Viral cultures, Polymerase Chain Reaction Cycle Threshold Values and Viral Load Estimation for SARS-CoV-2 Infectious Potential Assessment in Hematopoietic Stem Cell and Solid Organ Transplant Patients: A Systematic Review.

Tom Jefferson¹, Elizabeth A. Spencer², Elena C. Rosca³, Susanna Maltoni⁴, Jon Brassey⁵, Igho J. Onakpoya¹, Annette Plüddemann², David H. Evans⁵, John M. Conly⁷, Carl J. Heneghan⁷.

¹Department for Continuing Education, University of Oxford, UK
²Centre for Evidence-Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
³Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
⁴Division of Research and Innovation, IRCCS Azienda Ospedaliero-Università di Bologna, Bologna, Italy
⁵Trip Database Ltd, Newport, UK
⁶Li Ka Shing Institute of Virology and Dept. of Medical Microbiology & Immunology, University of Alberta, Canada
⁷Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology & Laboratory Medicine, Synder Institute for Chronic Diseases and O’Brien Institute for Public

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Health, Cumming School of Medicine, University of Calgary and Alberta Health Services,

Calgary, Canada.
Abstract

Background: Organ transplant recipients are at increased vulnerability to SARS-CoV-2 due to immunosuppression and may pose a continued transmission risk especially within hospital settings. Detailed case reports including symptoms, viral load and infectiousness, defined by the presence of replication-competent viruses in culture, provide an opportunity to examine the relationship between clinical course, burden and contagiousness, and provide guidance on release from isolation.

Objectives: We performed a systematic review to investigate the relationship in transplant recipients between serial SARS-CoV-2 RT-PCR cycle threshold (Ct) value or cycle of quantification value (Cq), or other measures of viral burden and the likelihood and duration of the presence of infectious virus based on viral culture including the influence of age, sex, underlying pathologies, degree of immunosuppression, and/or vaccination on this relationship.

Methods: We searched LitCovid, medRxiv, Google Scholar and WHO Covid-19 databases, from 1 November 2019 until 31 December 2021. We included studies reporting relevant data for transplantees with SARS-CoV-2 infection: results from serial RT-PCR testing and viral culture data from the same respiratory samples. We assessed methodological quality using five criteria, and synthesised the data narratively and graphically.

Results: We included 9 case reports and case series reporting on 30 transplantees. We observed a relationship between proxies of viral burden and likelihood of shedding replication-competent SARS-CoV-2 particles. Two individuals shed replication-competent particles over 100 days after infection onset. Lack of standardisation of testing and reporting precludes
establishing a viral burden cutoff. Most transplantees stopped shedding competent particles
when the RT-PCR cycle threshold was above 30, but there are differences across platforms.

Conclusions

Viral burden is a reasonable proxy for infectivity when considered within the context of the
clinical status of each patient. Standardised study design and reporting are essential to avoid
research waste and generate guidance based on an increasing evidence base.

Keywords

COVID-19; SARS-CoV-2; transmission; organ transplants; viral culture; polymerase chain
reaction; viral load; cycle threshold calibration; infectivity
Introduction

Haematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients have significant immunosuppression, affecting both cellular and humoral immunity, and less favourable outcomes with Severe Acute Respiratory Virus Syndrome 2 (SARS-CoV-2) infection, due to the immunosuppression and/or to pre-existing comorbidities. Immunosuppression associated with transplantation places patients at risk for prolonged carriage and shedding of several respiratory viruses. However, identification of respiratory viral shedding, recently by reverse transcriptase polymerase chain reaction (RT-PCR), does not always correlate with the presence of replication-competent virus. Accordingly, we sought to perform a systematic review of RT-PCR testing and viral culture of SARS-CoV-2, focusing on people receiving solid organ or hematopoietic stem cell transplants, following our published protocol.

Our research questions were:

1. What is the relationship between serial SARS-CoV-2 RT-PCR cycle threshold (Ct) value or cycle of quantification value (Cq), or other measures of viral burden?

2. What is the likelihood and duration of the presence of infectious virus based on viral culture, among transplant recipients with SARS-CoV-2 infection?

3. What is the influence of age, sex, underlying pathologies and degree of immunosuppression on infectiousness of SARS-CoV-2?

4. What is the relationship of vaccination status on infectiousness with SARS-CoV-2?

We included studies reporting serial Cts from sequential RT-PCR testing or other measures of
viral burden such as RNA gene copies of respiratory samples (from nasopharyngeal or throat specimens) along with viral culture data on the same samples, from patients about to receive a transplant or who were post-transplant, with SARS-CoV-2 infection.

Methods

Search Strategy

We searched the following electronic databases: LitCovid, medRxiv, Google Scholar and the WHO Covid-19 database from November 2019 until December 31, 2021. No language restrictions were applied.

The literature search terms were: (coronavirus OR covid-19 OR SARS-CoV-2) AND (immunosuppressed OR immunocompromised OR transplant OR immunosuppression OR "immune deficient" OR HIV) AND (CPE OR "cytopathic effect" OR "Viral culture" OR "virus culture" OR vero OR "virus replication" OR "viral replication" OR "cell culture" or "viral load" OR "viral threshold" OR "log copies" OR "cycle threshold").

Screening

Four reviewers independently screened titles and abstracts to identify studies for consideration of full text. Full text screening was performed in duplicate and disagreements arbitrated by a third reviewer.

Inclusion criteria

We included studies reporting serial Cts from sequential RT-PCR testing, or RNA gene copies of
respiratory samples (nasopharyngeal, throat, sputum, bronchoalveolar lavage, endotracheal tube secretions) AND viral culture data from the same samples from patients about to receive a transplant or post transplant with SARS-CoV-2 infection. We included primary studies providing they reported sufficient information to extract quantitative data on the PCR testing and the viral culture for each included individual. Studies that included transplant and non-transplant patients were included if we could ascertain the results separately. Studies reporting only in poster or abstract form were excluded. Reviews were excluded but the reference lists screened for potential relevant primary studies.

