Development and validation of a cardiovascular diseases risk prediction model for Chinese males (CVDMCM)

Authors: Ying Shan1,2†, Yucong Zhang3†, Yanping Zhao1,2†, Yueqi Lu1,2, Bangwei Chen1,2,4, Liuqiao Yang1,2,5, Cong Tan1,2, Yong Bai1,2, Yu Sang3, Juehan Liu1,2, Min Jian1,2, Lei Ruan3, Cuntai Zhang3*, Tao Li1,2*

1 BGI-Shenzhen, Shenzhen, China
2 China National GeneBank, Shenzhen, China
3 Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
4 School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
5 College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

†These authors have contributed equally to this work.

Correspondence address and contact information:
Tao Li (litao2@genomics.cn)
+8618922873209
Building 11. Beishan Industrial Zone, Yantian District, Shenzhen, China
Cuntai Zhang (ctzhang0425@163.com)
+8615927668408
Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Category: Original Article
Word count: 3619
Number of figures: 2
Number of tables: 4
Abstract

Aims: Death due to cardiovascular diseases (CVD) increased significantly in China. One way to reduce CVD is to identify people at risk and provide targeted intervention. We aim to develop and validate a CVD risk prediction model for Chinese males (CVDMCM) to help clinicians identify those at risk of CVD and provide targeted intervention.

Methods and Results: We conducted a retrospective cohort study of 2331 Chinese males without prior CVD to develop and internally validate the CVDMCM. These participants had a baseline physical examination record (2008-2016) and one revisit record by September 2019. With the full cohort, we used single factor cox regression to examine each candidate predictor adjusted for age. 16 sequential prediction models were built on significant predictors. CVDMCM was selected based on the Akaike information criterion, the area under the ROC curve, and the percentage of variation in outcome values explained by the model (R²). This model, the Framingham CVD risk model, and the Wu’s simplified model were all validated by bootstrapping with 1000 repetitions. CVDMCM’s C statistics (0.779, 95% CI: 0.733-0.825), D statistic (4.738, 95% CI: 3.270-6.864), and calibration plot demonstrated that CVDMCM outperformed the other two models.

Conclusions: We developed and internally validated CVDMCM, which predicted 4-year CVD risk for Chinese males with a better performance than Framingham CVD model and Wu’s simplified model. In addition, we developed a web calculator for physicians to conveniently generate CVD risk scores and identify those with a higher risk of CVD. We believe CVDMCM had great potential for clinical usage.

Keywords: cardiovascular diseases; prediction model; Chinese males; retrospective cohort study; chronic disease prevention.
1 Introduction

According to the World Health Organization, cardiovascular diseases (CVD) are the leading cause of global mortality, accounting for an estimated 17.9 million deaths (31% of all deaths) each year worldwide with an estimated 523 million prevalent CVD cases in 2019 (1). CVD is also the leading cause of death in China, accounting for 45.9% and 43.6% of all deaths in rural and urban China respectively (2). This is more alarming given the proportion of CVD death among all death causes in China used to be 12.8% in 1957 and 35.8% in 1990 (3). China also has the highest CVD burdens internationally, with an estimated 330 million people living with CVD in 2019 (2, 4).

For reducing the CVD burden, one solution is to identify people at higher risk of CVD and offer them appropriate advice for a healthier lifestyle. Thus, numerous prediction models have been developed globally to estimate the risk of CVD, including the Framingham (5-7), SCORE (8), ASSIGN (9), and QRISK models (10, 11). These models were constructed based on data of mainly Caucasian participants rather than Asians, thus, may not be applicable among Chinese. Wu et al. worked out a prediction model based on the USA-PRC Collaborative Study of Cardiovascular and Cardiopulmonary Epidemiology (USA-PRC study) cohort and used the China Multicenter Collaborative Study of Cardiovascular Epidemiology (MUCA) cohort for validation (12). All these models used a 10-year prediction period, which may seem too long for those at risk to take immediate actions. We hypothesized that an estimated risk score in a near future (e.g., within five years) could provide a more powerful warning for the lifestyle change. It was reported that adherence to a healthy lifestyle could lower the CVD burden substantially in the Chinese population (13). According to other research, males were at higher risk of CVD, so we decided to focus on Chinese males first (14). We aimed at developing a CVD risk prediction model for Chinese males (CVDMCM) that could be used by clinicians easily.

