IS SHORT-TERM ACYCLOVIR TREATMENT RELATED WITH MORE UNFAVOURABLE OUTCOMES IN PATIENTS WITH HSV-1 ENCEPHALITIS?

Ferhat Arslan¹, Ravza Akgündüz¹, Abdülkadir Ermiş², Begüm Bektaş¹, Ebru Erbayat², Haluk Vahaboğlu¹

1. Department of Infectious Diseases, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Turkey
2. Department of Neurology, Istanbul Medipol University, Faculty of Medicine, Istanbul, Turkey

Corresponding author: Ferhat Arslan, Associate Professor

Email addresses: ferhatarslandr@hotmail.com

Department of Infectious Diseases, Istanbul Medeniyet University, Faculty of Medicine, Prof. Dr. Süleyman Yalcın Training and Research Hospital, Kadıköy, Istanbul

Data availability: If request it will be sent to the editors

Conflicts of Interest and Source of Funding: Authors have no competing interests to declare and not received any fund.

Ethics approval statement: Ethics committee approval was obtained from the ethics committee of Istanbul Medeniyet University.

Patient consent statement: In tertiary hospitals at Turkey, all admitted patients sign the consent form to publish their medical knowledge for scientific purposes.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background

Herpes simplex encephalitis (HSE) is the most common form of sporadic encephalitis which is caused by herpes simplex virus type 1 (HSV-1). Current guidelines recommend intravenous Acyclovir for 14–21 days in cases of HSE.

Objectives

Optimizing the Acyclovir treatment duration is important in regards to preventing Acyclovir-related neurotoxicity and nephrotoxicity.

Study design

We retrospectively evaluated 13 patients, who were diagnosed with HSE by molecular testing (HSV-1 PCR positivity in cerebrospinal fluid), in two university hospitals in Istanbul, between 2010 and 2021. The patients were treated either 10 days or less as a short-term treatment regimen of Acyclovir or for 14 days or more as long-term treatment regimen.

Results

The median age was 58 years (range 24–82 years) and 54% of them were male. The median follow-up time was 79 days (range 20-670 days) after discharge. Long-term treatment was used in 6 and a short-term treatment regimen was used in 7 cases. One of the patients died on the 4th day of Acyclovir treatment. One patient never received Acyclovir treatment. Of the 5 patients who received long-term treatment, 3 (21-28 days) had amnesia and orientation-
cooperation restriction, one (21 days) died on the 2nd day of treatment, while the other (14
days) had no sequelae. There were no sequelae in three out of 5 patients who received short-
term treatment.

Conclusions

We believe that it is necessary to determine the optimal Acyclovir therapy duration should be
evaluated in a prospective randomized clinical trial in large patient population.

Keywords: Herpes simplex virus; Encephalitis; Acyclovir; Antiviral treatment; Antivirals

INTRODUCTION

Herpes simplex encephalitis (HSE) is the most common form of sporadic encephalitis which
is caused by herpes simplex virus type 1 (HSV-1). HSV-1 generally infects orolabial mucosa
and face skin epithelium, gains access to neuronal axonal ending, and then is transported to
the trigeminal ganglia (TG)\(^1\). It is estimated approximately 200 million recurrent HSV-1
related infections develop every year\(^2\). However, very few of these cases are HSE. The
rareness might be due to its different ways of inoculation in the brain and TG or due to the
primary infection rather than reactivation\(^3\). Despite the increasing knowledge, there are still
unclear points in the pathogenesis of HSE.

Although it was reported that the mortality rates were above 70% and the rates of
neurological sequelae were around 90%, it has now been decreased to 30% for both mortality
and severe neurological sequelae\(^4\). Mortality rates have decreased significantly by the
discovery of Acyclovir, improvements in radiological screening (cranial magnetic resonance
imaging), and the use of molecular (HSV-1 DNA) diagnostic methods in medical practice.
Vidarabine was used as a comparative drug in two double-blind, randomized controlled
clinical trials investigating the efficacy and side effects of Acyclovir treatment for HSE\(^5,6\).
The duration of Acyclovir treatment was ten days in these trials. However, current guidelines recommend intravenous Acyclovir for 14–21 days in cases of HSE7,8. Optimizing the Acyclovir treatment duration is important in regards to preventing Acyclovir-related neurotoxicity and nephrotoxicity 9. Here, we aimed to discuss the recommended treatment durations in patients with HSE by using short-term versus long-term acyclovir treatment. We also emphasize the effects of adjunctive therapies, such as steroids and antibiotics, on these cases.