Exclusion criteria

We excluded studies using post-mortem samples only and non-respiratory samples only. We did not include studies of non-transplant patients or those not attempting viral cultures.

Data extraction

One reviewer extracted data, which was independently checked by a second reviewer. Disagreements were arbitrated by a third reviewer. Data were extracted on study type and study characteristics, including population, setting, sampling and laboratory methods, clinical information, prescribed treatments, vaccination status, laboratory findings, and clinical outcomes. For three studies we sought clarification from the corresponding authors.

Quality assessment

We assessed the quality of included studies according to five criteria:

1. Were the criteria for diagnosing a case clearly reported and appropriate?
2. Was the reporting of patient/population characteristics including clinical symptoms, treatments with degree of immunosuppression and outcomes adequate?

3. Was the study period, including follow-up, sufficient to adequately assess any potential relationship between viral burden measures and likelihood of producing replication-competent virus and the rise in neutralising antibodies?

4. Were the methods used to obtain RT-PCR results replicable, generalisable and appropriate? We considered that each study should establish the relationship between their Ct values and the target gene copy number, using internal standards.

5. Were the methods used to obtain viral culture results replicable and appropriate? We considered the methods used should, at a minimum, include a description of specimen sampling and management, preparation, media and cell line used, exclusion of contamination or co-infection (use of good controls and appropriate antibacterials and antimycotics and possible use of gene sequencing if available), and results of inspection of culture.

Data reporting and pooling

We reported study flow according to PRISMA reporting standards. We reported study characteristics including age, sex, clinical symptoms, treatments and events in the participants in tabular form. We presented data on disease burden measures and on viral culture in tabular form. For studies reporting more than one patient participant, data were extracted related to each participant if available. We plotted median, interquartile ranges and outliers for viral
culture results in relation to the duration of symptoms, and individual study plots to day 120 of viral culture results and cycle thresholds.

We were unable to pool the data on PCR cycle counts/RNA log copies and viral culture, due to a lack of detailed information on laboratory practices, assays and because of the absence of internal controls in some studies, and heterogeneous sampling. We therefore reviewed the studies narratively, and where possible reported the results graphically.

Results

The literature search identified 12,988 titles for screening. Of these 63 underwent full-text review. 54 studies were excluded after full-text analysis: reasons are reported in the list of excluded studies (see Supplementary File. List of excluded studies.)

Of the nine included studies (Figure 1) they reported data for 30 transplant patients (7 females and 23 males): renal (21), cardiac (5), bone marrow transplant (1), liver (2), bilateral lung (1). The 30 patients were in six countries: Saudi Arabia, France, Germany, Austria, Denmark, and Canada, and were aged between 26 and 75 years old.

28 were infected with SARS-CoV-2 post transplant: 21 patients in 3 studies had had kidney transplant, 5 patients in 4 studies had had a cardiac transplant, 1 previous bone marrow transplant for multiple myeloma, 1 liver transplant. Two patients were infected with SARS-CoV-2 and subsequently underwent transplant: 1 liver transplant, 1 patient had bilateral lung transplantation after a SARS-CoV-2 infection that severely affected the lungs.

Typically, patients received a mixture of antivirals and immune suppressants, as reported in
Table 1. The clinical course of COVID-19 varied widely amongst the included patients, from mild COVID-19 related symptoms to severe pneumonia and lung failure; none of the patients died.

Prescribed treatments reflected the variation in severity.

Quality Assessment

Table 2 reports study quality based on five criteria. Three studies met all five criteria. Follow-up was judged adequate in all studies; in eight studies the reporting of patient characteristics was sufficiently comprehensive and clinical information was missing for one study. Case definition was missing or unclear in three studies, and methods for RT-PCR testing were unclear in two studies. The methods used for viral culture were unclear for four studies and one study reported using a cell line that has not typically been used to demonstrate SARS-CoV-2 growth - Buffalo green monkey kidney (BGMK) cell line.

Results of the studies

The results are reported in Table 1 and Table 3. The clinical course of infection was highly variable (Tables and 1 and 3, and Figures 2 and 3). Sampling schedules varied between studies, with no regular timetable of testing taking place, so results for PCR and viral culture are available for different time points in a patient's clinical course and with different gaps in time between samples being taken.

In response to our first study question on the relationship between proxy indicators of viral burden and infectiousness, the data from Figures 2 and 3 and Table 3 indicate a relationship
between viral burden and probable infectiousness. The data suggests that earlier symptom onset is related to the likelihood of shedding replication-competent virus (Figure 2). The median for a positive culture from onset of symptoms was 16 days (IQR 9 to 27; range 1-105, n = 45 cultures performed). The median for a negative culture was 41 days (IQR 21 to 60; range 1-120, n = 96 cultures performed).

Five patients reported by Alshukairi et al were all culture-negative; this was in samples taken on days 9, 12, 17, 18 and day 26 since symptom onset, respectively. Eight kidney transplant patients described by Benotmane and colleagues had positive viral cultures. For six patients we could identify the duration of probable infectiousness, which ranged from 8 days (patient 5: day 1 to 8) to 32 days (patient 7: day 7 to 38). Four patients were infectious with reported Cts> 30 based on the individual platforms that were used to perform the Cts. Rajakumar et al described two cardiac transplant patients: viral culture found replication-competent virus in samples from one patient on day 16 and in samples from the other patient on day 4 and repeatedly up to day 27, after which all viral cultures were negative. For each patient, viral culture was negative (i.e. no replication-competent virus observed) in samples with PCR cycle counts of over 25. Within the samples giving positive viral cultures, the PCR results showed that the cycle threshold for the N gene was lower than for the E gene by an average of 5.4 Ct values.