We conducted a retrospective cohort study using physical examination data from Tongji Hospital in Wuhan, Hubei Province, China. Participants were Chinese males who underwent annual physical examinations from 2008 to 2016 and had at least one revisit record by September 2019. We collected data of 2331 30 to 74-year-old Chinese males for the analysis. The main CVD outcomes included coronary heart disease (CHD) and ischemic stroke. We developed and internally validated a 4-year CVD risk prediction model among Chinese males. The full cohort was used as the derivation cohort and internal model validation was carried out by bootstrapping with 1000 repetitions. CVDMCM was internally validated by bootstrap resampling and compared with established models, namely the Framingham CVD risk model and Wu’s simplified prediction model (12, 15).

2 Methods
A new CVD prediction model

2.1 Study design

We conducted a retrospective cohort study to develop CVD-MCM. The participants were Chinese males from the general population going through annual physical examination at Tongji Hospital in Wuhan, Hubei Province in central China. The physical examination department of Tongji Hospital is the biggest physical examination center in Wuhan.

Inclusion and exclusion criteria: we included Chinese males aged 30-74 years old who took physical examinations at Tongji Hospital between 2008 and 2016 and had at least one revisit record by September 2019. The baseline record was defined as the first time a participant took the examination between 2008 and 2016. At baseline, participants with the following conditions were excluded: those with a CHD and ischemic stroke, other heart diseases (i.e., rheumatic heart disease), a malignant tumor, or a history of liver or kidney failure. If the participants had more than one revisit record and no outcome event occurred by September 2019, we used their last revisit date and their free-of-CVD status. If there was an event by September 2019, we used their CVD event reporting date and CVD event status.

This study followed the Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD) statement (16). The study was approved by the Medical Ethics Committee at Tongji Medical College, Huazhong University of Science and Technology who waived the written informed consents (TJ-IRB20191215). Participants identified with CVD would be recommended to go to see the doctor. No intervention was provided in the physical examination center.

2.2 Potential predictors

Based on prior knowledge, we included 17 potential predictors, including lifestyle characteristics, clinical measurements, and medical history indicators collected by trained doctors at the physical examination center of Tongji Hospital through standardized in-person interviews (17). The potential predictors included both classic ones, such as those in the Framingham CVD model, and more modern ones, such as ankle brachial index (ABI) and brachial-ankle pulse wave velocity (baPWV). Specific measuring protocols are listed in the Supplementary Methods.

2.3 Outcomes

The CVD outcomes included CHD and ischemic stroke. CHD was diagnosed according to symptoms (mainly angina) and electrocardiography or coronary angiography. Patients who self-reported having coronary heart disease, coronary artery bypass grafting, coronary stent implantation, percutaneous coronary intervention, or percutaneous transluminal coronary angioplasty in the follow-up visits were also considered to have CHD. Ischemic stroke was diagnosed according to
symptoms and cerebral infarction and confirmed by computed tomography or magnetic resonance imaging.

2.4 Sample size

We calculated the minimum sample size required for the prediction model according to Riley’s guidance (18). By treating CVD occurrences as time-to-event outcomes, sample size calculations are provided to (S1) estimate the overall outcome proportion with precision in follow-up, (S2) target a shrinkage factor of 0.9, and (S3) target small optimism of 0.05 in the apparent R^2. Based on the 3 criteria, the sample size in the cohort is expected to be sufficient. The details are shown below:

We used R 4.0.3 package ‘pmsampsize’ for criteria S1, S2, and S3 where the anticipated R^2 value was assumed to be 0.25, according to existing CVD risk prediction models shown in Siontis et al., with up to 20 parameters (19). Siontis et al. illustrated R^2 statistics of 12 existing CVD risk prediction models, and all the R^2 statistics are higher than 0.25 (19). Therefore, we made a conservative choice of R^2 of 0.20. For the convenience of clinical application, the number of parameters in the final model tends to be no more than 10. Again, to be conservative, we set the model with up to 20 parameters. The mean follow-up and the overall event rate were calculated in our study cohort. The timepoint of interest for prediction using the newly developed CVDMCM was 4 years.

2.5 Model development

First, physical examination records which met our inclusion criteria were exported from the electronic medical record system of Tongji Hospital. We then excluded the participants who met the exclusion criteria. A retrospective cohort was established afterwards. To deal with the missing data, we applied multiple imputations to the raw data (20). The imputations were implemented with Multivariate Imputation by Chained Equations (MICE) package in R (21). Then, we examined the baseline characteristics for the cohorts, summarized categorical data with frequencies and percentages, as well as summarized continuous data with means and standard deviations (if normally distributed) or medians and interquartile ranges (if not normally distributed).

