Title

Female gender, depressive symptoms, manual job, and higher physical disability predict long term low back pain persistence

Short title:

Course and prognosis of long-term low back pain

Authors:

Luís Antunes Gomes¹,²*, Ana Maria Rodrigues¹,²,³, Jaime C. Branco¹,²,⁴, Helena Canhão¹,², Eduardo Brazete Cruz¹,⁵

¹Comprehensive Health Research Centre (CHRC), Portugal
²EpiDoC Unit, CEDOC, NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
³Unidade de Reumatologia, Hospital dos Lusíadas, Lisbon, Portugal
⁴Serviço de Reumatologia do Hospital Egas Moniz - Centro Hospitalar Lisboa Ocidental (CHLO-EPE), Lisbon, Portugal
⁵Physical Therapy Department, School of Health, Polytechnic Institute of Setúbal, Setúbal, Portugal

*Corresponding author:

Email: ftluisgomes@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background: Low Back Pain (LBP) is a long-term health condition with distinct clinical courses. The characterization of these courses together with the identification of prognostic factors of a persistent disabling LBP course has the potential to enable a better identification of patients in high-risk and ultimately allow the development of personalized interventions to change their long-term prognosis. This study aimed to assess the course of chronic LBP (CLBP) over 5 years in a large population-based study, its cumulative impact on disability and health-related quality of life (HRQoL) and the indicators for persistent CLBP course.

Material and methods: Active CLBP participants were identified from a representative sample of 10.661 adults randomly recruited from the dwelling population of EpiDoC. Pain, disability and HRQoL were assessed at three time-points. According to their pain symptoms over time, participants were classified as having a persistent or relapsing pain course. A General Linear Model was used to compare mean differences between and within groups. The relation between baseline variables and persistent CLBP was modulated through logistic regression.

Results: Among the 1.201 adults with active CLBP at baseline, 634 completed the three time-points of data collection (52.8%) and 400 (63.1%) were classified as having a persistent course. Statistically significant interactions were found between the group and time on disability (F(2.126)= 23.78, p<0.001) and HRQoL (F(2.125)= 82.78, p<0.001). In the adjusted model, the persistent course was associated with the disability level (OR: 1.84, CI95% 1.4 to 2.4), presence of depressive symptoms (OR: 1.96, CI95% 1.2 to 3.2), female gender (OR: 1.9, CI95% 1.26-2.87), and having a manual job (OR: 1.46, CI95%
1.02 to 2.1).

Conclusion: In the long-term, CLBP patients have distinct clinical courses. Being female, presenting depressive symptoms, having a manual job and a higher disability at baseline predict a CLBP persistent outcome.
Introduction

Non-specific Low Back Pain (LBP) is one of the most common health problems in societies and is strongly associated with poor self-rated general health [1-4]. It causes severe long-term pain, disability, work absenteeism, and an increased use of healthcare services [1,2].

LBP is traditionally divided into acute (pain of less than 6 weeks), sub-acute (6 to 12 weeks) or chronic (more than 12 weeks) symptom duration [5]. The typical course of acute is initially favorable, i.e., is characterized by a marked reduction in the mean of pain and disability in the first 6 weeks [6]. However, from this point forward, the improvement slows down and the probability of developing a persistent and disabling back pain condition (CLBP – Chronic Low Back Pain) increases for approximately 40% of the patients [6,7]. Some of these patients will recover, but a minority will develop a persistent disabling condition. This minority is responsible for most of the social and health costs associated with LBP [8], to which absenteeism and reduced productivity costs must be added [9].

