term follow-up (end of treatment – long term follow-up: p=0.01), whereas there was no significant difference in EAA between baseline and end of treatment (p=0.56) (Figure 3).

Interestingly, the patients who developed HCC after SVR showed not only the highest EAA but also did not show a significant decline of EAA after HCV elimination (therapy start – long-term follow-up: p=0.51, median at therapy start: 4.85 years, median at long-term follow-up: 3.76 years). In contrast, PS matched patients without HCC after SVR showed a significant decline of EAA from baseline to the last follow-up (Figure 4).
Significant increase in DNA methylation, dominated by hypermethylated CpGs, after DAA therapy

To understand what drives the DNA methylation aging changes, we next investigated the effect of DAA therapy or HCV elimination on global methylation levels. It has been reported that overall DNA methylation levels are related to aging and in principle decrease with increasing age [25]. Interestingly, we observed that HCV elimination by DAA therapy leads to an increase in DNA methylation, which is inconsistent with the previous findings that methylation is inversely correlated with aging. This may suggest that DAA therapy has effects on epigenetic aging.

Specifically, in cohort A consisting of chronic HCV patients without cirrhosis, the treatment with DAA did not result in an overall increase in DNA methylation between therapy start and end of treatment. In contrast, there was a significant increase in methylation dominated by hypermethylated CpGs between therapy start and follow-up 96 weeks. This increase was consistent at different chosen p-value thresholds (p-value threshold 10^{-4}: $p=7.85 \times 10^{-5}$). In the chronic HCV patients with cirrhosis (cohorts B and C) there was a significant increase in methylation already between therapy start and end of treatment (p-value threshold 10^{-5}: $p=0.003$) that stayed consistent between therapy start and long-term follow-up (p-value threshold 10^{-5}: $p=0.006$). Similarly compared to cohort A, this increase in methylation was mainly based on hypermethylated CpGs.

Epigenetic age acceleration is not associated with estimated cell proportion but clinical phenotypes

As epigenetic changes can be driven by changes in cell composition, we next associated estimated cell counts with EAA in chronic HCV patients. In our approach, we focused on main cell types with high overall frequencies. In conclusion, we were not able to detect any significant correlations between EAA and estimated cell counts before, during and after treatment.

The strongest association is between monocytes and EAA at follow-up. There is a consistent trend between CD8 T cells and EAA at all sampling points which is not significant after all. No consistent pattern was detectable for all other cell types. This stayed consistent in all subgroups of our analyses (Supplementary Figure 3-5).

We also aimed to understand if epigenetic age is driven by any specific clinical phenotype. We focused on clinical lab parameters that describe liver function such as ALT, albumin, platelets, transient elastography (FibroScan) values and GGT, as well as leukocytes and creatinine. Liver stiffness, as indicated by transient elastography (FibroScan), was positively correlated with epigenetic age acceleration (adj. $p=0.03$, rho=0.24) in HCV patients with
cirrhosis (cohorts B+C), while platelet counts were negatively correlated (adj. p=0.03, rho=-0.27) in the same cohorts. In the HCV patients without cirrhosis (cohort A) we did not observe any significant correlations (Figure 6).

Discussion

The results of our study suggest that chronic HCV infection leads to a general acceleration of epigenetic aging predicted by Horvath’s clock and that HCV elimination by DAA therapy can partially slow, halt, or reverse biological aging. The exact mechanism leading to this age acceleration and its reversal remains elusive. It has already been suggested that chronic infections such as HIV and HBV are associated with older or accelerated biological age [26] [27]. Thus, viral factors themselves may induce epigenetic modifications [28]. However, a recently published study did not observe this effect in monoinfected HCV patients. In this study, EAA was associated with advanced fibrosis and HIV coinfection in HCV patients. Of note, the HCV patients in the study by Gindin et al. were predominantly African American and were compared with the publicly available dataset consisting of Caucasian and Hispanic individuals [29]. Genetic background may potentially influence the results as African Americans seem to have a lower extrinsic epigenetic aging rate than Caucasians and Hispanics [30]. In addition, longitudinal data were not available and there was no information on ALT levels as marker for liver inflammation. Chronic inflammatory processes play a central role in the aging process, which is referred to as “inflammaging”, because inflammation promotes, among other things, the formation of reactive oxygen species that can cause DNA damage and thus also contribute to epigenetic changes [31].

Eliminating inflammation or the trigger of inflammation, such as with antiviral therapy, may possibly lead to slowing, halting or even reversing biological aging. Recently, it was shown that HIV patients showed improvement in epigenetic age after 96 weeks of antiretroviral therapy [32]. Gindin et al. showed that one-year antiviral treatment of chronic hepatitis B was associated with a modest reduction in age acceleration [29].