We constructed CVDMCM with the cohort using Cox proportional hazards regression. The quadratic terms of predictors, such as systolic blood pressure (SBP), diastolic blood pressure (DBP), body mass index (BMI), and glycated hemoglobin A1c (HbA1c) were considered. The interaction effects between age and the predictors were also assessed because the effects of some factors may change with age. We first fitted cox regression models of each predictor along with age and collected the statistically significant predictors (P < 0.05). Then, we constructed sequential models with those significant predictors along with age. We compared those sequential
A new CVD prediction model

We initially included 2470 participants who met the inclusion criteria. From those 2470 participants, we excluded 139 participants who met the exclusion criteria. As the result, 2331 individuals remained in this study. The study flow diagram could be found in Figure 1. The participants, both with and without CVD events, were followed for a median of 4.0 years (Table 1). The mean baseline age of the participants was 52.3 years old with a standard deviation (SD) of 9.2. The baseline age of the participants who had CVD events during the follow-up was 60.8 (SD: 7.2) years old, while the baseline age of those without CVD events was 51.8 (SD: 9.1) years old. The incidence rate of CVD per 1000 person-years was 13.16 (95% CI: 11.00-15.63).
Then, we calculated the minimum sample size required by using ‘pmsampsize’ R package with the parameters of R² value assumed to be 0.20 with up to 20 parameters. The mean follow-up of 4.23 years and the overall event rate of 0.049 were obtained in our study cohort. The timepoint of interest was 4 years. The calculated minimum sample size required was 796, which indicated that the sample size in the cohort of 2331 was sufficient.

CVDMCM was derived using the potential predictors, along with the interaction terms and the quadratic terms by single factor Cox regression adjusting for age. Five predictors were significant. Along with age, the significant predictors were used to construct 16 sequential prediction models. The plots of the scaled Schoenfeld residuals against time suggested that all the 16 models fulfilled the proportional hazards assumption. Table 2 compared the 16 sequential models with AIC, AUC, and R². Among the sequential models, model 15 had the smallest AIC value, a relatively big AUC, and the biggest R² values. Thus, we chose model 15 as our final CVDMCM and compared it with the Framingham CVD risk model and Wu’s simplified model. Figure S1 showed the Schoenfeld individual test of each predictor in model 15 (figures not shown for the other models). In model 15, predictors were age, smoking status, log-transformed total bilirubin, ABI, SBP, and the interaction of age and SBP. The model is shown below:

\[
4 - \text{year CVD risk} (\%) = (1 - 0.974^{\exp(-0.312 + B)}) \times 100\%, \text{ in which } \\
B = 0.305 \times \text{age} + 0.364 \times \text{smoking} - 0.606 \times \ln \text{ (total bilirubin)} + 0.093 \times \text{SBP} \\
- 0.0015 \times \text{age} \times \text{SBP} - 2.528 \times \text{ABI}
\]

We calculated the age-standardized CVD prevalence rate of Chinese males according to Liu et al., which was 3.14% (23). An individual with an estimated risk higher than 3.14% is defined as a high-risk individual. In the cohort, 1053 out of 2331 individuals would be classified in the high-risk group.

We then internally validated the CVDMCM and compared its performance with Framingham and Wu’s model by applying a bootstrap resampling approach with 1000 replicates. We first compared the predictors of CVDMCM, the Framingham CVD risk model, and Wu’s model. As shown in Table 3, the predictors used in all three models included age, smoking status, and SBP. Compared with Framingham and Wu’s models, CVDMCM included more modern predictors, such as ABI and Total bilirubin. We then compared the calibration of the 3 models. As shown in Figure 2, CVDMCM demonstrated higher agreement between 4-year predicted risk and observed risk, which indicated better calibration than the Framingham and Wu's simplified model. Finally, discrimination was assessed via Harrell’s C statistic and D statistic. As shown in Table 4, CVDMCM performed better than the Framingham...
A new CVD prediction model

CVD risk model and Wu's simplified model with higher Harrell’s C statistic of 0.779 (CI: 0.733-0.825), and D statistic of 4.738 (CI: 3.270-6.864). The Harrell’s C statistic of CVDMCM was significantly higher than that of Framingham CVD risk model and that of Wu's simplified model with both of the one-sided P-values smaller than 0.001.