To better address the individual consequences of persistent disabling LBP on patients and eventually define more appropriate treatment solutions, an improved understanding of its long-term prognosis is needed. Traditionally, LBP episodes have been understood and examined as episodic, recurrent but unrelated [10,11]. Thus, most of the published research is focused on the evaluation of a single episode or presence of pain or disability at specific time-points. It is, therefore, often difficult to know whether a particular study includes individuals with an initial episode of LBP or/and individuals with an exacerbation of a recurrent LBP condition [12,13].
The population-based studies with long-term follow-up (5 to 10 years) published to date have shown that LBP is a persistent long-term condition with a variable clinical course and multiple interrelated episodes [14-21]. Despite differences in the case definition or in the assessment time-points, only 6 to 14% of adults enrolled in these studies reported pain at all specific time-points of the follow-up [18,19]. In contrast, 23 to 35% of the population studied reported that they were "painless at the time of evaluation" [16-18] or had "no day of pain during the previous year" [20]. These results suggest that there is a considerable percentage of individuals reporting pain at a given time who fully recover, while others maintain some level of pain and disability over time, with a small subgroup reporting persistent and potentially disabling pain [16,18-20]. Consequently, the clinical course based on the population mean may not adequately reflect the within-person variation in LBP experienced by individuals, opening the possibility of classifying LBP in clinically relevant subgroups [16,19].

The Epidemiology of Chronic Diseases Cohort Study (EpiDoC), being a population-based study with prolonged follow-up [22-24], produced a set of data that could help identify distinct LBP courses and investigate its impact on disability and quality of life. On the other hand, the presence of distinct clinical courses among LBP patients opens the possibility of identifying prognostic indicators for a persistent LBP course. Although a set of indicators has been associated with the development of persistent and disabling pain [25-30], the majority have emerged from studies that have evaluated pain at a single point of time, with follow-up limited to 1 year [31,32]. The identification of predictors of more disabling LBP course might allow healthcare professionals to better identify the patients at high-risk of persistent disabling symptoms, and eventually change their long-
term prognosis through forms of treatment that best fit and respond to their characteristics [16].

The aim of this study was to investigate the presence of different LBP course patterns across 5 years, to examine its cumulative impact on disability and HRQoL and to compare the contribution of socio-demographic, lifestyle, psychosocial and symptom-related indicators to persistent LBP, using data from the EpiDoC.

Materials and Methods

This study used a longitudinal analysis of active CLBP patients’ data from the EpiDoC. The EpiDoC began with the EpiDoC 1 study (EpiReumaPt) in 2011-13. EpiReumaPt was a population-based study with a representative sample of the Portuguese population, comprised of 10,661 non-institutionalized adults (≥18 years), living in Portugal and able to speak and read the Portuguese language [22,23]. From there, and over a 5-year period, two subsequent time-points of data collection (every 18 months) have been completed, using data based on the same participants [24]. The detailed procedures for the study design and sample selection and recruitment are published elsewhere [23]. Local and regional ethical committees granted ethical approval for this study. All patients gave informed consent after receiving written and oral information about the study [22,23].

This study’s sample consists of all the individuals recruited under the EpiReumaPt study who self-reported active CLBP on the day of the interview [4]. Active CLBP was defined as pain located in the lower back, between the lower thorax and the gluteal folds, that was present most of the time for a minimum period of 90 days, and without a specific
cause. Individuals with a diagnosis of other spinal pain (neck or dorsal back pain) or with LBP lasting less than 90 days were excluded [4].

For the purposes of this study, a more stringent case definition was used. Participants who reported “no pain/discomfort” at baseline when answering to question 4 of the Euroqol, 5 dimensions, 3 levels (EQ-5D-3L) (Regarding pain/discomfort please indicate which statement best describes your health today?), were excluded. Finally, only those participants who participated in all the time-points of data collection (baseline and time-points 2 and 3) were included in the final analysis.

At baseline, data were collected in face-to-face interviews by trained research assessors (RA) based on a standardized questionnaire which included self-report instruments of disability, health-related quality of life (HRQoL), and anxiety and depressive symptoms. At the follow-up time-points, the RA collected the same self-report measures of disability and HRQoL through telephone interviews. To prevent withdrawals, when a participant was not available, a maximum of 6 additional attempts were made at different times [24].

CLBP course across 5 years was represented by a three-digit variable based on the participants’ answer to question 4 of the EQ-5D-3L: from left to right, the first digit stands for CLBP status at baseline, the second for the pain status at time-point 2, and the third for the pain status at time-point 3.