MATERIALS AND METHODS

Patients

We retrospectively evaluated 13 patients, who were diagnosed with HSE by molecular testing (HSV-1 PCR positivity in cerebrospinal fluid), in two university hospitals in Istanbul, between 2010 and 2021. Their clinical (altered mental status, seizures or focal neurological symptoms) and radiological findings (detection of lesions in diffusion or contrast-enhanced MRI), were analyzed. The patients were treated either 10 days or less as a short-term treatment regimen of Acyclovir or for 14 days or more as long-term treatment regimen. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula was used for the assessment of the renal damage for each case.

Ethics committee approval was obtained from the ethics committee of Istanbul Medeniyet University.

The neurological status for each case was noted from the outpatient follow-up records. Neurological sequelae have been defined as any damage to the central nervous system that results in cognitive, sensory, or motor deficits, which may also manifest as long-term emotional instability and seizures in severe cases10.
RESULTS

Clinical and MRI features

A summary of the clinical information of 13 patients is shown in Table 1.

The median age was 58 years (range 24–82 years) and 54% of them were male. The median follow-up time was 79 days (range 20-670 days) after discharge. Five patients had an underlying disease-causing immune deficiency: Two had organ tumors (Lung cancer and prostate cancer, other two patients had Diabetes mellitus, which one of them with febrile neutropenia due to hemophagocytic syndrome and one patient had recurrent orolabial Herpes reactivation at the time of the diagnosis. The median duration of diagnosis, starting from the symptom onset was 5 days (IQR 5 days Q3:8 Q1:3 IQR:5). The CSF analysis showed lymphocytic pleocytosis in 9/13 patients (median leukocyte count 161 cells/mL, range 0–500), and elevated protein concentration in 10/13 (median 91 mg/dL, range 35–349). While unconsciousness was observed in all of the patients, no neck stiffness was found in any of them. On admission, fever (9/13), headache (9/13), seizures (7/13) and focal neurological signs (diplopia and hearing loss in 1 patient and right hemiparesis in another patient) were noted.

In all patients, the clinical diagnosis of HSE was confirmed by the MRI findings of unilateral (9 patients) or bilateral (3 patients) increased fluid-attenuated inversion recovery (FLAIR)/T2 signal abnormalities in temporal regions. In five patients, frontal (2 patients), hippocampal (2 patients) and occipital (1 patient) FLAIR/T2 signal abnormalities were additionally observed.

Treatment
Long-term treatment was used in 6 and a short-term treatment regimen was used in 7 cases. One of the patients died on the 4th day of Acyclovir treatment. One patient never received Acyclovir treatment. Twelve patients had also broad-spectrum antibiotic treatment at the beginning. Adjunctive steroid therapy was given in 3 patients. Antiepileptic therapy was needed for 10 patients. Treatment modalities and follow-up of renal functions are summarized in Table 2

Outcomes

Death occurred in 2 patients. One of them was already on severe immunosuppressive therapy due to EBV-related hemophagocytosis. The other patient had lung cancer with brain metastases and subarachnoid hemorrhage. Of the 5 patients who received long-term treatment, 3 (21-28 days) had amnesia and orientation-cooperation restriction, one (21 days) died on the 2nd day of treatment, while the other (14 days) had no sequelae. There were no sequelae in three out of 5 patients who received short-term treatment, however, balance problems continued in one of them in 6 months after treatment. Neurological sequelae did not develop in the patient who did not receive any treatment. CKD-EPI decrease associated with renal failure was seen only in one patient.

DISCUSSION

There is a solid consensus for the early initiation of effective antiviral agents in HSE, however, recommendations regarding the duration of the antiviral treatment is still at the level of expert opinion. Although this is a case series study and it is consisted of a small number of cases, we observed some interesting results: In short term Acyclovir treatment group, CNS symptoms of all 6 patients improve within the first week of the drug discontinuation, contrary
to the long-term treatment group, where the symptoms and signs of the HSE continued after
the discontinuation. In another word, neurological sequelae in long-term treatment group were
more common than the short-term treatment group. Additionally, the patients who received
steroid treatments from both groups (patient 1,6,7,10) did not reveal any neurological
deterioration. Seizure in one patient in 26th month and progressive amnesia in another patient
on 5th month of the follow-up after short term treatment, respectively. Interestingly,
neurological sequelae did not develop in the patient (patient 2 who was not given acyclovir
treatment. One out of patients were treated with empirical antibiotics. Our observations may
encourage steroid and short-term Acyclovir therapy in the management of the patients with
HSE.