In the study by Niyonkuru et al, the duration of infectiousness in the two patients, as indicated
by replication-competent virus, was 8 and 9 days (Figure 3)\(^\text{12}\). A cardiac transplant patient described by Tarhini\(^\text{8}\) and colleagues tested culture-positive with a Ct of 23 on day 103; all other viral cultures were negative from samples with PCR Cts of 18 to over 40\(^\text{8}\).

Weigang et al\(^\text{11}\) described a kidney transplant patient who experienced three hospital admissions. During the first one (day zero to day 72), 19 RT-qPCR tests were performed, and alongside that viral culture was performed, showing 8/19 positive cultures (Ct values ranging from 15 to 25) and 11/19 negative (Ct values from 25 to 30). The patient was culture positive again on day 105 (Ct of 23). After re-admission at day 140 the patient was still RT-qPCR positive, but with viral culture negative; he was treated for 10 days (days 141-149) with remdesivir. Subsequently, negative RT-qPCR tests until day 189 and failed virus isolation attempts suggested that the infection had resolved\(^\text{11}\).

A heart transplant patient described by Decker\(^\text{9}\) and coworkers had a positive viral culture on day 18 and day 21 with 6.2 and 6.5 log10 copies/ml.\(^\text{9}\)

Although the dataset was limited, we observe an inverse relationship (Ct/Cq) or direct relationship (log copies): the viral burden indicated by these methods correlated with infectiousness, as shown by the ability to produce replication-competent virus in culture. The presence of replication-competent virus reflects one of the highest grades of evidence supporting the capability for forward transmission of SARS-CoV-2\(^\text{15,16}\).

The robustness of the correlation is difficult to assess because laboratory methods differ; it was not possible to pool the data to produce a summary cut-off value for infectiousness, due to these variations and due to varying time windows for sampling from patients (see Figure 2 and
In response to our second research question (on the likelihood and duration of infectiousness among transplant recipients with SARS-CoV-2 infection) the data indicate that regardless of differences in laboratory practices, observed prolonged shedding of replication-competent virus is associated with alternating increases and decreases of viral burden over time, which in some cases may be up to around 100 days\(^8\)\(^{11}\).

The viral load estimates are affected by administration of courses of anti-viral treatment including remdesivir. See Figures 2a (Cts/Cqs) and 2b (log copies).

Responding to our third research question (the influence of age, sex, underlying pathologies and degree of immunosuppression on infectiousness): at present the heterogeneity and limited amount of the available data preclude answering this question.

We are unable to answer our fourth and final research question on the relationship of vaccination status on infectiousness because no study reported on vaccination status for these transplant patients.
Discussion

This review included 9 reports of studies using viral culture and RT-qPCR testing among 30 transplant patients with immunosuppressive treatment who experienced COVID-19 infection.

The evidence indicates a relationship between indicators of viral burden (Ct, Cq or RNA log copies) and probable infectiousness as indicated by the presence of replication-competent virus. Gaps in the data remain due to variable methods and reporting and establishing summary estimates of the relationship has not been possible. The data show a long term rise and fall of viral burden associated with the likelihood of infectiousness that in some transplant patients appears to be a sequential pattern of going in and out of infectiousness. Replication-competent virus was most commonly observed in samples with PCR Ct values under 25; one study was an exception to this by reporting viable virus at Ct>30, but the use of a cell line not typically used for SARS-CoV-2 isolation makes interpretation unclear\(^7\). The duration of viral RNA shedding was variable, with the longest duration reported at 105 days\(^11\).

Regarding our second review question on the influence of patient variables on the likelihood of the presence of infectious SARS-CoV-2, the included studies showed substantial heterogeneity; some had missing data or few cultures available, and meta-analysis or pooling was not possible.

Variability in the clinical course of SARS-CoV-2 infection among transplant recipients has been reported, including observed prolonged viral shedding\(^17\). Antiviral drugs may impact on these observations, especially symptoms and viral burden.\(^18\)

Two well-designed studies on immunosuppressed patients, which we were unable to include because disaggregated data solely for transplant patients were not fully available, support our
While this review is limited to transplant patients, evidence suggests similar prolonged viral cultures are found in immunosuppressed cancer patients. We plan to perform a further review in this group analysing the type of cancer and the impact of immunotherapies on viral culture findings.

The transplant patient population is of particular importance: clinicians need guidance as to when to release the patient from quarantine or isolation, given the heavy burden of immunosuppression. We have tried to narrow the uncertainty and offer some general guidance as to when patients are unlikely to be shedding replication-competent viral particles, but clinical assessment of each patient must inform that decision because each patient and setting is different.

The strengths of this review are that we followed our published protocol, entailing rigorous literature searches, double checked data extraction and quality assessment, and a high level of clinical and epidemiological expertise input to deliberate the findings. Limitations include the small number of studies with viral culture and serial viral load estimates among transplant patients, high variability in study design and reporting and impossibility to pool results due to the well-known variability in sensitivity across essays.

Case series are conventionally considered low in the evidence hierarchy, as they may entail inherent bias in the selection of study participants and therefore have limited generalisability; however, here they are essential in providing the detailed reports needed for this unusual patient group. The case reports included here comprise some of the most detailed longitudinal reports of this patient group for whom data are needed. The evidence base is limited, however,
by heterogeneous design and reporting within the studies with, for example, different
observation windows for reporting of viral burden and culturability or clinical characteristics of
patients.

In addition to providing appropriate care for the individual patient, ongoing transmission of
SARS-CoV-2 is a concern, and immunosuppressed individuals may pose a challenge by
experiencing prolonged carriage of the virus that could lead to forward transmission. Based on
our findings we would offer the following general guidance to clinicians:

Physicians who are experienced with these immunosuppressed patient populations should
work with public health to direct their isolation and quarantine requirements. Patients with
immunosuppressive treatment following solid organ or stem cell transplantation should be
isolated until at least two consecutive respiratory specimens collected ≥24 hours apart
demonstrate a rising RT-PCR Ct (i.e. indicating diminishing viral burden). After discharge, they
should be closely followed up for SARS-CoV-2 infection for several weeks to months, depending
on the individual clinical scenario.

