Bibliometric study of preclinical, clinical, and public health systematic reviews and meta-analyses in Ethiopia: systematically mapping publication outputs, authors’ collaboration networks, trending research topics, and influential articles

Tesfa Dejenie Habtewold1,2,*, Nigussie Tadesse Sharew3,4, Aklilu Endalamaw5,6, Henok Mulugeta7,8, Getenet Dessie9, Nigus Gebremedhin Asefa2, Getachew Mulu Kassa10,11, Wubet Alebachew Bayih12, Mulugeta Molla Birhanu13, Andreas A. Teferra14, Abera Kenay Tura15,16, Balewgize Silesi Tegegne2,17, Sisay Mulugeta Alemu18

1Department of Quantitative Economics, School of Business and Economics, Maastricht University, Maastricht, the Netherlands
2Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
3Department of Nursing, College of Health Science, Debre Berhan University, Debre Brehan, Ethiopia
4Interdisciplinary Centre Psychopathology and Emotion regulation (ICPE), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
5Department of Nursing, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
6Division of Planetary Health and Health Protection, School of Public Health, The University of Queensland, Brisbane, Australia
7Department of Nursing, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
8School of Nursing and Midwifery, Faculty of Health, University of Technology Sydney, Sydney, Australia
9Department of Nursing, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
10Department of Public Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Maternal and Child Health Research Program, School of Public Health, Harvard T.H. Chan, United States of America
Department of Nursing, College of Health Sciences, Debre Tabor University, P.O. BOX 272, Debre Tabor, Ethiopia
Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH, United States of America
Department of Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
Department of Obstetrics and Gynecology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
Department of Statistical Genetics, Columbia University, Columbia, United States of America
Department of Public Health, University medical center Groningen, University of Groningen, Groningen, the Netherlands

*Corresponding author
Tesfa Dejenie Habtewold, PhD
Department of Quantitative Economics
School of Business and Economics
Maastricht University
Tongersestraat 53
6211LM, Maastricht, Netherlands
+31(0)657757862
tesfadej2003@gmail.com
Abstract

Introduction: The publication rate of systematic reviews (SRs) and meta-analyses (MA) has been substantially growing in Ethiopia. However, there is no robust study that systematically characterized these SRs and MA. The objective of this study was to map authors’ collaboration networks and identify trending research topics and most cited SRs and MA in Ethiopia.

Methods: SRs and MA published up to December 31, 2021, were searched in PubMed, PsycInfo, EMBASE, and Web of Science databases. We included all SRs and MA based on preclinical, clinical, and public health primary studies associated with the Ethiopian population irrespective of the place of publication and authors' affiliation. Full record and cited references meta-data of SRs and MA were extracted from the Web of Science Core Collection database. VOSviewer software was used to perform bibliometric analysis and create, visualize, and explore network maps of authors' collaboration, keyword and term occurrences, journals and (co-)citations using the full or binary counting method. The relevance of an item and strength of link between items was measured by their weight (frequencies) and total link strength (TLS) respectively.

Results: In total, 422 SRs and MA were included in our analysis that published by nearly 14 research groups (1,066 authors participated) who affiliated with institutions from 33 countries. The largest number of SRs and MA were published by authors affiliated with institutions in Amhara region. These SRs and MA were published in 160 journals, which most of them published in PLOS ONE and BioMed Central journals. Strong collaboration was observed among authors affiliated with institutions in Ethiopia, the Netherlands, Australia, and Canada. The trending research topics were maternal and child health, infectious disease (except HIV/AIDS), depression and substance use, nutritional problems, HIV/AIDS, hepatitis, and cardiometabolic diseases and risk factors. The most cited SR was published on domestic violence against women in 2015.

Conclusions: In this study, for the first time, we provided a comprehensive summary of active author collaboration networks, trending research topics, and influential SRs and MA to gain a deeper understanding of SRs and MA researches outputs in Ethiopia. We believe our study informs researchers, higher institutions, and policymakers about trends and gaps in preclinical, clinical, and public health studies. National and international authors collaboration should...
encourage and stakeholders fund researchers to increase the output of primary studies, publication rate of SRs and MA, and broaden research areas to less explored topics.

Keywords: Bibliometric Analysis, Scientometric Analysis, Systematic Review, Meta-analysis, Overview, Natural Language Processing, text mining, Ethiopia
Introduction

Medical knowledge traditionally differs from other domains of human culture by its progressive nature and the need for clear standards or criteria for diagnosing, treating, and identifying clinical improvements and advances. Health sciences are becoming more evidence-based with the emergence of new methodologies and technologies to meet these standards and to explore the underlying reasons for complex health problems.(1) Clinicians and researchers can get the best up-to-date evidence on a particular topic of interest within a fraction of a second through searching Google or international databases, such as PubMed, Web of Science, Scopus. However, the overwhelming production of literature with too many findings, often contradictory and irreproducible is the main challenge to select the relevant findings. Previous evidence showed that medical and health science suffers from a serious replication crisis.(2) One of the major goals of health sciences is to achieve precision in measuring and solving health problems. In recent years, methodologists in healthcare and allied sciences have been interested in balancing accuracy or precision while creating more reliable and generalizable evidence using different approaches. In these discourses, a systematic review (SR) and meta-analysis (MA) became increasingly popular to synthesize evidence from primary observational and experimental studies to fulfill the intellectual and practical needs of different stakeholders in healthcare, and to minimize the evidence inconsistencies.(1)