Stevens et al. showed that HSV viral replication continued for up to 8 days in a spinal
ganglion of animal model study[11]. In a superior cervical ganglia (SCG) cell cultures-based
HSV-1 model study, it was shown that phase 1 and phase 2 transcriptional processes take
place in less than 5 days[12]. Toll like receptor 3 (TLR-3) dependent production of IFN-α/β and
IFN-λ is seen as a protective factor for HSE in children[13]. Additionally, Acyclovir doesn’t
have an inhibitor effect on the replication of the HSV-1 in human neural cell lines without
human interferon-alpha (IFN-alpha)[14]. IFN-β treatment in baby mice with HSV encephalitis
model decreased neuro-invasion and increase the survival rate[15]. We may conclude that the
combined effect of Acyclovir implementation and host interferon response can be achieved
only at the early days of the HSE. In our study, the median time from symptoms onset to
treatment initiation was 3.4 days in the group receiving short-term acyclovir treatment, while
it is 6.6 days in the group receiving long-term treatment. This may contribute to the low rate
of neurological sequelae in the group receiving short-term treatment.
Other probable justifications have been put forward for long-term antiviral treatment rationale. In situ low-level HSV-1 replication hypothesis examined in the prospective randomized double-blind study of Gnann et al, long-term Valacyclovir treatment was found to have no significant effect on neurological outcome. The second issue is the assumed virological relapse that may be seen after the early cessation of acyclovir. In a long-term study of 32 adult HSE cases prospectively observed, HSE relapse was reported in 4 patients. However, HSV PCR positivity was not detected in any of the 12 CSF samples taken from these patients. It has been reported that putative relapses occur within the first 4 months after infection. It was reported that HSV-1 antigen and HSV-1 DNA were detected immunohistochemically in the necrotic right frontal and parietal lobe samples from the autopsy of a patient who presented with status epilepticus 5 years after HSE. The authors claim that this case is the first pathologically and molecularly confirmed relapse of HSE in the medical literature. However, progressive neurological deterioration throughout 5 years in the course of the case raises questions about whether the patient is in a relapse or a chronic autoimmune process.

During the SARS-CoV-2 pandemic, there has been increased awareness about the possible antiviral effects of some drugs that are not used as virucidal. Empirical antibiotics and steroids along with the Acyclovir treatment is a quite common clinical approach to the HSE cases in the first days before definitive diagnosis. Inhibitory activity of Cephalosporin derivatives on HSV-1 was shown in vitro. Similarly, some other molecules (Valproic acid, Valpromide and Valnoctamide) that inhibit the replication of HSV-1 virus in oligodendrocytes have been identified. The researchers emphasized that these molecules could be an effective and safe treatment alternatives in HSE. The effect of non-antiviral drugs, especially antibiotics on HSE prognosis has not been studied.
Researchers have developed human induced pluripotent stem cells (hiPSCs) and neuronal cells based on 3D organoid models to establish HSV-1 infections25. Although in vitro establishment of neuron cells infection has been shown, there are in vivo differences. HSV-1 has evolved latency mechanisms to stay in neuron cells in order to escape from immunity26. Due to the logic of co-evolution, the relationship between HSV and neuronal cells cannot be considered to be direct damage (cytopathic damage). The important question here is which cells are susceptible for HSV-1 replication in brain27. As we understand from the CSF finding, erythrocytosis, the blood-brain barrier (BBB) is disrupted in HSE patients28. Brain microvascular endothelial cells may play the primary role in neuronal damage due to HSV-1 induced endothelial cell adhesion molecules that interact with lymphocytes and neutrophils recruitment29,30. We may speculate that steroids may play a role to diminish this recruitment and decrease the vascular inflammation as adjunctive therapy. Adjunctive steroid therapy initiation timing and its duration are still elusive31.

In conclusion, the optimal duration of antiviral treatment for HSE is still a controversial issue. Those who received short-term treatment might not have worse outcome than those who received long-term treatment in terms of neurological sequelae. We believe that it is necessary to determine the optimal Acyclovir therapy duration, as well as the steroids’ effect on probable vasculitis and should be tested in a prospective randomized clinical trial in large patient population.
REFERENCES