For an easier application of CVDMCM among the clinicians, we provided one example of an individual Mr. X’s 4-year CVD risk. A 54-year-old Chinese man, Mr. X, who is a non-smoker with a total bilirubin of 12.30 μmol/L, ABI of 3.39, and SBP of 130mmHg, has a 4-year CVD risk of 2.39%. The calculation is shown below:

\[
4 - \text{year CVD risk} (\%) = \left(1 - 0.974^{\exp(-13.212 + B)}\right) \times 100\%, \text{ where}
\]

\[
B = 0.305 \times \text{age} + 0.364 \times \text{smoking} - 0.606 \times \text{natural log(totai bilirubin)} + 0.093 \times \text{SBP} - 0.0015 \times \text{age} \times \text{SBP} - 2.528 \times \text{ABI}
\]

\[
= 0.305 \times 54 + 0.364 \times 0 - 0.606 \times \log(12.3) + 0.093 \times 130 - 0.0015 \times 54 \times 130
\]

\[
- 2.528 \times 3.39
\]

= 13.125

So, the 4-year CVD risk is

\[
4 - \text{year CVD risk} (\%) = \left(1 - 0.974^{\exp(-13.212 + 13.125)}\right) \times 100\% = 2.39\%
\]

Since his CVD risk is lower than 3.14%, he would be classified in the low-risk group.

If someone has a CVD risk calculated higher than 3.14%, he would be classified in the high-risk group, and the physicians taking the physical examination could advise him for a healthier lifestyle. To make the CVDMCM more convenient for the physicians, we have developed an online calculator calCVDrisk (https://ctan2020.github.io/-calCVDrisk-/) for the physicians to simply enter the parameters obtained from the physical examinations, and the calculator would report the score for the physicians to assess the CVD risks.

4 Discussion

Through this retrospective cohort study, we developed and validated a CVD risk prediction model CVDMCM. Unlike models with tens of predictors, CVDMCM had only five predictors (age, smoking status, total bilirubin, ABI, and SBP) and demonstrated a better performance than that of the Framingham CVD risk model and Wu’s simplified model in the internal validation by bootstrap resampling as found in Harrell’s C statistic, D statistic, and calibration plot (12, 15). We believe that CVDMCM had great potential for clinical usage.
There were several strengths of this study. First, we targeted a high-risk population, namely Chinese males. Given that CVD is the leading cause of death in China accounting for over 43.6% of all deaths in China, which was an increase from 12.8% in 1957 and 35.8% in 1990, immediate action is needed to change the increasing trend (3). Among the Chinese population, Chinese males were at higher risk of CVD. Thus, we decided to work on a model for the Chinese males in this study (14). Secondly, we used a 4-year prediction model. Previously, CVD prediction models were often 10-year risks, which may seem too long for those at risk to take immediate actions (8, 12, 15, 28). We hypothesized that an estimated risk score in four years could provide a more powerful early warning for the lifestyle change. Thirdly, for an easier application of our finding, we have developed an online calculator calCVDrisk for physicians to assess the CVD risk scores among those taking physical examinations.

We admit that there are some limitations to this study. First, there is inevitably selection bias by choosing the participants taking physical examinations. They might take better care of their health than those who do not take regular physical examinations. A model to identify those at higher risk of CVD with appropriate lifestyle change advice might work with this population, as they pay more attention to their health and are more likely to follow the doctor’s advice and modify their lifestyles than those who do not regularly take physical examinations. If the model works for this population, we could test it on other populations later. Secondly, the data obtained from electronic medical records from only one hospital may induce selection bias because it may not represent the general population of China. However, as Tongji Hospital locates in the city of Wuhan, which is considered as the geographic midpoint of China, the location might well represent the majority of Chinese cities with patients coming from all over China. The electronic medical records are from the physical examination department of Tongji Hospital, which is the biggest physical examination center in Wuhan where various groups of people choose to go to take the medical examination. Thus, the data may well represent Chinese males. Thirdly, the study has a bias of a loss to follow-up, which should be improved in future studies.