For obtaining data, standardisation of methods is needed: each laboratory should use
consistently applied platforms with suitable internal standards to calibrate the relationship
between Ct and genome copy in these patient populations.

Publication of results of case series or other longitudinal study should be reported in a
standardised format to avoid loss of data. We suggest observation windows should be within a
short range of 3 to 7 days during the acute periods post-transplantation and during periods of
rejection when higher doses of immunosuppressants are employed, depending on clinical
circumstances. Each observation window should include a summary of symptoms and interventions, the reporting of PCR cycle threshold and, for samples with Ct below 30, attempts at viral culture if available. Description of patients should include past medical histories and details of treatments received. Observed drug interactions should be highlighted. Reasons for admission, discharge and changes in isolation should be clearly reported. To investigate the duration of viral shedding, studies should report the time between the first positive and the first negative viral cultures.

With additional data gathering and standardisation of methods, it will be possible for transplant physicians to develop evidence-based approaches to dealing with these patients for the benefit of the patients and their families and the community at large.

Funding

This work is supported by the National Institute of Health Research School for Primary Care Research [Project 569] and by the University of Calgary.

Author contributions

TJ, CH and JC designed the study. JB performed the literature searches. JB, TJ, SM, ER and ES, screened the studies for eligibility and performed data extraction. Additional expertise on clinical and laboratory issues was given by DE, JC, SM and ER. CH generated the data figures. All authors contributed to interpreting and writing up the results and conclusions.

Acknowledgements
We gratefully acknowledge the contributions of Drs Mina Kamboj and Jeroen van Kampen who provided additional data from their studies and helped us to progress this work.
Conflict of interest statements

TJ’s competing interests are accessible at: https://restoringtrials.org/competing-interests-tom-jefferson

CJH holds grant funding from the NIHR, the NIHR School of Primary Care Research, the NIHR BRC Oxford and the World Health Organization for a series of Living rapid review on the modes of transmission of SARS-CoV-2 reference WHO registration No 2020/1077093. He has received financial remuneration from an asbestos case and given legal advice on mesh and hormone pregnancy tests cases. He has received expenses and fees for his media work including occasional payments from BBC Radio 4 Inside Health and The Spectator. He receives expenses for teaching EBM and is also paid for his GP work in NHS out of hours (contract Oxford Health NHS Foundation Trust). He has also received income from the publication of a series of toolkit books and for appraising treatment recommendations in non-NHS settings. He is Director of CEBM and is an NIHR Senior Investigator.

DE holds grant funding from the Canadian Institutes for Health Research and Li Ka Shing Institute of Virology relating to the development of Covid-19 vaccines as well as the Canadian Natural Science and Engineering Research Council concerning Covid-19 aerosol transmission. He is a recipient of World Health Organization and Province of Alberta funding which supports the provision of BSL3-based SARS-CoV-2 culture services to regional investigators. He also holds public and private sector contract funding relating to the development of poxvirus-based Covid-19 vaccines, SARS-CoV-2-inactivation technologies, and serum neutralization testing.
JMC holds grants from the Canadian Institutes for Health Research on acute and primary care preparedness for COVID-19 in Alberta, Canada and was the primary local Investigator for a *Staphylococcus aureus* vaccine study funded by Pfizer for which all funding was provided only to the University of Calgary. He is co-investigator on a WHO funded study using integrated human factors and ethnography approaches to identify and scale innovative IPC guidance implementation supports in primary care with a focus on low-resource settings and using drone aerial systems to deliver medical supplies and PPE to remote First Nations communities during the COVID-19 pandemic. He also received support from the Centers for Disease Control and Prevention (CDC) to attend an Infection Control Think Tank Meeting. He is a member and Chair of the WHO Infection Prevention and Control Research and Development Expert Group for COVID-19 and a member of the WHO Health Emergencies Programme (WHE) Ad-hoc COVID-19 IPC Guidance Development Group, both of which provide multidisciplinary advice to the WHO and for which no funding is received and from which no funding recommendations are made for any WHO contracts or grants. He is also a member of the Cochrane Acute Respiratory Infections Working Group.

JB is a major shareholder in the Trip Database search engine (www.tripdatabase.com) as well as being an employee. In relation to this work Trip has worked with a large number of organisations over the years, none have any links with this work. The main current projects are with AXA and SARS-CoV-2 (WHO Registration 2020/1077093-0) and is part of the review group carrying out rapid reviews for Collateral Global. He worked on Living rapid literature review on the modes of transmission of SARS-CoV-2 and a scoping review of systematic reviews and meta-
analyses of interventions designed to improve vaccination uptake (WHO Registration 2021/1138353-0).

ECR was a member of the European Federation of Neurological Societies (EFNS) / European Academy of Neurology (EAN) Scientist Panel, Subcommittee of Infectious Diseases (2013 to 2017). Since 2021, she is a member of the International Parkinson and Movement Disorder Society (MDS) Multiple System Atrophy Study Group, the Mild Cognitive Impairment in Parkinson Disease Study Group, and the Infection Related Movement Disorders Study Group. She was an External Expert and sometimes Rapporteur for COST proposals (2013, 2016, 2017, 2018, 2019) for Neurology projects. She is a Scientific Officer for the Romanian National Council for Scientific Research.

AP holds grants from the NIHR School for Primary Care Research.

IJO and EAS have no interests to disclose.

SM is a pharmacist working for the Italian National Health System since 2002 and a member of one of the three Institutional Review Boards of Emilia-Romagna Region (Comitato Etico Area Vasta Emilia Centro) since 2018.
References

14. Rajakumar, I.A.-O., et al., Extensive environmental contamination and prolonged severe acute respiratory coronavirus-2 (SARS CoV-2) viability in immunosuppressed recent heart transplant recipients with clinical and virologic benefit with remdesivir. (1559-6834 (Electronic)).

List of tables and figures.