Outcome Measures

The primary outcome considered in this study was “persistent LBP” defined as the presence of moderate or extreme pain/discomfort (question 4 of the EQ-5D-3L) at baseline and in all the subsequent time-points of data collection. Additionally, disability
status and HRQoL were evaluated through the Portuguese versions of the Health Assessment Questionnaire (HAQ) and the EQ-5D-3L [33,34]. The weight applied to the severity states of the EQ-5D-3L was based on the Portuguese valuation study of the EQ-5D-3L [35].

Prognostic Indicators

The selection of potential prognostic indicators for the persistent course pattern of CLBP was based on previous published literature [25-30] and covered four domains: socio-demographic (age, gender, employment status, marital status, and education), lifestyle (body mass index, physical exercise, and its frequency), psychosocial (anxiety and depression) and symptom-related indicators (disability and HRQoL).

Anxiety and depression were measured through the Portuguese version of the Hospital Anxiety and Depression Scale (HADS) which is divided into an Anxiety subscale (HADS-A) and a Depression subscale (HADS-D) (the cut-off used for positive anxiety and depression symptoms was >11) [36,37].

Statistical Analysis

All data analyses were performed using SPSS, Version 24.0 for OX Yosemite (SPSS Inc., Chicago, IL).

Firstly, since complete case analysis may lead to biased results because data are unlikely to be missing completely at random [38], nonresponse bias was assessed by comparing the characteristics of the respondent and non-respondent samples at baseline (time-point 1). A chi-square test and a student’s t-test were used to compare the demographic
and clinical data of responders and non-responders, as appropriate.

Secondly, and as different CLBP courses were expected, descriptive statistics were planned for different CLBP groups. Baseline characteristics were then compared using the chi-square test and independent *t*-test for categorical and continuous variables, respectively. Differences between groups on disability and HRQoL, over time, were examined using repeated measures analysis of variance (General Linear Model procedure).

Finally, to identify prognostic indicators, associations between the baseline variables and the persistent course of CLBP were modelled through binary logistic regression analysis. A multiple logistic regression was used through backward conditional procedure. All comparisons were adjusted for variables that reveal statistically significant differences in bivariate analysis (*p*<0.20). The non-significant variable with the highest *p*-value was removed in a stepwise manner until all variables had *p*<0.05.

The results are presented as crude and adjusted odds ratios (OR) with 95% confidence intervals.

The discriminative ability of the model was assessed through the area under the receiver operating characteristic curve (AUC), ranging from 0.5 (no discrimination) to 1.0 (perfect discrimination) [39]. All *p* values are two-sided, and the significance level was 5%.

Results

Of the 1,201 selected participants with active CLBP at baseline (time-point 1), 634 (52.8%) completed all the time-points of data collection (complete data on main outcomes - EQ5D index and HAQ). Non-responders at time-point 2 and/or 3 were lost
due to unsuccessful contact and for other reasons (participants refused to sign the
consent form for follow-up, expressed the wish to leave the study, had an invalid contact
or have died) (Fig 1).

Fig 1. Flow diagram of recruitment

At baseline, no statistically significant differences in socio-demographic and clinical
characteristics were found between responders and non-responders, except for HRQoL
(EQ-5D-3L index, *p*=0.005), with responders reporting a statistically significantly lower
HRQoL. The participants were aged 61.6 ± 13.6 years, predominantly females (78.4%)
and with a low educational level (64.4%). Considering the 3 time-points of data
collection, 400 (63.1%) participants were classified as having a persistent LBP course and
234 (36.9%) as having a relapsing LBP course. Of the 234 participants classified with a
relapsing LBP course, 63 (26.9%) reported no pain in time-points 2 and 3 (pain/no
pain/no pain), 49 (20.9%), an intermittent pattern of pain (pain/no pain/pain), and 122
(52.1%), reported no pain only in the third time-point (pain/pain/no pain). The
characteristics of the relapsing and persistent subgroups are presented in Table 1.