SR is of the art of synthesis of evidence from primary studies and has been systematically conducted to provide up-to-date evidence for health care decisions by addressing a single specific research question. MA is a systematic review aiming to produce a single quantitative estimate by combining the findings from individual primary studies using appropriate statistical methods that reduce biases and random errors. SR and MA are powerful tools to precisely estimate health service coverage, diseases burden, for identification of relevant associated factors, and to recommend effective and efficient interventions for use in daily health care practice. Thus, they are indispensable for the practice of evidence-based medicine and medical decision-making. It has often been claimed that the number of SRs and MA being published has been increased steadily over recent years at the national, regional, and global levels.(3) In PubMed, the search of the term ‘systematic review’ in the title provided us 167,029 records in 2021 (search date December 24, 2021), whereas searching the term ‘meta-analysis’ in the title provides us 137,830 records. This
shows there is a clear trend of increased publication SRs and MA over time. For example, 28,959 articles were tagged as SRs in MEDLINE in 2014 and 22,774 SRs or meta-analyses were indexed in 2017. (3) In Ethiopia, our research group found out more than 450 SRs and MA were published in preclinical, clinical, and public health fields (not published) as of March 16, 2021, which is nearly four times the publication rate in 2018. (4)

Efficient use of SRs and MA evidence needs robust estimates of publication trends and characteristics of SRs and MA. In this perspective, Bibliometric study has a crucial role to achieve this objective. It is a cross-sectional, cross-discipline study, which quantitatively analyzes thousands of publications (i.e., primary studies, reviews, editorials/commentaries, books, and other media communication) as a research object by using mathematical, statistical, and philology methods using text data mining from Bibliographic databases, which are believed to be representative samples of publication activity in the field of knowledge. (5, 6) Bibliometric methods use data from citation databases to measure, monitor, visualize and study publication trends, research gaps as well as the impact of scientific outputs. The term bibliometrics was first used by Pritchard in 1969 and the first bibliometric study (7) was published in 1988 according to web of science record. In literature, it is common to use bibliometric and Scientometric terms interchangeably. (5) In 2022, The terms ‘bibliometric analysis’, ‘bibliometric study’, ‘scientometric analysis’, or ‘scientometric study’ are indexed in 6,797 titles (search date: January 26). The aims of the bibliometric study are for understanding the mechanisms of scientific research as a social activity, to determine the growth of scientific production and relationship among many papers. Additionally, a bibliometric study provides valuable information in a particular area, evaluating scientific developments in knowledge on a particular subject, comparing research performance between different authors, organizations, and countries, investigating their strength of influence, and evaluating current trending research topics. Moreover, bibliometric studies make it possible for researchers to save time in terms of literature review and to get new ideas by showing the previous and the last approaches of the researchers.

In developed countries, for example, they use PURE (corporate tool) to manage, present, and share output, activities, press/media, prizes, and datasets. PURE can be used to make overviews or analyses for authors, departments, research institutes, or programs. Besides, the number of publications serves as one of the standards to reflect the research and development of certain fields,
organizations, journal impact, author's scientific index. Many research fields also use bibliometric methods to explore the impact of their field. (8) Bibliometric analysis has been used in many research areas including environmental sciences ecology, public environmental occupational health, general internal medicine, neurosciences neurology, surgery, psychology, and health care sciences services. Bibliometric analysis is also used to examine the global literature outputs on a specific topic, for example, an overview of systematic reviews in healthcare (9), schizophrenia (10), infectious diseases (11), asthma (12), suicidal behavior. (13) Given the large publication rate of SRs and MA in Ethiopia during the last few years and their important role in decision-making and guideline development, an analysis of research trends and gaps would meaningfully inform future direction and priority setting for key stakeholders. However, to date, there is no bibliometric study has been conducted in the preclinical, clinical and public health field to investigate the growth in publications and the research landscape of SRs and MA in Ethiopia. Additionally, the tracking and documentation system of publications by institutions is inadequate in Ethiopia. We, therefore, aimed to conduct, for the first time, a bibliometric analysis using a large sample of OoSRs published between 2000 and 2020. Therefore, for the first time, our study aimed to systematically investigate and map networks of leading authors, organizations, and countries in publishing SRs and MA in preclinical, clinical, and public health fields in Ethiopia up to December 31, 2021. In addition, we identified trending research topics and influential SRs and MA. The findings of this study will help researchers, health care practitioners, and higher institutions to identify the research hotspots and emerging trends, and current state of knowledge.
Methods

Protocol
The protocol for this study was registered with the Open Science Framework (OSF) (https://osf.io/q5dw2/).(14) Additionally, all the data used and supplementary materials are available in this database.