Table 1. Characteristics of transplant patients in included studies.

Table 2. Quality of included studies.

Table 3. PCR cycle counts/log copies and viral culture results of included studies.

Figure 1. PRISMA flow chart of study screening for inclusion.

Figure 2. Viral culture and PCR cycle count/viral load, by day since symptom onset or first PCR confirmed diagnosis.

Figure 3. Duration of infectivity as indicated by viral culture and corresponding PCR cycle counts/log copies among transplant recipients.

List of supplementary files.

Supplementary file. Literature search strategy.

Supplementary file. List of excluded studies, with reasons.
Table 1. Characteristics of transplant patients in included studies.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Participants (data extracted for transplant patients)</th>
<th>Transplant, immunosuppressive treatment & comorbidities</th>
<th>Clinical course of COVID-19 infection</th>
<th>COVID-19 treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benotmane I 2021</td>
<td>14 M, 2 F, median age 63.3 yrs. Pts with at least two positive for SARS-CoV-2 NP swabs (of which one collected at least 7 days after symptom onset) during the follow-up period were eligible for inclusion</td>
<td>16 kidney transplant recipients; median time from transplant 3.8 yrs. Antithymocyte globulin: 8/16; anti-CD25: 8/16; tacrolimus: 10/16; ciclosporin: 3/16; MMF/MPA: 14/16; mTOR inhibitors: 2/16; steroids: 10/16; belatacept: 2/16</td>
<td>All 16 hospitalized for symptomatic COVID-19 between 4 March and 15 April 2020</td>
<td>lopinavir/ritonavir: 1/16; hydroxychloroquine: 8/16; tocilizumab: 2/16</td>
</tr>
<tr>
<td>Decker A 2020</td>
<td>62 yr M</td>
<td>Heart transplant Nov 2019; subsequently pneumonia and acute respiratory distress syndrome; intermittent renal replacement therapy. Cyclosporine A 1 March 2020 onset of symptoms and +ve PCR; mild symptoms, no cardiorespiratory decline,</td>
<td></td>
<td>hydroxychloroquine (400mg b.i.d. + 200mg b.i.d.) from day 7 to 14</td>
</tr>
<tr>
<td>Study ID</td>
<td>Participants (data extracted for transplant patients)</td>
<td>Transplant, immunosuppressive treatment & comorbidities</td>
<td>Clinical course of COVID-19 infection</td>
<td>COVID-19 treatments</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>-------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Lang C 2020</td>
<td>44 yr old F with mild untreated psoriatic arthритis and idiopathic CD4 lymphocytopenia</td>
<td>Bilateral lung transplant day 58 after admission for Covid-19. Subsequently, standard triple immunosuppression was initiated, including tacrolimus, mycophenolate mofetil, and steroids; also 6 additional treatment cycles of immunoabsorption and antithymocyte globulin.</td>
<td>Day 0 admitted with fever, cough, +ve NP RT-PCR. Day 6 to ICU & intubation; day 13 ECMO. Day 52 preparation begun for transplant: immunoabsorption therapy; day 58 bilateral lung transplant performed. Transferred to non ICU ward day 121.</td>
<td>Immunoglobulins, tocilizumab & lopinavir. Day 6 to ICU & intubation; day 13 ECMO. Bilateral lung transplant</td>
</tr>
<tr>
<td>Niess 2020</td>
<td>56 yr M patient listed for liver transplantation with a Model For End-Stage Liver Disease Score of 19 points due to cryptogenic cirrhosis and a</td>
<td>admission for liver transplant: 18/3/2020 positive to COVID-19 screening on 25/3/2021 after 31-32 days: PCR negative + seroconversion after 36 days of symptom onset and 21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(target range 135 ± 30 ng/mL), mycophenolate mofetil 500 mg b.i.d., prednisone 10 mg q.d. + cotrimoxazole and due to cytomegalovirus high-risk constellation (D + R−), ganciclovir for 4 months post-transplantation, then valganciclovir prophylaxis.
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Participants (data extracted for transplant patients)</th>
<th>Transplant, immunosuppressive treatment & comorbidities</th>
<th>Clinical course of COVID-19 infection</th>
<th>COVID-19 treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niyonkuru M 2021</td>
<td>history of hepatitis B</td>
<td>days after seroconversion: transplant; tacrolimus (to target of 4 to 7 ng/ml) + steroids</td>
<td>Pt1: 66 yr M, recent liver transplant; Pt2: 70 yr M, previous bone marrow transplant for multiple myeloma</td>
<td>Pt1: fatigue and tachypnea, hospital admission, tested positive for SARS-CoV-2; Pt2: pacemaker. Lenalidomide 25 mg daily. Elevated CRP concentration (130 mg/L). Nocardia Farcinica was detected in blood cultures and pus from abscesses on the left leg. Trans-esophageal echocardiography showed vegetation on the pacemaker electrode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pt1 day 0+ve test. Symptom onset day 5, diminished taste and smell; day 12 additional symptoms; day 14 hospital admission. On day 12 from symptom onset transferred to the ICU for non invasive ventilation.</td>
<td>Pt1: In ICU, non invasive ventilation, IV dexamethasone 6 mg daily and remdesivir: 200 mg the first day and 100 mg the following 4 days.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pt2: no COVID-19 treatment (asymptomatic)</td>
<td></td>
</tr>
<tr>
<td>Study ID</td>
<td>Participants (data extracted for transplant patients)</td>
<td>Transplant, immunosuppressive treatment & comorbidities</td>
<td>Clinical course of COVID-19 infection</td>
<td>COVID-19 treatments</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>-------------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Rajakumar 2021</td>
<td>Two cardiac transplant recipients (<3 months post-transplant): Pt1: 56 yr F; history of dilated cardiomyopathy with end-stage heart failure, type-2 diabetes mellitus, hypothyroidism, osteoporosis, and anemia. Pt2: 33 yr F with a history of end-stage heart failure secondary to congenital heart disease, liver cirrhosis & kidney disease.</td>
<td>Pt1: orthotopic heart transplant with antithymocyte globulin induction & standard triple immunosuppressive therapy & was discharged 30 days later. Pt2: orthotopic heart transplant with antithymocyte globulin induction therapy, discharged 4 weeks later. Pt1 and Pt2: prednisone, tacrolimus, and mycophenolate mofetil, and standard prophylactic medications</td>
<td>NP swabs (& saliva & clinical & environmental samples) were collected at regular intervals beginning shortly after admission. Pt 1: 5 days post-discharge, rehospitalized following community exposure to COVID-19. Nasal stuffiness & discharge, sneezing, fatigue & cough developed on admission day 4; NP swab +ve for SARS-CoV-2. All symptoms except fatigue resolved by day 12. Dyspnea, cough & hypoxia then developed on day 15; chest radiograph revealed new bibasilar interstitial infiltrates. Discharged day 44.</td>
<td>Pt1: after day 15, corticosteroids & antimicrobials initiated for presumptive COVID-19 pneumonitis & superimposed bacterial pneumonia; day 21 O2 requirements increased significantly. Despite discontinuation of MMF & reduction of tacrolimus, culturavtable viral loads increased in the NP & saliva; chest radiograph & clinical condition deteriorated; mechanical ventilation considered. 10-day course of remdesivir initiated day 27. Clinical condition & chest radiograph improved; O2 discontinued day 32; discharged day 44. Pt2: intubation.</td>
</tr>
<tr>
<td>Study ID</td>
<td>Participants (data extracted for transplant patients)</td>
<td>Transplant, immunosuppressive treatment & comorbidities</td>
<td>Clinical course of COVID-19 infection</td>
<td>COVID-19 treatments</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>----------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for SARS-CoV-2 shortly after discharge, readmitted 1 week later with progressive dyspnea & hypoxemia requiring intubation. Significant viable virus burdens were noted in the NP swab (& saliva, & a used face cloth) 16 days after initial SARS-CoV-2 positivity. 5-day course remdesivir initiated followed by clinical recovery & discharge 7 days later.</td>
<td>MMF dose was reduced; dexamethasone & antimicrobials initiated. MMF was subsequently held & later restarted when an echocardiogram demonstrated a reduction in left ventricular systolic function, suggesting acute graft rejection.</td>
<td></td>
</tr>
<tr>
<td>Pt1: 10-day course of remdesivir from day 27 to day 37 from hospital admission; improvement and subsequent discharge on day 44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt2: 5-day course remdesivir, improvement and discharge 7 days later</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tarhini 2021 71yr European M Cardiac transplant, also diabetes mellitus & chronic kidney disease; prednisone, mycophenolic acid, belatacept 15 April 2020 hospitalized for asthenia, dry cough, myalgia, and low-grade fever for 1 week. No At readmission, treated in ICU for cardiac decompensation due to underlying respiratory
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Participants (data extracted for transplant patients)</th>
<th>Transplant, immunosuppressive treatment & comorbidities</th>
<th>Clinical course of COVID-19 infection</th>
<th>COVID-19 treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weigang 2021</td>
<td>58 yr M</td>
<td>kidney transplant, also CHD, arterial hypertension, hyperlipidemia, obesity; basiliximab (20mg, day 0 and day 4 post-transplantation) and prednisone (250mg at day 0, 125 mg day 1, 50mg day 2 to 5, 20mg day 6 to 10, then 15 mg/day). Additionally tacrolimus (10mg day 0, 8mg day 1, 5.5mg day 2, 5mg day 3 and 4, then 4mg/day) and Mycophenolate mofetil (2000mg/day). Maintenance immunosuppression consisted of tacrolimus (4 to 6mg/day), mycophenolate mofetil</td>
<td>dyspnea or O2 need. +ve on admission and day 14 with <10% Covid-19 involvement on CT scan. Discharged day 39 after clinical improvement, despite persistent +ve PCR at day 32 (21 Ct). 23 June readmitted with dry cough, dyspnea, and O2 requirement.</td>
<td>infection. [Unclear what happened after this; last test day 121 & culture +ve at day 103, negative serology throughout]</td>
</tr>
</tbody>
</table>