Compared with the classic CVD models, such as the Framingham (5-7), SCORE (8), ASSIGN (9), and QRISK models (10, 11), CVDMCM was developed using Chinese males’ data, which is more applicable in China. A previous study reported that CVD models should better be developed among specific populations (29). Although Wu’s model is a very well designed one among the Chinese, it was published 15 years ago, thus, did not include more modern predictors such as ABI and baPWV. ABI was found as one of the 5 predictors in CVDMCM. ABI has become widely used in modern clinical practice and has been reported to be a sensitive measurement of CVD risk. L. Alves-Cabratosa et al. reported that low ABI would increase the risk of acute myocardial infarction and ischemic stroke among asymptomatic people, as well as people with diabetes and previously-diagnosed CVD (30). A.Velescu et al. showed...
that adding ABI to the Framingham CVD risk model would improve the capacity of predicting CVD events in northeastern Spain population (31).

To better utilize CVDMCM, we developed an online calculator calCVDrisk for physicians to calculate the CVD risk of a Chinese male when taking the physical examination. We expect that CVDMCM will be promising in the application as it is a simple model with only 5 predictors. A previous study has shown that physicians were more willing to use simpler models in clinical practice than more complex ones when they had comparable performance (32). The estimated 4-year CVD risk will let people be alert to their cardiovascular health. A prospective cohort is under plan to use CVDMCM to detect those at higher risk of CVD to further validate the model at the physical examination department of Tongji Hospital. If the results are promising, we would advocate this application in major physical examination departments in China.

We believe that the CVDMCM could be helpful for medical doctors in the physical examination departments in China to select those at higher risks of CVD in 4 years. For health care providers, the integration of a better CVD risk prediction model in their workflow would enable them to track the health statuses of those with high-risk scores so that doctors could provide advice for lifestyle changes and potentially help reduce CVD risks in those patients.

5 Conclusion
We conducted a retrospective cohort study for developing and validating our new model, CVDMCM. CVDMCM predicted 4-year CVD risk with a better performance than that of the Framingham CVD model and with fewer predictors than those involved in the Wu’s simplified model. Thus, this model could be helpful in clinical practices to detect patients at higher risk of CVD, providing an appropriate feedback for patients’ health. We believe that CVDMCM had great potential for clinical usage.

6 Supplementary materials
Supplementary materials are available at Frontiers in Cardiovascular Medicine online.

7 Funding
This work was supported by the National Key Research and Development Program of China [Grant Number 2020YFC2008000; principal investigator CZ] and Major Technology Innovation of Hubei Province [Program No. 2019ACA141]. The funding source was not involved in the process of this study and article preparation. The contents do not reflect official views from the Hubei provincial government.

8 Author Contribution Statement
A new CVD prediction model

Y. Shan, Y. Zhao, and T. Li conceived the project, designed the research study. L. Ruan, C. Zhang and Y. Sang collected the data of the cohort. Y. Shan, Y. Lu, B. Chen, L. Yang analyzed data. Y. Shan, Y. Zhao, Y. Lu, B. Chen, L. Yang, Y. Bai, J. Liu and M. Jian wrote the manuscript. The co-first authors each made important contributions to different aspects of the project, including designing the project, collecting the data and analyzing the data. The final order was discussed and agreed upon by placing authors who contributed to project design and data analysis higher on the list.

9 Acknowledgements
We would like to thank the general practitioners, especially those of the Department of Geriatrics of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology for their dedication, commitment, and contribution.

10 Data Availability statement
The data underlying this article will be shared at reasonable request to the corresponding author.

Conflict of Interest: none declared.

11 References
A new CVD prediction model

Figure 1. Study flow diagram.

Figure 2. Calibration plots of CVD-MCM, the Framingham CVD risk model, and Wu's simplified model for observed and predicted 4-year risks of CVD using a validation dataset.