Search strategy
Systematic Reviews (SRs) and Meta-analyses (MA) articles in Ethiopia were searched in PubMed (via NCBI), PsycInfo (via EBSCOhost), EMBASE (direct access), and Web of Science (direct access) international databases from inception to December 31, 2021. We used “Ethiopia” and “Ethiop*” as search terms in PubMed, PsycInfo, EMBASE, and CINAHL, and then, the search was further narrowed by article type (i.e., meta-analysis, review, systematic review) and species (i.e., human) in PubMed, methodology (i.e., metasynthesis, meta analysis, systematic review, literature review) in PsycINFO, study type (i.e., systematic review, meta-analysis, human) in EMBASE and publication type (i.e., meta-analysis, meta synthesis, review, systematic review) in CINAHL. In Web of Science Core Collection, “systematic review”, “meta-analy*”, “meta analy*”, and “meta synthesis” search terms combined by “AND” and “OR” Boolean operators were used because the limiters are not indexed. These terms were searched in the title, abstract, keywords, and keywords plus of the SRs and MA. Our database search was supplemented by hand searching of local journals, such as Ethiopian Medical journal, Ethiopian Journal of Reproductive Health (as they are not indexed in the above databases) to retrieve potentially relevant missing studies. Grey literature and unpublished/preprint SRs and MA databases were not searched.

Inclusion and exclusion criteria
SRs and MA that fulfilled the following criteria were included. First, the article title must be identified as a SR and MA by the author(s). For articles that did not identify as SR and MA or ambiguous, we inspected relevant information in the methods and results section, and consulted Cochrane guideline(15) to decide the inclusion of the article. Second, SRs and MA must be based on preclinical, clinical, and public health primary human studies associated with the Ethiopian population irrespective of the place of publication and authors’ affiliation. Third, the SRs and MA must be published in journals indexed in the Web of Science database because the analyses were done using data obtained from this database. Original and updated versions, and duplicates (i.e., only the title or topic is similar) of SRs and MA were considered as separate publications and were
included in our analysis as they have different publication dates, separate number of citations, and include different authors and affiliations. SRs and MA protocols, non-systematic reviews (e.g., scoping, historic, literature, or narrative reviews), exact duplicates (i.e., all the title and authors are the same), conference abstracts, grey literature, commentaries and letters to the editors, reviews following case reports, and SRs and MA in non-human research subjects were excluded. In addition, SRs and MA based on non-medical and -health science, and international primary studies were excluded. Furthermore, SRs and MA without full text were excluded after three attempts (i.e., contacting corresponding authors, searching in ResearchGate, searching in free scientific article downloading sites).

Screening, selection, and data extraction

All retrieved records found through database search were imported to EndNote X9 software(16) and then to Covidence web-based reference management tool(17) using the RIS text format for removing duplicates and to conduct further screening and selection. First, duplicates were automatically removed by Covidence and when not detected, manual removal of duplicates was also done. Then, double-blinded title and abstract screening were done by two independent reviewers (TD and SM) using Covidence. Next, each SR and MA full-text file was downloaded using EndNote X9 software(16) and imported to Covidence again. Afterward, a double-blinded full-text review was done by two independent reviewers (TD and NT) based on prior-specified inclusion and exclusion criteria. The priority of each criterion to exclude articles presented as follows: full-text not accessible, non-systematic reviews, continental or worldwide SRs and MA, and non-human study subjects. Disagreements during these steps were resolved by discussion and involvement of a third reviewer (NT and SM) when necessary. Meta-data including full record and cited references (up to December 20, 2021 for 302 SRs and MA, and up to December 31, 2022 for 120 SRs and MA) of each SR and MA were extracted from the Web of Science Core Collection database. The full record includes title, authors and their information, source, abstract, all keywords (author keywords and keywords plus), funding, publisher, categories/classification, document information, and journal information. To access the meta-data, a personal or institutional subscription to the Web of Science database is required. Web of Science, previously known as ISI Web of Knowledge, is a research platform providing access to multidisciplinary and regional citation indexes, specialist subject indexes, a patent family index, and an index to scientific data sets. The Web of Science also provides a common search language, navigation environment, and
data structure allowing researchers to search broadly across disparate resources and use the citation connections inherent to the index to navigate to relevant research results and measure impact. Since the 1900s, the Web of Science Core Collection is a recognized database that indexes >21,894 journals plus books and conference proceedings in natural sciences, health sciences, engineering, computer science, and materials sciences disciplines.(18) It is one of the most commonly used databases for many bibliometric studies. (10-13)