Table 1. Socio-demographic characteristics of the participants at baseline. Total sample and groups

<table>
<thead>
<tr>
<th></th>
<th>Total Sample (n=634)</th>
<th>Relapsing LBP Course (n=234)</th>
<th>Persistent LBP Course (n=400)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years) (Mean ± SD)</td>
<td>59.6 ±15.1</td>
<td>62.7 ±12.7</td>
<td></td>
</tr>
<tr>
<td>Female gender</td>
<td>497 (78.4%)</td>
<td>158</td>
<td>339</td>
</tr>
<tr>
<td>Educational level (%) (n = 634)</td>
<td>408 128 31.37 280 68.63</td>
<td>113 56 49.56 57 50.44</td>
<td>65 23 35.38 42 64.62</td>
</tr>
<tr>
<td>0–4 years</td>
<td>113 56 49.56 57 50.44</td>
<td>65 23 35.38 42 64.62</td>
<td></td>
</tr>
<tr>
<td>5–9 years</td>
<td>113 56 49.56 57 50.44</td>
<td>65 23 35.38 42 64.62</td>
<td></td>
</tr>
<tr>
<td>10–12 years</td>
<td>113 56 49.56 57 50.44</td>
<td>65 23 35.38 42 64.62</td>
<td></td>
</tr>
<tr>
<td>>12 years</td>
<td>113 56 49.56 57 50.44</td>
<td>65 23 35.38 42 64.62</td>
<td></td>
</tr>
<tr>
<td>Marital status (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Statistically significant differences were found between groups for age (p=0.008), educational level (p=0.001), HRQoL (EQ-5D-3L Index, p=0.005) and disability (p=0.005). The participants in the persistent subgroup are older and less educated, have higher levels of disability and lower HRQoL (Table 2). Moreover, statistically significant associations were found between gender (p<0.005), anxiety (p=0.024) and depressive symptoms (p<0.005), and the type of LBP condition (relapsing or persistent).
Table 2. Health Related Quality of Life and functional status at the different time-points, in "relapsing" and "persistent" LBP subgroups (n=634).

<table>
<thead>
<tr>
<th>Time-point 1 (Baseline)</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ-5D-3L index</td>
<td>0.52 ± 0.19</td>
<td>0.43 ± 0.19</td>
<td>< .0005</td>
</tr>
<tr>
<td>Score HAQ (n=634)</td>
<td>0.76 ± 0.69</td>
<td>1.13 ± 0.70</td>
<td>< .0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time-point 2</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ-5D-3L index</td>
<td>0.58 ± 0.28</td>
<td>0.30 ± 0.23</td>
<td>< .0005</td>
</tr>
<tr>
<td>Score HAQ (n=631)</td>
<td>0.38 ± 0.55</td>
<td>0.69 ± 0.80</td>
<td>< .0005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time-point 3</th>
<th>Mean ± SD</th>
<th>Mean ± SD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQ-5D-3L index</td>
<td>0.70 ± 0.32</td>
<td>0.34 ± 0.24</td>
<td>< .0005</td>
</tr>
<tr>
<td>Score HAQ (n=631)</td>
<td>0.55 ± 0.60</td>
<td>1.27 ± 0.70</td>
<td>< .0005</td>
</tr>
</tbody>
</table>

(1) HAQ: A lower HAQ disability score indicates better function; (2) HRQoL EQ-5D-3L index: “1” corresponds to the best possible health, and “0” to death. Negative values correspond to states of health considered to be worse than death.

Course of disability and HRQoL between groups, overtime

HRQoL and disability status have improved over time in the "relapsing group”, whereas in the “persistent group” they have remained relatively stable (Table 2). Statistically significant interactions were found between the group (relapsing or persistent) and time (time-point 1 to 3) on disability ($F (2,1258)=23.779, p<0.001$), and HRQoL (EQ-5D-3L index), ($F (2, 1252)=82.779, p<0.001$). At any time-point there were statistically significant differences on disability ($p<0.005$) and HRQoL (EQ-5D-3L index, $p<0.005$), between groups. Moreover, and over time, an opposite pattern of impact was found between groups; comparing to baseline, HRQoL was statistically significantly higher ($p<0.001$) and disability significantly lower ($p<0.001$) at time-point 3 in the relapsing
group, whereas HRQoL statistically significantly decreased ($p<0.001$) and disability significantly increased ($p<0.001$) in the persistent group.