Our data also suggest that the process of EAA can in principle be halted or reversed, as after DAA therapy and HCV elimination, patients showed a significant increase in overall DNAm and a decrease in EAA predicted by the Horvath clock. However, this process appears to take time and is not immediately evident with the end of treatment. Also, not all patients show a decline to values of healthy controls. This is consistent with previous studies showing that HCV elimination does not always lead to complete clinical resolution [33] and also immunological imprints of HCV infection remain after SVR [8]. This may be particularly important in patients with advanced fibrosis or cirrhosis who have a residual risk of...
developing HCC after SVR [34] [35]. It has been demonstrated that HCV induced epigenetic changes in hepatocytes were associated with HCC and this persisted after SVR [13]. In addition, it has been shown that an accelerated age correlates with a higher risk of cancer associated mortality and overall mortality [36]. Consistent with this concept, in our study, patients who developed HCC after SVR had the highest EAA and showed no significant age deceleration after DAA treatment. This is important data not only to understand disease pathogenesis but there also remains an unmet need for high-quality markers for risk stratification of HCC development after SVR in former HCV patients. Early detection of HCC can lead to a decreased overall mortality. Our results suggest that age and deceleration offer new insights and could be a tool to improve conventional risk scores such as GALAD that comprise chronological age [37]. Instead of using chronological age, which is an imperfect surrogate measure of the aging process [15], biological age may ultimately better reflect the risk of developing HCC. Thus, DNA methylation analysis of peripheral blood cells could serve as biomarker in terms of a liquid biopsy to improve the management of patients with chronic hepatitis C or other patients with chronic inflammatory conditions. For the development of a biomarker, it is important to consider that aging is accompanied by a change in blood cell type composition, e.g., the proportion of naïve or senescent cytotoxic T cells changes with age, which could create a bias. The age calculated by the Horvath clock seems to be largely unaffected by these changes [15], which is consistent with our data as the changes in DNA methylation were not significantly associated with altered cell type composition.

Our study certainly has strengths and limitations. The strengths lie in a very well characterized and matched clinical cohort of 54 patients in total. The cohort of patients who developed HCC is very unique as we could analyze patient samples before the development of HCC. As the number of HCC patients was limited, larger studies are needed to evaluate whether the dynamics of age acceleration can support clinical decision making in risk stratification for developing HCC in chronic HCV patients.

In conclusion, our study contributes to the understanding of the biological effects of HCV elimination after DAA therapy and offers new conceptual ideas for the use of DNAm in peripheral blood cells as a biomarker that supports the current effort for more individualized infectious disease medicine.

Acknowledgments

We thank Helena Lickei and Hagen Schmaus for their assistance with blood sample processing. We thank the study nurses (Neslihan Devici, Carola Mix, Janet Cornberg, Jennifer Witt, Julia Schneider) and the physicians (Katja Deterding, Christopher Dietz,
Kerstin Port, Tammo Tergast) of the Hepatitis Outpatient Clinic of the Department of Gastroenterology, Hepatology and Endocrinology of Hannover Medical School for the care of the patients in the patient registry. We thank all patients for participating in our research study and for donating blood. MU was supported by the Hannover Biomedical Research School (HBRS) and the Center for Infection Biology (ZIB).
References

Table 1: Baseline characteristics of analyzed HCV cohorts. Clinical characteristics of different subgroups including: HCV patients without cirrhosis (cohort A), HCV patients with cirrhosis not developing HCC after SVR (cohort B) and HCV patients with cirrhosis developing HCC (cohort C).