Data analyses

All bibliometric text data extracted from Web of Science Core Collection were exported to VOSviewer software (i.e., VOS stands for visualization of similarities) for bibliometric analyses. We also used ArcGIS and R software to make national and global maps and summarize relevant bibliometric indicators respectively. VOSviewer is one of the software used to create, visualize, and explore network maps of authors' collaboration, keywords and terms co-occurrence, (co-)citations, and bibliographic coupling.(19, 20) To evaluate the strength of link between items, we used Total Link Strength (TLS), which is automatically calculated by VOSviewer upon the mapping of the selected item of analysis. The TLS is proportional to the degree of link, where a higher TLS value indicates a greater relationship between items. Bibliometric indicators were presented as top active ones, most occurrences, or most citations based on items frequency distribution. For network mapping, the threshold value of weights (i.e., the measure of the relevance of an item) was set as follows: (1) the minimum number of co-authorship was three; (2) the minimum number of institutional and international collaboration was one; (3) the minimum number of occurrences for a keyword and term in the SRs and MA was five and 10 respectively; (4) the minimum number of a citation for SRs and MA was zero; (5) the minimum number of SRs and MA, and citations of a journal for bibliographic coupling analysis was two and zero respectively; and (6) minimum number of co-citation for cited references was seven. Additionally, the minimum cluster size was set to five items per cluster. Structured abstract labels (e.g., introduction or background, objective, methods, results, conclusions), copyright statements, and weakly connected items were excluded during text analyses and visualization of network maps. Full counting method (i.e., each link has the same weight) was used for co-authorship (unit of analysis were authors, organizations, and countries), co-occurrence of keywords (unit of analysis were all keywords), bibliographic coupling (unit of analysis or items were sources/journals), and co-citation (unit of analysis were cited references) analyses. For citation analysis, the unit of
analysis was SRs and MA. Texts in the title and abstract fields were analyzed to create a term cooccurrence network map and a binary counting method (i.e., only the presence at least once or absence of a term in the SRs and MA) was used. In this study, network visualization maps interpreted as follows: (1) node or item size represents the frequency or weight of occurrence of that item (e.g., authors, organizations, or keywords), where the larger node size and label represent the most frequent or relevant items in the SRs and MA; (2) the thickness of the connecting line (aka link strength or edge weight) represents the strength of the link between the connected items (e.g., a research collaboration among authors from different countries), where the larger TLS represents the strong link between items; and (3) the different colors represent different clusters (e.g., research group, or research theme). Details on the terminologies, types of analyses, counting methods, unit of analysis, and interpreting network visualization maps are presented in the VOSviewer original paper (19) and its manual (21).
Results

Search results
In total, 4,021 records were retrieved through searching PubMed (n = 1,357), PsycInfo (n = 117), EMBASE (n = 1,174), CINAHL (n = 439) and Web of Science (n = 934) databases. After automatically and manually removing duplicate records (n = 1,584), 2,437 titles and abstracts were screened. Of these, 1,915 records were excluded due to various reasons, for example, regional or international systematic reviews (SRs) and meta-analyses (MA), non-related titles, case reports, primary studies, protocols, non-systematic reviews, and commentaries, corrections, and editorials. As a result, 522 SRs and MA were selected for full-text review. Five SRs and MA were excluded because of the inaccessibility of full-texts after several attempts. After full-text review, 71 regional or international, 15 non-systematic, and three animal study SRs and MA were excluded. Besides, one position paper was excluded. Moreover, 46 SRs and MA were excluded because they were published in journals not indexed in the Web of Science database, and two SRs and MA were published before Web of Science started indexing journals. Through hand searching of the table of contents of local journals and Google, we found an additional 38 records and 14 of them fulfilled our inclusion criteria. Finally, 422 SRs and MA were included for bibliometric analysis. The PRISMA flow diagram of the screening and selection process of identified studies via database and hand searching is shown in Fig. 1.
Fig. 1: PRISMA flow diagram of literature identification, screening, and selection process.
Active authors

In total, 1,066 authors were involved in publishing the 422 SRs and MA, which was an average of 2.53 authors per SR and MA. We observed approximately 14 research groups (clusters) were actively working on publishing SRs and MA. Of the 1,066 authors, 126 authors who have been published at least three SRs and MA, and strongly collaborated were included for cluster analysis and network visualization mapping (Fig. 2). As a result, we presented the collaboration network of 126 authors (Fig. 2). The most active top 20 authors who published the highest number of SRs and MA were Endalamaw A (n = 23), Dessie G (n = 19), Alebel A (n = 19), Kassa GM (n = 18), Habtewold TD (n = 16), Wagnew F (n = 16), Mulugeta H (n = 15), Negesse A (n = 15), Desta M (n = 15), Demis A (n = 13), Ketema DB (n = 13), Kibret GD (n = 12), Gedefaw G (n = 12), Assemie MA (n = 12), Eshete S (n = 10), Gebrie A (n = 10), Getaneh T (n = 10), Petrucka P (n = 10), and Bayih WA, Alamneh YM, Geremew D, Leshargie CT, and Wondmieneh A published nine SRs and MA for each.