Weigang 2021 | 58 yr M | kidney transplant, also CHD, arterial hypertension, hyperlipidemia, obesity; basiliximab (20mg, day 0 and day 4 post-transplantation) and prednisone (250mg at day 0, 125 mg day 1, 50mg day 2 to 5, 20mg day 6 to 10, then 15 mg/day). Additionally tacrolimus (10mg day 0, 8mg day 1, 5.5mg day 2, 5mg day 3 and 4, then 4mg/day) and Mycophenolate mofetil (2000mg/day). Maintenance immunosuppression consisted of tacrolimus (4 to 6mg/day), mycophenolate mofetil | March 2020, mild respiratory symptoms & tested positive for SARS-CoV-2 for over 145 days; discharged on day 72 for home quarantine; re-hospitalized at day 106 to 126 due to another kidney transplant failure. Days 140 to 149 treated with remdesivir; subsequent PCR tests negative & virus isolation negative. | Ivermectin 4 day course (33mg/day, day 56 to 60); 10 day course remdesivir (200 mg on day 140, then 100 mg/daily, day 141 to 149) |
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Participants (data extracted for transplant patients)</th>
<th>Transplant, immunosuppressive treatment & comorbidities</th>
<th>Clinical course of COVID-19 infection</th>
<th>COVID-19 treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(2,000mg/day), and prednisone (10 to 20mg/day)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
- APS = anti-phospholipid syndrome
- AZA = azathioprine
- CAD = coronary artery disease
- DM = diabetes mellitus
- HTN = hypertension
- MMF = mycophenolate mofetil
- NP = nasopharyngeal
- Pt = patient
- RTI = respiratory tract infection
- RT-PCR = reverse transcriptase polymerase chain reaction
Table 2. Quality of included studies.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Were the criteria for diagnosing a case clearly reported and appropriate?</th>
<th>Was the reporting of patient/population characteristics adequate?</th>
<th>Was the study period, including follow-up, sufficient?</th>
<th>Were the methods used to obtain RT-PCR results replicable and appropriate?</th>
<th>Were the methods used to obtain viral culture results replicable and appropriate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alshukairi 2021</td>
<td>Unclear*</td>
<td>No**</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
</tr>
<tr>
<td>Benotmane I 2021</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No***</td>
</tr>
<tr>
<td>Decker A 2020</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>Lang C 2020</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>Niess 2020</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Unclear</td>
</tr>
<tr>
<td>Niyonkuru M 2021</td>
<td>No*</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Rajakumar 2021</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tarhini 2021</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Weigang 2021</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*case definition unclear, article reports positive RT-PCR, but Ct cut-off not reported.