<table>
<thead>
<tr>
<th></th>
<th>Cohort A HCV patients without cirrhosis</th>
<th>Cohort B HCV patients with cirrhosis not developing HCC after SVR</th>
<th>Cohort C HCV patients with cirrhosis developing HCC</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>22</td>
<td>24</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>55.0 ± 5.4</td>
<td>55.8 ± 3.6</td>
<td>56.5 ± 4.0</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>12 f 10 m</td>
<td>24 m</td>
<td>8 m</td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td>25.6 ± 1.9</td>
<td>28.4 ± 1.7</td>
<td>28.7 ± 1.7</td>
<td>18.5-24.9</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>14.3 ± 0.7</td>
<td>14.1 ± 0.6</td>
<td>14.2 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Platelets (Tsd/µL)</td>
<td>218 ± 24</td>
<td>109 ± 16</td>
<td>114 ± 34</td>
<td>13.5-17.2 (m) 12-15.6 (f)</td>
</tr>
<tr>
<td>Leukocytes (Tsd/µL)</td>
<td>6.7 ± 0.6</td>
<td>5.2 ± 0.5</td>
<td>5.9 ± 1.0</td>
<td>3.9-10.2</td>
</tr>
<tr>
<td>INR (Ratio)</td>
<td>1.02 ± 0.04</td>
<td>1.2 ± 0.1</td>
<td>1.4 ± 0.5</td>
<td>0.9-1.25</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>53.5 ± 10.7</td>
<td>114 ± 26</td>
<td>145 ± 51</td>
<td>0-35 (m) 0-31 (f)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>68.1 ± 15.4</td>
<td>116 ± 29.1</td>
<td>146 ± 59</td>
<td>0-45 (m) 0-34 (f)</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>41.5 ± 1.3</td>
<td>36.3 ± 2.1</td>
<td>33.8 ± 3.0</td>
<td>35-52</td>
</tr>
<tr>
<td>Fibroscan (kPa)</td>
<td>7.4 ± 0.7</td>
<td>32.4 ± 8.0</td>
<td>36.9 ± 7.9</td>
<td>0-14.5</td>
</tr>
<tr>
<td>HCV-RNA (IU/mL)</td>
<td>2,673,526 ± 1,172,974</td>
<td>1,472,619 ± 797,720</td>
<td>701,000 ± 432,626</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2: Global methylation trends in HCV cirrhosis (cohorts B and C) and non-cirrhosis (cohort A) patients. Two-sided proportion test was used to determine whether in- and decrease in methylation differed at top p-value thresholds.

<table>
<thead>
<tr>
<th>Cohort A (HCV without cirrhosis)</th>
<th>Top CpGs (p-value threshold)</th>
<th>Therapy start – End of treatment</th>
<th>Therapy start – Long-term follow-up</th>
<th>End of treatment – Long-term follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>95% CI</td>
<td>p-value</td>
</tr>
<tr>
<td>11 (10^-6)</td>
<td></td>
<td>1</td>
<td>0.25 - 0.82</td>
<td>0.55</td>
</tr>
<tr>
<td>45 (10^-7)</td>
<td></td>
<td>1</td>
<td>0.34 - 0.64</td>
<td>0.074</td>
</tr>
<tr>
<td>187 (10^-6)</td>
<td></td>
<td>0.31</td>
<td>0.47 - 0.61</td>
<td>7.85x10^-5***</td>
</tr>
<tr>
<td>Cohort B + C (HCV with cirrhosis)</td>
<td></td>
<td>5 (10^-5)</td>
<td>0.074</td>
<td>0.46 - 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 (10^-8)</td>
<td>0.14</td>
<td>0.45 - 0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>160 (10^-4)</td>
<td>0.0034**</td>
<td>0.54 - 0.69</td>
</tr>
</tbody>
</table>
Figures

Figure 1: Scatter plots showing the correlation between epigenetic age (Horvath’s clock) and chronological age in chronic HCV patients at therapy start (A), end of therapy (B) and long-term follow-up (C). The rank-based Spearman method was used for calculating the correlation.

Figure 2: Epigenetic age acceleration compared to the reference group and across different subgroups in chronic HCV patients at therapy start. Comparison between healthy controls and HCV patients overall (A) as well as HCV patients without cirrhosis (cohort A), HCV patients with cirrhosis not developing HCC after SVR (cohort B) and HCV patients with cirrhosis developing HCC (cohort C) (B). Wilcoxon rank sum test was used to calculate the difference between groups. *: p < 0.05, **: p < 0.005, ***: p < 0.0005, ****: p < 0.00005.
Figure 3: Boxplots showing the age acceleration in chronic HCV patients (n=54) at different time points over course of treatment and follow-up and age-matched healthy controls. Comparison between different sampling points (A) and HCV patients at long-term follow-up and age-matched healthy controls (B). Two-sided Wilcoxon signed-rank test was used to calculated the difference between different sampling points and two-sided Mann-Whitney U test was used for comparison of follow-up with healthy controls. *: p < 0.05.

Figure 4: Boxplots of EAA in patients developing a hepatocellular carcinoma after SVR and matched control group over course of therapy. One-sided paired t-test was used to calculate the difference between groups since EAA was normally distributed. *: p < 0.05.
Figure 5: Global methylation trends in HCV patients without cirrhosis (cohort A) (A) and HCV patients with cirrhosis (cohorts B and C) (B). Color is indicating whether methylation increased (green) or decreased (red) and the overall methylation status of affected CpGs. Different sampling time points (TS = treatment start, EOT = end of treatment, FU= follow-up) were compared to show short-term and long-term effects.
Figure 6: Scatter plots showing the correlation between clinical phenotype and epigenetic age acceleration in chronic HCV patients without cirrhosis (A) and with cirrhosis (B). P-values for correlations were adjusted using false discovery rate.
Supplementary information

Supplementary Tables

Supplementary Table 1: Baseline characteristics and comparison between PS-matched cohorts B and C.