Fig. 2: Network visualization map of authors' collaboration.
Active institutions

In total, 169 organizations were participated in publishing the 422 SRs and MA. Fig. 3 shows the network map of 151 organizations that involved in published at least one SR and MA, and strongly collaborating. The top active 20 organizations that published the highest numbers of SRs and MA were Debre Markos University (n = 94), University of Gondar (n = 87), Bahir Dar University (n = 81), Addis Ababa University (n = 49), Debre Tabor University (n = 37), Haramaya University (n = 30), Woldia University (n = 27), Jimma University (n = 25), Hawassa University (n = 21), Debre Berhan University (n = 18), University of Groningen (n = 18), Wollo University (n = 17), Dilla University (n = 16), Mekelle University (n = 14), Ethiopian Public Health Institute (n = 14), Wollega University (n = 13), Adigrat University (n = 12), Mizan Tepi University (n = 11), University of Queensland (n = 10), and University of Saskatchewan (n = 10).

Fig. 3: Network visualization map of organizations collaboration.

Active regions and countries
Nationally, authors affiliated to institutions in almost all regions published SRs and MA. The largest number of SRs and MA, which accounts 70.4% (297/422) of SRs and MA, were published by authors affiliated to institutions in Amhara region and followed by Oromia region (24.9%, 105/422) and Addis Ababa city administration (23.5%, 99/422) (Fig. 4). Globally, authors from 33 countries were participated in publishing the 422 SRs and MA. The top active 10 countries that published the highest number of SRs and MA were Ethiopia (n = 411), Australia (n = 35), The Netherlands (n = 20), Canada (n = 14), USA (n = 13), Iran (n = 10), Tanzania (n = 8), Germany (n = 6), and Kenya, England, and People's Republic of China each published four SRs and MA (Fig. S1). All countries except South Korea were included in the international collaboration network mapping. South Korea was excluded because authors were not strongly collaborating with authors in other countries. As shown in Fig. S2, the strongest collaboration was between Ethiopia and Australia (total link strength = 32) followed by that between Ethiopia and The Netherlands (total link strength = 20), and Ethiopia and Canada (total link strength = 14).
Fig. 4: Map of institutional and regional SRs and MA publication outputs. The icon represents location of institutions in the regions or city administrations, and the size represents the total number publications of the institution. Sidama region is not shown in the map because we couldn’t find the geographic co-ordinate from central statistical agency of Ethiopia.

Trending research topics

In total, 1,233 keywords were used in the 422 SRs and MA. Of the 1,233 keywords, 132 keywords used at least in five SRs and MA were included for cluster analysis and network visualization mapping. Overall, we identified seven hotspot research topics based on cluster analysis of keywords (Fig. 5). Cluster 1 (red, maternal and child health) contains 29 keywords mainly focusing on women, maternal morbidity and mortality, neonatal morbidity and mortality, risk, pregnancy, stillbirth, delivery, antenatal care, survival, newborn, trends, outcomes, low birth weight, intensive care unit, and Tigray. Cluster 2 (green, infectious disease) contains 26 items mainly focusing on tuberculosis, MDR-TB, antibiotic and antimicrobial drug resistance, wound infection, urinary tract infection, bacterial profile, diarrhea, food handlers, intestinal parasite, salmonella, Escherichia coli, transmission, susceptibility, burden, Addis Ababa, Bahir Dar, and Ethiopia. Cluster 3 (blue, depression and substance use) contains 20 keywords mainly focusing on depression, symptoms, disorder, maternal depression, postnatal depression, intimate partner violence, khat, substance use, cigarette smoking, alcohol use, student, adults, pattern, magnitude, determinant, and prevalence. Cluster 4 (yellow, nutritional problems) contains 18 keywords mainly focusing on malnutrition, undernutrition, nutritional status, anemia, children, malaria, plasmodium falciparum, intestinal parasitic infection, helminth infection, soil-transmitted helminth, Schistosoma mansoni, medicinal plants, income, age, district, and northwest Ethiopia. Cluster 5 (purple, HIV/AIDS) contains 16 keywords mainly focusing on HIV, HIV/AIDS, ART, initiation, breastfeeding, utilization, adherence, follow-up, intervention, prevention, association, impact, adolescent, barriers, Africa, and Sub-Saharan African countries. Cluster 6 (light blue, hepatitis) contains 13 keywords mainly focusing on hepatitis B, hepatitis C, blood donors, health care worker, infection, seroprevalence, global burden, epidemiology, pooled prevalence, systematic review, meta-analysis, and town. Cluster 7 (orange, cardiometabolic diseases and risk factors) contains 10 keywords mainly focusing on cardiovascular disease, diabetes mellitus, hypertension, obesity, management, complication, guideline, public health, population, and southern Ethiopia. The most frequently used keywords were Ethiopia (257 occurrences),
determinant (142 occurrences), meta-analysis (140 occurrences), prevalence (135 occurrences), systematic review (93 occurrences), women (52 occurrences), children (41 occurrences), HIV (40 occurrences), risk (40 occurrences), district (39 occurrences), health (39 occurrences), epidemiology (35 occurrences), Addis Ababa (33 occurrences), university (31 occurrences) and mortality (29 occurrences) (Fig. 6).