Prognostic Indicators for the persistent CLBP course

After adjustments, a persistent course of moderate to extreme pain or discomfort was associated with the disability score at baseline, positive depressive symptoms, being female and having a manual job. Participants with higher disability scores at baseline had a higher OR for persistence of pain (1.84, CI95% 1.4-2.4, $p=0.001$). Participants with positive depressive symptoms, manual workers and females have also a higher probability of developing a persistent CLBP course than non-depressive participants (OR: 1.96, CI95% 1.2-3.2, $p=0.007$), non-manual workers (OR: 1.46, CI95% 1.02-2.1, $p=0.04$), and males (OR: 1.9, CI95% 1.26-2.87, $p=0.002$) (Table 3).

Table 3. Odds Ratios (95% Confidence Intervals) for the associations between **prognostic indicators** and the persistent course of CLBP (n=400).

<table>
<thead>
<tr>
<th>Prognostic indicators</th>
<th>Persistent CLBP Course</th>
<th>Crude OR</th>
<th>CI 95%</th>
<th>p-value</th>
<th>Adjusted OR</th>
<th>CI 95%</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographic Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (continuous)</td>
<td>1.02</td>
<td>1.01-1.03</td>
<td>0.006**</td>
<td></td>
<td>1.9</td>
<td>1.26-2.87</td>
<td>0.002</td>
</tr>
<tr>
<td>Gender (ref male)</td>
<td>2.67</td>
<td>1.82-3.93</td>
<td>0.001**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Level (ref Secondary or higher Education)</td>
<td>1.45</td>
<td>0.94-2.22</td>
<td>0.093*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status (ref living alone)</td>
<td>1.10</td>
<td>0.79-1.54</td>
<td>0.567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychosocial indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anxiety positive symptoms (Ref no)</td>
<td>1.51</td>
<td>1.05-2.17</td>
<td>0.025**</td>
<td></td>
<td>1.96</td>
<td>1.21-3.18</td>
<td>0.007</td>
</tr>
<tr>
<td>Depressive positive symptoms (Ref no)</td>
<td>2.69</td>
<td>1.71-4.23</td>
<td>0.001**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employment status (ref working)</td>
<td>1.27</td>
<td>0.90-1.80</td>
<td>0.175*</td>
<td></td>
<td>1.46</td>
<td>1.02-2.1</td>
<td>0.040</td>
</tr>
<tr>
<td>Manual worker (Ref no)</td>
<td>1.70</td>
<td>1.21-2.40</td>
<td>0.002**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (Ref Underweight/normal weight)</td>
<td>1.44</td>
<td>0.99-2.08</td>
<td>0.055*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical exercise (Ref yes)</td>
<td>1.06</td>
<td>0.72-1.58</td>
<td>0.756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom-related Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain (Question 4- EQ-5D-3L) (Ref Moderate pain)</td>
<td>1.53</td>
<td>0.93-2.52</td>
<td>0.091*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disability (HAQ², 0-24)</td>
<td>2.19</td>
<td>1.71-2.90</td>
<td>0.001**</td>
<td></td>
<td>1.84</td>
<td>1.4-2.4</td>
<td>0.001</td>
</tr>
<tr>
<td>HRQoL (EQ5D® Index, 0-1)</td>
<td>0.74</td>
<td>0.03-0.19</td>
<td>0.001**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Under the Curve (AUC)</td>
<td>0.70</td>
<td>0.68-0.74</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.2; **P<0.05; ***P<0.01.
Discussion

The aim of this study was to investigate the presence of different LBP symptoms’ courses during a follow-up period of 5 years, to examine its cumulative impact on disability and HRQoL and to quantify the contribution of different prognostic indicators in predicting the long-term persistence of symptoms. To our knowledge, this is the first large prospective study that addresses the long-term course and prognosis of a restricted sample of active CLBP patients. Its results provide evidence for different symptoms’ courses among people classified as chronic patients according to the traditional temporal categorization of LBP, suggesting that classifying LBP simply as acute or chronic is insufficient [5-17], and supporting the current understanding of LBP as a relapsing condition of interrelated episodes of pain [11,14,18-20].