<table>
<thead>
<tr>
<th></th>
<th>Cohort B HCV patients with cirrhosis not developing HCC after SVR</th>
<th>Cohort C HCV patients with cirrhosis developing HCC</th>
<th>p-value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>24</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>55.8 ± 3.6</td>
<td>56.5 ± 4.0</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>24 m</td>
<td>8 m</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body mass index</td>
<td>28.4 ± 1.7</td>
<td>28.7 ± 1.7</td>
<td>0.69</td>
<td>18.5-24.9</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>14.1 ± 0.6</td>
<td>14.2 ± 1.4</td>
<td>0.42</td>
<td>13.5-17.2 (m) / 12-15.6 (f)</td>
</tr>
<tr>
<td>Platelets (Tsd/µL)</td>
<td>109 ± 16</td>
<td>114 ± 34</td>
<td>>0.99</td>
<td>160-370</td>
</tr>
<tr>
<td>Leukocytes (Tsd/µL)</td>
<td>5.2 ± 0.5</td>
<td>5.9 ± 1.0</td>
<td>0.16</td>
<td>3.9-10.2</td>
</tr>
<tr>
<td>INR (Ratio)</td>
<td>1.2 ± 0.1</td>
<td>1.4 ± 0.5</td>
<td>0.97</td>
<td>0.9-1.25</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>114 ± 26</td>
<td>145 ± 51</td>
<td>0.33</td>
<td>0-35 (m) / 0-31 (f)</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>116 ± 29.1</td>
<td>146 ± 59</td>
<td>0.46</td>
<td>0-45 (m) / 0-34 (f)</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>36.3 ± 2.1</td>
<td>33.8 ± 3.0</td>
<td>0.18</td>
<td>35-52</td>
</tr>
<tr>
<td>Fibroscan (kPa)</td>
<td>32.4 ± 8.0</td>
<td>36.9 ± 7.9</td>
<td>0.31</td>
<td>0-14.5</td>
</tr>
<tr>
<td>HCV-RNA (IU/mL)</td>
<td>1,472,619 ± 797,720</td>
<td>701,000 ± 432,626</td>
<td>0.19</td>
<td>0</td>
</tr>
</tbody>
</table>
Supplementary Figures

Supplementary Figure 1: Inclusion and exclusion criteria for analyzed HCV patients

[Diagram showing the flow of patients through inclusion and exclusion criteria, leading to different cohorts.]

- 799 chronic HCV patients treated with direct-acting antivirals between 01/2014 and 11/2019
- 500 patients with samples available at treatment start
- Patients without written consent or available samples at treatment start
- 31 patients developing a HCC
- Patients with no available samples at treatment start, end of treatment and long-term follow-up
- Patients excluded during the matching process
- 469 patients not developing a HCC
- 23 patients with no available samples at treatment start, end of treatment and long-term follow-up
- Propensity Score matching based on age, sex, transient elastography and follow-up length
- 54 chronic HCV patients included in the analysis

Cohort A: 22 chronic HCV patients without cirrhosis
Cohort C: 8 chronic HCV patients with cirrhosis developing a HCC after SVR
Cohort B: 24 matched chronic HCV patients not developing a HCC after SVR
Supplementary Figure 2: HCV-RNA, ALT (A), transient elastography (FibroScan) and platelets levels (B) before, after treatment and at follow-up in the three cohorts (cohort A = no cirrhosis \[n=22\], cohort B = cirrhosis without HCC \[n=24\], cohort C = cirrhosis with HCC \[n=8\]). All errorbars indicate standard deviations.
Supplementary Figure 3: Correlation between cell type estimates and epigenetic age acceleration in chronic HCV patients. Correlations are shown at “therapy start” (A), “end of treatment” (B) and “follow-up” (C).
Supplementary Figure 4: Correlation between cell type estimates and age acceleration in chronic HCV patients without cirrhosis (cohort A). Correlations are shown at “therapy start” (A), “end of treatment” (B) and “follow-up” (C).
Supplementary Figure 5: Correlation between cell type estimates and age acceleration in chronic HCV patients with cirrhosis (cohorts B and C). Correlations are shown at “therapy start” (A), “end of treatment” (B) and “follow-up” (C).