Fig. 5: Network visualization map of keywords and hotspot research topics.

Terms co-occurrence

There were 6,459 terms used in the title and abstract fields of 422 SRs and MA. Of these, 331 terms that occurred in at least 10 SRs and MA were included in the term co-occurrence analysis and network visualization map (Fig. S3). The most frequently occurred terms in the title and abstract fields were Ethiopia (419 occurrences), study (407 occurrences), systematic review (398 occurrences), meta-analysis (374 occurrences), Google scholar (303 occurrences), pooled effect size (276 occurrences), random-effects model (263 occurrences), prevalence (260 occurrences), PubMed (256 occurrences), heterogeneity (244 occurrences), publication bias (195 occurrences), determinant (193 occurrences), data (182 occurrences) and STATA (181 occurrences) (Fig. 6).
Active journals

The 422 SRs and MA were published in 160 different journals in the last 10 years. Of the 160, 57 journals published at least two SRs and MA and presented in the network visualization map (Fig. 7). The top 10 journals that published these SRs and MA in order are PLOS ONE (46 SRs and MA, 268 citations), BMC Infectious Diseases (27 SRs and MA, 287 citations), BMC Public Health (19 SRs and MA, 124 citations), Reproductive Health (14 SRs and MA, 176 citations),
BMC Pregnancy and Childbirth (14 SRs and MA, 86 citation), Biomed Research International (12 SRs and MA, 24 citations), Systematic Reviews (10 SRs and MA, 33 citations), Archives of Public Health (9 SRs and MA, 20 citations), Heliyon (9 SRs and MA, one citation), Italian Journal of Pediatrics (6 SRs and MA, 53 citations), BMC Pharmacology and Toxicology (6 SRs and MA, 44 citations) and BMJ Open (6 SRs and MA, 39 citations). In total, the top 10 journals published 178 SRs and MA, which accounted for 42.2% (178/422) of all publications, and received 9170 citations that accounted for 52.8% (1,155/2,187) of the total citations. Of note, all of these journals are open access.

Fig. 7: Network visualization map of journals that published the SRs and MA.

Influential articles
Table 1: Top most 10 cited SRs and MA, and references ranked by total citation up to December 31, 2021.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Articles</th>
<th>Journal impact factor</th>
<th>Publisher</th>
<th>Total citation</th>
<th>Access</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Most cited references (by the 422 SRs and MA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629-34.(34)</td>
<td>39.89</td>
<td>British Medical Association</td>
<td>96</td>
<td>Open access</td>
<td>10.1136/bmj.g7647</td>
</tr>
<tr>
<td>3</td>
<td>Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557-60.(35)</td>
<td>39.89</td>
<td>British Medical Association</td>
<td>87</td>
<td>Open access</td>
<td>10.1136/bmj.g7647</td>
</tr>
<tr>
<td>4</td>
<td>Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-</td>
<td>39.89</td>
<td>British Medical Association</td>
<td>60</td>
<td>Open access</td>
<td>10.1136/bmj.g7647</td>
</tr>
<tr>
<td></td>
<td>Analyses of studies that evaluate healthcare interventions: explanation and elaboration. Bmj. 2009;339:b2700. (36)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion

To the best of our knowledge, this was the first comprehensive bibliometric study including SRs and MA published up to December 31, 2021 on preclinical, clinical, and public health fields in Ethiopia. In total, 1,066 authors working in 169 institutions that spanned across 33 countries were participated in publishing the 422 SRs and MA in 160 different journals. Through analyzing authors’ keywords and keywords generated by Web of Science, we identified seven trending preclinical, clinical, and public health research topics. The most frequently used keywords and terms were Ethiopia, determinant, meta-analysis, prevalence and systematic review. We also found that SRs and MA were more frequently published by authors affiliated with Amhara region institutions mainly from Debre Markos, Bahir Dar and Gondar universities. We also observed that the most influential SRs/MA was cited 74 times and published on domestic violence against women and the most cited (cited by the 98 SRs and MA) reference was on PRISMA-P elaboration and explanation.