Table 1. Baseline characteristics.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Category</th>
<th>Overall (N = 2331)</th>
<th>CVD cases (N = 115)</th>
<th>Non-CVD group (N = 2216)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of participants, n (%)</td>
<td></td>
<td>2331 (100.0)</td>
<td>115 (4.9)</td>
<td>2216 (95.1)</td>
</tr>
<tr>
<td>Follow-up time (years) (range)</td>
<td>median (IQR)</td>
<td>4.0 (3.0-4.9); 0.4-10.1</td>
<td>4.0 (2.0-5.0); 0.8-9.0</td>
<td>4.0 (3.0-4.9); 0.4-10.1</td>
</tr>
<tr>
<td>Age (years)</td>
<td>mean (SD)</td>
<td>52.3 (9.2)</td>
<td>60.8 (7.2)</td>
<td>51.8 (9.1)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>mean (SD)</td>
<td>25.2 (2.8)</td>
<td>24.5 (2.6)</td>
<td>25.3 (2.8)</td>
</tr>
<tr>
<td>Heavy drinker, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1853 (79.5)</td>
<td>110 (95.7)</td>
<td>1743 (78.7)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>478 (20.5)</td>
<td>5 (4.3)</td>
<td>473 (21.3)</td>
</tr>
<tr>
<td>Smoker, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>1557 (66.8)</td>
<td>81 (70.4)</td>
<td>1476 (66.6)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>774 (33.2)</td>
<td>34 (29.6)</td>
<td>740 (33.4)</td>
</tr>
<tr>
<td>ABI</td>
<td>mean (SD)</td>
<td>1.1 (0.1)</td>
<td>1.1 (0.1)</td>
<td>1.1 (0.1)</td>
</tr>
<tr>
<td>baPWV (cm/s)</td>
<td>median (IQR)</td>
<td>1372.0 (1242.0-1536.5)</td>
<td>1482.0 (1366.0-1654.0)</td>
<td>1365.5 (1236.0-1531.0)</td>
</tr>
<tr>
<td>eGFR (ml/min/1.73m²)</td>
<td>mean (SD)</td>
<td>86.2 (14.0)</td>
<td>81.3 (11.7)</td>
<td>86.5 (14.1)</td>
</tr>
<tr>
<td>HbA1c (mmol/mol)</td>
<td>mean (SD)</td>
<td>40.0 (7.3)</td>
<td>40.7 (8.8)</td>
<td>40.0 (7.2)</td>
</tr>
<tr>
<td>HDL-C (mmol/L)</td>
<td>median (IQR)</td>
<td>1.1 (1.0-1.3)</td>
<td>1.1 (1.0-1.3)</td>
<td>1.1 (1.0-1.3)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>mean (SD)</td>
<td>127.4 (15.3)</td>
<td>130.7 (15.8)</td>
<td>127.2 (15.3)</td>
</tr>
<tr>
<td>SII</td>
<td>median (IQR)</td>
<td>338.5 (252.8-444.4)</td>
<td>337.9 (250.1-486.3)</td>
<td>338.5 (252.8-443.5)</td>
</tr>
<tr>
<td>Total bilirubin (μmol/L)</td>
<td>median (IQR)</td>
<td>12.7 (10.2-16.0)</td>
<td>11.5 (9.6-15.1)</td>
<td>12.8 (10.2-16.1)</td>
</tr>
</tbody>
</table>
A new CVD prediction model

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n=230)</th>
<th>Group 2 (n=117)</th>
<th>Group 3 (n=113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.8 (0.9)</td>
<td>4.7 (1.2)</td>
<td>4.8 (0.9)</td>
</tr>
<tr>
<td>Urine protein, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>2231 (95.7)</td>
<td>106 (92.2)</td>
<td>2125 (95.9)</td>
</tr>
<tr>
<td>Positive</td>
<td>100 (4.3)</td>
<td>9 (7.8)</td>
<td>91 (4.1)</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>2074 (89.0)</td>
<td>101 (87.8)</td>
<td>1973 (89.0)</td>
</tr>
<tr>
<td>Yes</td>
<td>257 (11.0)</td>
<td>14 (12.2)</td>
<td>243 (11.0)</td>
</tr>
<tr>
<td>Hyperlipidemia, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1698 (72.8)</td>
<td>87 (75.7)</td>
<td>1611 (72.7)</td>
</tr>
<tr>
<td>Yes</td>
<td>633 (27.2)</td>
<td>28 (24.3)</td>
<td>605 (27.3)</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1693 (72.6)</td>
<td>78 (67.8)</td>
<td>1615 (72.9)</td>
</tr>
<tr>
<td>Yes</td>
<td>638 (27.4)</td>
<td>37 (32.2)</td>
<td>601 (27.1)</td>
</tr>
</tbody>
</table>

Abbreviations: IQR, interquartile range; BMI, body mass index; ABI, ankle brachial index; baPWV, brachial-ankle pulse wave velocity; eGFR, estimated glomerular filtration rate; HbA1c, glycated haemoglobinA1c; HDL-C, high-density lipoprotein cholesterol; SBP, systolic blood pressure; SII, systemic immune-inflammation index. Continuous variables are described as mean (standard deviation) or median (interquartile range) and categorical variables are presented as n (percentages).
A new CVD prediction model

Table 2. The hazard ratio of the predictors in the 16 sequential prediction models. The AIC, AUC and R^2 of the 16 sequential models.