In this study, 26.9% of participants reported at least one time-period of complete remission of LBP symptoms. This result is consistent with other long-term population studies’ findings that reported values of pain-free people in all follow-up points between 23 and 35% [18-20]. Contrary to previous studies, the proportion of participants that had reported a persistent symptoms’ course at all follow-up points (63.1%) was substantially higher, with values ranging from 6 to 29% [18-20]. These differences might be explained in part by differences in sample characteristics [7], or the long-standing LBP definition used and data collection methods [18-20,41]. In this study, and since no questions were made to participants regarding their LBP symptoms between time-
points, it is possible that the persistent group includes people with continuous mild pain with low impact and people with a fluctuating symptoms course that varies between severe pain episodes with a large impact on their live and pain-free periods [15].

The results obtained regarding the course of disability and HRQoL seem to support this relapsing course of LBP symptoms. Despite statistically significant differences between groups at all follow-up time-points, both groups share a similar relapsing pain pattern over time. Nevertheless, it is important to highlight that statistically significant differences found between the baseline and time-point 3 indicate that disability decreases over time in the relapsing group and increases over time in the persistent group. Comparisons of this study’s findings with other studies are difficult since those designed to describe the long-term course of disability and/or HRQoL are rare.

The present study explored potential prognostic indicators for persistent LBP. Although there is a vast amount of studies dedicated to risk factors for the onset of LBP or concerned with the transition of acute to CLBP, few studies investigated prognostic indicators for persistent CLBP over periods of more than 1 year. In this study, being female, have a manual job, presenting positive depressive symptoms, and reporting disability, increases the chances of a persistent long-lasting LBP. These indicators are consistent with findings reported in other studies [42-46].

Overall, the four indicators identified show a moderate ability to distinguish between relapsing and persistent courses (AUC 0.70). This result limits the capacity of these indicators to identify at presentation patients who are at risk for persistent disabling symptoms, and suggests that other potential prognostic factors (e.g., physical, or psychosocial) should be considered to predict persistent LBP.
Strengths and Limitations

Strengths of the current study include its long-term prospective design, the large sample size, data on the long-term impact of persistent versus relapsing CLBP courses on disability and HRQoL and the identification of prognostic indicators for the persistent subgroup.

Nevertheless, some methodological limitations must be considered. First, only 52.8% of the baseline sample responded to both follow-ups. Although participants included in this study were similar to those lost, except for HRQoL, the possibility of selection bias and residual confounding cannot be ruled out.

Another limitation already mentioned was the lack of information regarding LBP symptoms between data collection periods. Future studies should seek to enroll patients with an identical starting point of LBP symptoms’ and follow them more frequently over time, to allow a better understanding on whether a certain moment of pain is due to a recurrence episode of pain or a persistent pain course. This distinction will make it possible to better distinguish different courses of pain among CLBP patients and potentiate the design of specific interventions whether to reduce the number of recurrences, in patients with relapsing course, or to promote self-management in patients with a persistent course. Furthermore, and although positive depressive symptoms were significantly associated with persistent LBP, not all potentially important psychological constructs were included in the present study. For example, fear of pain, catastrophizing [47], and illness perceptions were found to be the strongest predictors of poor prognosis in previous research [48].
Conclusions

The results of this study provide evidence on the long-term course of back pain and suggested that people with CLBP might have different clinical courses ahead and different prognosis in the long-term. It also provides relevant information about how persistent CLBP might affect disability and HRQoL over time. Depressive and female patients that have a manual job and report disability, have higher chances to develop a persistent long-lasting LBP.

Acknowledgments

The authors team wish to acknowledge the contribution of Professor Carla Nunes for the conceptualization and formal analysis of the current study.
References

41. Waxman R, Tennant A, Helliwell P. A prospective follow-up study of low back pain in...

Time-point 1/ Baseline
(September 2011 to December 2013)
Sample reported in Gouveia et al. (4)
286 participants excluded for not meeting the active pain EQ5D criteria
1487
1201
Time-point 2
(March 2013 to September 2015)
320 participants were excluded for not participating in Wave 2
881
Time-point 3
(September 2015 to July 2016)
215 participants were excluded for not participating in Wave 3
666
32 were excluded for not participating in Wave 2 or 3
634
"Complete case analysis"