The author who had the largest number of SRs and MA publications was Endalamaw A from Bahir Dar University in Amhara region. He was followed by Dessie G from Bahir Dar University and Alebel A from Debre Markos University in Amhara region. Consistent with the dominance of authors from Amhara region, the most effective institution was Debre Markos University. This institution was followed by the University of Gondar and Bahir Dar University. Internationally, authors in the Netherlands, Australia, and Canada strongly collaborated with authors in Ethiopia. The network of authorship in this study revealed collaborations among authors from different institution and countries indicating that SRs and MA are a type of publication which can facilitate the exchange of scientific knowledge and promote collaboration among scientists.(9) Thus, future authors who planned to conduct SRs and MA studies can communicate and collaborate with these authors and institutions to share experience and further advance the implementation of SRs and MA methods. Besides, a strong and sustainable national and international collaboration between these involved countries and other countries is needed to increase the publication rate, maintain its trend and ensure the quality of SRs and MA studies. These collaborations can also promote a better research culture that supports all individuals involved and may help overcome contextual (e.g., social, economic, cultural environment) and methodological (e.g., specialized skills) challenges to conduct SRs and MA. We do not know...
also the collaboration initiated by authors’ motives or institutions that created the platform. Institutional collaborations are maybe more effective than individually motivated collaboration for involving authors from multiple disciplines. Generally, the publication rate and trend of SRs and MA in Ethiopia is very promising, but also far behind in terms of quantity and quality, and in its infancy stage compared to the output in developed countries. In our current study, we observed that a large number of SRs and MA published in Ethiopia after 2018 even though authors start publishing in 2011 (In preparation).

We found that 160 journals publish SRs and MA in preclinical, clinical, and public health disciplines. PLOS ONE, BMC Infectious Diseases, and BMC Public Health were the most active journals that published a large number of SRs and MA and had a substantial impact on preclinical, clinical, and public health fields with 124 to 287 citations. All of the top publishing journals are fully open access and have an impact factor from 2.48 to 3.41 (Q2 and Q3 rank). Most of them were published by BioMed Central, a United Kingdom-based, for-profit scientific open access publisher, and PLOS, a nonprofit open-access science, technology, and medicine publisher with a library of open-access journals and other scientific literature under an open-content license. These journals can be easily accessible for and cited by all researchers, particularly from developing countries. In general, our study indicates that the level and quality of research in this area are medium and authors who want to publish preclinical, clinical, and public health SRs and MA may consider these journals as a priority.

Our keyword analysis showed that ‘Ethiopia’, ‘determinant’, ‘meta-analysis’, ‘prevalence’, ‘systematic review’, ‘women’, ‘children’, ‘HIV’, ‘risk’, ‘district’, ‘health’, ‘epidemiology’, ‘Addis Ababa’, ‘University’ and ‘mortality’ were the most frequently (≥ 5 SRs and MA) used keywords. The fact that frequent occurrence of these keywords can be interpreted as a sign of the nature of SRs and MA that most of them were focused on the prevalence and associated factor studies. Overall, we observed that maternal and child health, infectious disease, depression and substance use, nutritional problems, HIV/AIDS, hepatitis, and cardiometabolic diseases and risk factors are research topic hotspots in preclinical, clinical and public health disciplines. On one hand, our finding shows that the burden of these problems is currently high and future studies, preventive measures and curative intervention strategies may target these hotspot research areas. On the other hand, the result implies that future studies may focus on other research topics to
minimize duplication of work and broaden the discovery of science. For example, there were fewer publications in the fields of ophthalmology, anesthesiology, otorhinolaryngology, dermatology, health economics, and medical imaging. This fact may be a result of both the research interests of the scientific community and the number of existing primary studies in preclinical, clinical and public health fields. Research activity and funding should be directed towards less explored healthcare topics and address new research questions.(9) Our result is based on the most frequently used keywords in published SRs and MA, and it does not mean other research areas were not entirely investigated. Generally, keywords cluster analysis can facilitate researchers to see relevant trending topics and understand the research direction on the field. On the contrary

The most cited SR published by Semahegn A and Mengistie B was ‘Domestic violence against women and associated factors in Ethiopia; systematic review’. (22) The results of this review indicated that lifetime prevalence of domestic violence against women by husband or intimate partner ranged from 20% to 78% and was significantly associated with alcohol consumption, chat chewing, family history of violence, occupation, educational status, residence, and decision making power. (22) Generally, the most cited SRs and MA conducted on non-communicable diseases (23, 25, 32), diarrhea (28) and nutritional status (31), institutional service utilization (27) and initiation of antenatal care (29), self-medication (26) and hepatitis virus (24), MDR-TB (30), and domestic violence against women. (22) These SRs and MA were frequently cited may be due to the fact that all were published in fully open access journals. Additionally, this may be due to the increasing global burden of non-communicable diseases, tuberculosis, and hepatitis that leads to design different types of studies and developing guidelines. We believe these SRs and MA could have an important impact on the subject. Our study suggests that future authors may be frequently cited and become influential if they will publish SRs and MA on these topic areas.