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
<th>Model 7</th>
<th>Model 8</th>
<th>Model 9</th>
<th>Model 10</th>
<th>Model 11</th>
<th>Model 12</th>
<th>Model 13</th>
<th>Model 14</th>
<th>Model 15</th>
<th>Model 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.10</td>
<td>1.10</td>
<td>1.10</td>
<td>1.34</td>
<td>1.11</td>
<td>1.10</td>
<td>1.33</td>
<td>1.36</td>
<td>1.11</td>
<td>1.33</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td>1.47</td>
<td></td>
<td>1.44</td>
<td>1.52</td>
<td>1.44</td>
<td></td>
<td>1.49</td>
<td>1.40</td>
<td></td>
<td>1.44</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log total bilirubin</td>
<td>0.51</td>
<td></td>
<td>0.53</td>
<td></td>
<td>0.52</td>
<td>0.52</td>
<td></td>
<td>0.54</td>
<td>0.53</td>
<td>0.53</td>
<td>0.55</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI</td>
<td>0.01</td>
<td></td>
<td>0.08</td>
<td></td>
<td>0.11</td>
<td></td>
<td>0.08</td>
<td></td>
<td>0.09</td>
<td></td>
<td>0.09</td>
<td>0.08</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td></td>
<td>1.09</td>
<td></td>
<td></td>
<td>1.09</td>
<td></td>
<td>1.10</td>
<td>1.09</td>
<td></td>
<td>1.10</td>
<td></td>
<td>1.10</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age x SBP</td>
<td>0.99</td>
<td></td>
<td>0.99</td>
<td></td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td>0.99</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>1715.69</td>
<td>1714.31</td>
<td>1710.74</td>
<td>1714.71</td>
<td>1709.76</td>
<td>1711.24</td>
<td>1713.79</td>
<td>1708.68</td>
<td>1710.02</td>
<td>1711.46</td>
<td>1707.21</td>
<td>1709.49</td>
<td>1707.12</td>
<td>1706.22</td>
<td>1715.48</td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>0.78</td>
<td>0.79</td>
<td>0.78</td>
<td>0.79</td>
<td>0.78</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.36</td>
<td>0.38</td>
<td>0.39</td>
<td>0.38</td>
<td>0.40</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.40</td>
<td>0.42</td>
<td>0.40</td>
<td>0.42</td>
<td>0.42</td>
<td>0.43</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>
A new CVD prediction model

Table 3. Predictors used in CVDMCM, the Framingham and Wu’s model for males

<table>
<thead>
<tr>
<th>Predictors</th>
<th>CVDMCM</th>
<th>Framingham</th>
<th>Wu’s model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Smoking status</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Antihypertensive medication</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>BMI</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>SBP</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>ABI</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>HDL-C</td>
<td></td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>Total bilirubin</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
A new CVD prediction model

Table 4. Performance of CVDMCM, the Framingham and Wu’s model in the validation cohort for predicting 4-year risk of CVD.

<table>
<thead>
<tr>
<th>Validation statistics</th>
<th>CVDMCM</th>
<th>Framingham</th>
<th>Wu’s model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harrell’s C statistic</td>
<td>0.779 (0.733, 0.825)</td>
<td>0.680 (0.633, 0.727)</td>
<td>0.686 (0.636, 0.736)</td>
</tr>
<tr>
<td>Harrell’s C statistic -test in comparison with CVDMCM</td>
<td><0.001*</td>
<td><0.001*</td>
<td></td>
</tr>
<tr>
<td>D statistic</td>
<td>4.738 (3.270, 6.864)</td>
<td>2.478 (1.731, 3.547)</td>
<td>2.617 (1.823, 3.757)</td>
</tr>
</tbody>
</table>

The brackets represent 95% confidence interval of corresponding validation statistic.

All the statistics were estimated by 1000 iterations bootstrap resampling.

*One-sided significant difference in Harrell’s C statistic (*P < 0.025).*
Participants met the inclusion criteria (N = 2470)

Participants included in this study (n = 2331)
- Event: 115
- No event: 2216

Participants excluded (n = 139)
- Coronary heart disease (CHD) or ischemic stroke at baseline: 70
- Other heart diseases: 9
- Malignant tumor: 42
- History of liver or kidney failure: 18