**data on clinical symptoms lacking

***The cell line used was not one that is demonstrated to support SARS-CoV-2 growth. Therefore the cell culture results are not reliable.
Table 3. PCR cycle counts/log copies and viral culture results of included studies.

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Symptoms, days reported</th>
<th>RT-PCR Cycle count/log copies results</th>
<th>Viral culture results (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alshukairi 2021</td>
<td>NR no viral culture at admission/onset of symptoms</td>
<td>Pt1: D3: positive, Ct NA, D26: positive, 22.87</td>
<td>Pt1: D26: negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt2: D3: positive, 11.58; D17: positive, 23.12</td>
<td>Pt2: D17: negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt3: D6: positive, 8.82, D19: positive, 13.88</td>
<td>Pt3: D19: negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt4: D4: positive, 10.38; D12: positive, 27.57</td>
<td>Pt4: D12: negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt5: D1: positive, 2.8, D9: positive, 14.84</td>
<td>Pt5: D9: negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt1: D26: negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt2: D17: negative</td>
<td></td>
</tr>
<tr>
<td>Benotmane I 2021</td>
<td></td>
<td>Pt3: D19: negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pt4: D12: negative</td>
<td></td>
</tr>
<tr>
<td>Decker A 2020</td>
<td>Mild symptoms. Day 0: transient episode of fever &</td>
<td>PCR +ve on days 1, 5, 7, 11, 18, 21, 25, 28, 33, and</td>
<td>Viral culture +ve at day 18 and day 21 post-onset of</td>
</tr>
<tr>
<td></td>
<td>sore throat; day 7 temperature increase; no clinical</td>
<td>still on day 35</td>
<td>symptoms.</td>
</tr>
<tr>
<td></td>
<td>symptoms after day 20.</td>
<td>PCR remained positive on day 35 with copy numbers similar to the onset of infection.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Concurrent with the second onset of fever there was an increased viral load after day 7 that slowly returned to the level of infection onset.</td>
<td></td>
</tr>
<tr>
<td>Lang C 2020</td>
<td>Admitted with fever & cough becoming severe and life threatening leading to bilateral lung transplant.</td>
<td>Day 0, Ct 27; Day 17, Ct 21; Day 23, Ct 23; Day 19, Ct 32; Day 31, Ct 32; Day 36, Ct 29; Day 48, Ct 39; Day 53, Ct 34; Day 59, Ct 33; Day 61, PCR negative; Day 62, Ct 36; Day 62, PCR negative; Day 64, PCR negative; Day 65, Ct 36; Day 66, Ct 39; Day 69, Ct 39; Day 70, PCR negative; Day 72, PCR negative; Day 74, PCR negative; Day 76, PCR negative; Day 95, PCR negative;</td>
<td>Samples cultured from day 48 and day 65; both negative by cell culture.</td>
</tr>
</tbody>
</table>

| **Niess 2020** | Mild symptoms of malaise and a dry cough | day 0: positive but asymptomatic day 8, 12, 19, 22 - positive PCR day 31, 32 - negative PCR day 49, 55, 60 - positive PCR day 58, 63, 64 - negative PCR results | Positive pre-transplant PCRs were not confirmed by cell cultures 4 negative viral cell culture results from samples taken on days 49, 54, 60 and 69 (*) |

| **Niyonkuru M 2021** | Pt1: fatigue and tachypnea, then ventilation required. Pt2: asymptomatic for COVID-19. | Pt1: day 15 from 1st positive PCR/day 3 from symptoms onset: Cq 21.7; day 21 from 1st positive PCR/day 9 from symptoms onset: Cq 19.21; day 43 from 1st positive PCR/day 13 from symptoms onset Cq 35.45 Pt2: day 9 from 1st positive PCR: Cq: 22.33; day 12 from 1st positive PCR: Cq 22.57; day 14 from 1st positive PCR: Ct approx 33.5; day 18 from 1st positive PCR: PCR negative. | Pt1: day 15 from 1st positive PCR/day 3 from symptoms onset viral culture at 61,277 PFU/swab; day 21 from 1st positive PCR/day 9 from symptoms onset viral culture at 256,410 PFU/swab; day 22 from 1st positive PCR/day 13 from symptoms onset viral culture negative. Pt2: day 9 from 1st positive PCR: culture positive with 11082 PFU/swab; day 12 from 1st positive PCR: culture positive with PFU 55944/swab; day 14 from 1st positive PCR: culture negative. |

Day 32: N gene Ct 32, E gene Ct 28
Day 60: N gene Ct 30, E gene Ct 35
Pt 2:
Day 16: N gene Ct 14, E gene Ct 20
Day 22: N gene Ct 25, E gene Ct 33
Day 25: N gene Ct 25, E gene 29
Day 42: N gene Ct 29, E gene Ct 37
Day 51: N gene Ct 37, E gene Ct 39
Day 32: negative
Day 60: negative
Pt 2: Viral culture
Day 16: positive
Day 22: negative
Day 25: negative
Day 42: negative
Day 51: negative