The most cited reference published by Shamseer was ‘Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015’. (33) Overall, the most cited references were on PRISMA and other reporting guidelines (33, 36, 43, 46), meta-analysis model (37, 40), heterogeneity assessment (35, 38, 39, 44), publication bias assessment (34, 41, 45), quality appraisal (42, 48) and statistical analysis software. (47) In fact, it is not surprising to see these articles are most frequently cited because we included SRs and MA that follow similar
methodological and analytical procedures. Future researchers can easily focus on these articles to read and design their SRs and MA. They are also globally known and used by all researchers who want to conduct SR and MA studies in the medicine and health science field.

Even though the evidence-based practice is believed to be associated with improved health, safety, and cost outcomes, most medical practice in low- and middle-income countries such as Ethiopia is not evidence-based related to limited resources and poor access to up-to-date information. As a result, most health care decision-making tools are based on evidence from developed countries without considering the cultural and socioeconomic differences, and translation into context was limited. For example, a recent study in Ethiopia showed that half of health care providers were unable to find resources for implementing an evidence-based practice that attributed to lack of training and poor health facility infrastructures, such as computers and internet.(49) Therefore, there is a pressing need to develop an evidence base that addresses the requirements of the developing world and getting this evidence into the hands of those who deliver healthcare is fundamental to improvements in healthcare delivery and health outcomes.(50) Therefore, this study can provide useful up-to-date evidence to improve the accuracy of decision-making.

This study has strengths and limitations that can be taken into consideration during reading. Our study's main strength was that we included all SRs and MR that were published to date enabling us to observe trends on authors' collaboration, emerging research topics and most influential SRs and MA. We believe all SRs and MA published to date were included because all top SRs and MA contributing authors consulted and are participated in this study. We used well-established and organized bibliometric data from the Web of Science Core Collection. On the other hand, data from grey literature, and published SRs and MA in journals not indexed by Web of Science were not analysed. In addition, we did not formally assess the methodological or reporting quality with an established tool. Currently, we are working on evaluating the quality of all SRs and MA using the AMSTAR-2 quality appraisal tool (In preparation). Instead, we focused on the quantitative analysis of bibliometric data. The other limitation was the method for counting the number of SRs and MA for each author, institution, or country. A SR or MA with several authors having the same country affiliation may be counted once for that country. However, a SR or MA with two authors having two different country affiliations was counted once for each country.
This may increase the research output of certain countries with greater international research collaboration even if the authors from that country were not the main or corresponding author. Another limitation is, although, we performed a careful manual cleaning and validation of the extracted data to avoid typographical and indexing errors, we acknowledge that this procedure does not assure with certainty that the results were completely accurate. Moreover, the citation analysis did not take into consideration the self-citations, which could create a bias in the number of citations for documents, countries, journals, and authors. In our current study, we investigated citation (with and without self-citations) count of included SRs and MA (In preparation).

The value of bibliometric studies has been increasing because it provides the opportunity to summarize emerging study designs such as SRs and MA, which have increasing publications trends in different disciplines. Our research could be further complemented by more detailed analyses of the areas of increased primary studies activity, but with less research activity in SRs and MA and vice versa, explore the methods and content for sub-groups of studies (e.g., different types of SRs and MA, different healthcare subject categories) and assess the reporting quality of these SRs and MA. Future research could provide clarity and descriptive insight into the different types and characteristics of SRs and MA. The findings of our bibliometric analysis have the potential to inform key stakeholders (overview authors, scholarly journals, policy makers, funding agencies) about trends (e.g., top journals, countries and institutes, collaborations) and gaps (e.g., subject categories and diseases that are less explored, countries/regions with less research activity) in the production of SRs and MA, and guide future research agenda for funding and conducting SRs and MA. As a result, this information may help avoid duplication of research effort and waste of valuable resources. Our study has yielded important results by providing researchers, research institutions, and stakeholders in the field of health science and medicine with a comprehensive analysis of 422 published systematic reviews (SRs) and meta-analyses in Ethiopia to date.

Conclusion

The production of SRs and MA has recently seen a significant increase in Ethiopia, involving various preclinical, clinical and public health topics. Key challenges are the skewness of topics addressed by the SRs and MA and most active authors are affiliated to some specific institutions.
Our study showed that most active authors were affiliated to organizations located in Amhara region. National collaborations between SR and MA authors from institutions with increased research productivity and institutions with less research activity should be encouraged to promote the production of SRs and MA in areas of healthcare that are less explored. With this study, we have shown seven trending research topics that have been studied from past to present and this will facilitate researchers to see hotspot research topics and understand the research direction on the field. We believe our study provides convenience to researchers, higher institutions, and healthcare policymakers with baseline data in the preclinical, clinical and public health field to update their knowledge and formulate new investigation areas. In addition, our study showed national and international research collaboration is not adequate, whereby most SRs and MA publications are clustered in a limited number of authors, institutions, and countries. Our study emphasized the importance of well-planned and organized national and international collaborations and funding to increase the publication rate of primary studies, and SRs and MA, broaden research areas and minimize duplication of work.
References

17. Covidence. Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia.