Day 6: Ct=25,
Day 16: Ct=24
Day 32: Ct=20
Day 78: Ct=34
Day 80: Ct=24
Day 91: Ct=28
Day 103: Ct=23
Day 109: Ct=18
Day 120: Ct=26
Day 132: Ct=40+ (negative)
Day 136: Ct=40+ (negative)
(*)

Tarhini 2021
Severe infection requiring intensive care
Day 6: culture negative
Day 16: culture negative
Day 80: culture negative
Day 91: culture negative
Day 103: culture positive
Day 111: culture negative
Day 120: culture negative

Day 6: culture negative
Day 10: culture negative
Day 21: culture negative
Day 24: culture negative
Day 27: culture negative
Day 31: culture negative
Day 34: culture negative
Day 42: culture negative
Day 45: culture negative
Day 49: culture negative
Day 52: culture negative
Day 56: culture negative
Day 58: culture negative
Day 63: culture negative
Day 65: culture negative
Day 71: culture negative
Day 105: culture negative
Day 113: culture negative
Day 115: culture negative
Day 126: culture negative
Day 140: culture negative
Day 143: culture negative
Day 149: culture negative
Day 154: culture negative
Day 167: culture negative
Day 174: culture negative
Day 189: culture negative

(*) Numbers have been read from a figure in the published article and may not be an accurate estimate.

Weigang 2021
Mild respiratory symptoms for over 145 days
38 PCR tests: days 0, 6, 10, 14, 16, 21, 24, 27, 31, 34, 38, 42, 45, 46, 49, 52, 56, 58, 63, 65, 71, 105, 113, 115, 119, 122, 126, 140, 143, 145, 146, 149, 150, 154, 161, 167, 174, 189.
27 cell culture tests, days: 6, 10, 14, 21, 24, 27, 31, 34, 38, 42, 45, 49, 52, 56, 58, 63, 65, 71, 105, 106, 113, 115, 119, 140, 154; 27 results: -, +, +, -, +, +, +, -, -, -, -, -, +, +, +, -, -, -, -, -, -, +, -, -, - (i.e. positive on days 6, 10, 14, 21, 24, 27, 31, 34, 105)
(*) Numbers have been read from a figure in the published article and may not be an accurate estimate.

α = cycle threshold
D = day
NR = not reported
NA = not available
Pt = patient
RT-PCR = reverse transcriptase polymerase chain reaction
Records identified through database searching
n = 12,987

Additional records identified through other sources
n = 1 through correspondence

Records screened for duplicates
n = 12,988

Records excluded
Duplicate of included study n = 22

Records screened for inclusion:
title and abstract screening
n = 12,966

Excluded on title and abstract screen
No relevant data n = 12,903

Full-text articles assessed for eligibility
n = 63

Excluded on full text screen
No relevant data n = 54
(no transplant ppts n = 30; no cell culture data n = 9; no NP PCR cycle count data n = 9; review n = 6)

Studies included in qualitative synthesis
n = 9

Studies included in quantitative synthesis (meta-analysis)
n = 0
Figure 2. SARs-CoV-2 culture results in transplant patients from symptom onset.
Figure 3a. Timings of positive culture results in Transplant Patients by duration of symptoms and Ct results

Alshukairi 2021

- **N genes, detection limit**: 100 RNA copies/ml; no threshold reports
- **Ct <27.6 deemed positive**

Patient	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31	D32	D33	D34	D35	D36	D37	D38	D39	D40	D41	D42																							
1	+ve																																																																	
2	11.6																																																																	
3	8.9																																																																	
4	2.8																																																																	
5																																																																		

Benotmane 2021

- **Symptom onset, Ct, RdRp gene, No threshold reported**

Rajakumar 2021

- **Negative if Ct N gene >33 symptoms likely from admission**

<table>
<thead>
<tr>
<th>Patient</th>
<th>D0</th>
<th>D4</th>
<th>D12</th>
<th>D20</th>
<th>D27</th>
<th>D32</th>
<th>D42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 1</td>
<td>N gene</td>
<td>E gene</td>
<td>Initiated</td>
<td>Remdesivir</td>
<td>Initiated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt 2</td>
<td>N gene</td>
<td>E gene</td>
<td>Initiated</td>
<td>Remdesivir</td>
<td>Initiated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niyonkuru 2021

- **Ct, gene E, neg if Ct >40, Symptoms from 1st +ve swab**

<table>
<thead>
<tr>
<th>Patient</th>
<th>D0</th>
<th>D7</th>
<th>D9</th>
<th>D12</th>
<th>D15</th>
<th>D16</th>
<th>D18</th>
<th>D21</th>
<th>D23</th>
<th>D25</th>
<th>D28</th>
<th>D30</th>
<th>D32</th>
<th>D35</th>
<th>D37</th>
<th>D40</th>
<th>D42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 1</td>
<td>24</td>
<td>30</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>19</td>
<td>20</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Pt 2</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3b. Timings of positive culture results in Transplant Patients by duration of symptoms and Ct results in Tarhini et al. [8]

Negative Culture
Positive Culture

Number equals RT-PCR Cycle Threshold

Gene unspecified, -ve if Ct >40, symptoms from 1st +ve Swab

Figure 3c. Timings of positive culture results in Transplant Patients by duration of symptoms and Ct results in Weigang et al. [11]

- **Negative Culture**
- **Positive Culture**

Number equals RT-PCR Cycle Threshold
Figure 3d. Timings of positive culture results in Transplant Patients by duration of symptoms and log10 copies/ml results in Decker et al. [9]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>log10 copies/ml</td>
<td>> 4 log10 deemed +ve</td>
<td>1</td>
<td>4.5</td>
<td>4</td>
<td>6</td>
<td>6.2</td>
<td>6.2</td>
<td>6.5</td>
<td>5</td>
<td>4.5</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

- **Negative Culture**
- **Positive Culture**

Number equals RT-PCR Cycle Threshold