doi:10.21775/cimb.041.267

TABLE 1: CLINICAL FEATURES OF PATIENTS WITH HERPES SIMPLEX ENCEPHALITIS (HSE) WHO RECEIVED ACYCLOVIR TREATMENT

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age range</th>
<th>Sex</th>
<th>Symptoms</th>
<th>Signs</th>
<th>Cranial MRI findings</th>
<th>CSF PCR</th>
<th>Time to Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(50-55)</td>
<td>F</td>
<td>Altered mental status, dysarthria, behavioral changes</td>
<td>Confused, disoriented, limited cooperation</td>
<td>Bilateral insular cortex, right temporal lobe, contrast enhancement and diffusion restriction</td>
<td>CSF HSV Type-1 PCR: Positive</td>
<td>1 day</td>
<td>No sequelae alive</td>
</tr>
<tr>
<td>2</td>
<td>(80-85)</td>
<td>M</td>
<td>Fever, headache</td>
<td>Lethargy</td>
<td>Right temporal lobe, hippocampus, insular cortex</td>
<td>CSF HSV Type-1 PCR: Positive</td>
<td>None</td>
<td>No sequelae alive</td>
</tr>
<tr>
<td>3</td>
<td>(75-80)</td>
<td>F</td>
<td>Altered mental status, dysarthria, difficulties on walking</td>
<td>Unconscious GCS<10</td>
<td>Bilateral temporal lobe (right dominant), contrast enhancement and diffusion restriction</td>
<td>CSF HSV Type-1 PCR: Positive</td>
<td>3 days</td>
<td>No sequelae alive</td>
</tr>
<tr>
<td>Patient</td>
<td>Age/Sex</td>
<td>Clinical Features</td>
<td>Imaging Findings</td>
<td>CSF HSV-1 PCR</td>
<td>Duration</td>
<td>Outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40-45 M</td>
<td>Altered mental status, drowsy, fever, headache, nausea and vomiting, loss of balance</td>
<td>Right temporal lobe, parasylvian, hippocampal and parahippocampal contrast enhancement and diffusion restriction</td>
<td>Positive</td>
<td>7 days</td>
<td>No sequelae alive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>65-70 F</td>
<td>Fever, headache, drowsy</td>
<td>Left temporal lobe, hippocampal, insular cortex contrast enhancement and diffusion restriction</td>
<td>Positive</td>
<td>5 days</td>
<td>No sequelae alive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20-25 M</td>
<td>Fever, headache, altered mental status, nausea and vomiting</td>
<td>Left temporal lobe, left insular cortex, uncinate and hippocampal gyrus, dorsal thalamus contrast enhancement and diffusion restriction</td>
<td>Positive</td>
<td>3 days</td>
<td>Loss of balance, seizures alive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>65-70 M</td>
<td>Altered mental status, confusion</td>
<td>Right temporal lobe, insular cortex T2 hyperintensity and diffusion restriction</td>
<td>Positive</td>
<td>5 days</td>
<td>Dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20-25 F</td>
<td>Fever, headache, seizure</td>
<td>Right temporal lobe, insular cortex, thalamus contrast enhancement and diffusion restriction</td>
<td>Positive</td>
<td>3 days</td>
<td>No sequelae alive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>70-75 M</td>
<td>Altered mental status, headache, vesicular rash</td>
<td>Lethargy, normal</td>
<td>Positive</td>
<td>10 days</td>
<td>Dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>40-45 M</td>
<td>Altered mental status, fever, decreased hearing</td>
<td>Confused, disoriented, limited cooperation, right fronto-temporal lobe, T2 hyperintensity</td>
<td>Positive</td>
<td>7 days</td>
<td>Dead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>60-65 F</td>
<td>Altered mental status, confusion, fever, headache</td>
<td>Left temporal lobe, insular cortex, thalamus contrast enhancement and diffusion restriction</td>
<td>Positive</td>
<td>8 days</td>
<td>Confused, loss of time or orientation, alive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 12</td>
<td>65-70/M</td>
<td>Altered mental status, Fever, Convulsion</td>
<td>Confused, disoriented, limited cooperation</td>
<td>Bilateral temporal lobe (right dominant), Right thalamus contrast enhancement and diffusion restriction</td>
<td>CSF HSV Type-1 PCR: Positive</td>
<td>4 days</td>
<td>Confused, prolonged reaction time to complex orders, alive</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Patient 13</td>
<td>60-65/M</td>
<td>Altered mental status, Headache, behavioral changes</td>
<td>Confused, disoriented, limited cooperation sensory aphasia</td>
<td>Right Fronto-temporal lobe, contrast enhancement and diffusion restriction</td>
<td>CSF HSV Type-1 PCR: Positive</td>
<td>8 days</td>
<td>Confused, disoriented, alive</td>
<td></td>
</tr>
</tbody>
</table>

*: Time from symptoms onset to treatment initiation
<table>
<thead>
<tr>
<th>Patients</th>
<th>Empirical antibiotics</th>
<th>Acyclovir start time*</th>
<th>Acyclovir duration</th>
<th>Steroid treatment</th>
<th>Antiepileptic treatment</th>
<th>CNS Symptoms resolved time</th>
<th>eGFR(CKD-EPI) on admission</th>
<th>eGFR(CKD-EPI) on discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>Cefuroxime axetil, Meropenem-Linezolid-INH-Rifampin</td>
<td>1 d</td>
<td>10 d</td>
<td>2 d</td>
<td>1 months after discharge</td>
<td>3 days (AAS)</td>
<td>97</td>
<td>86</td>
</tr>
<tr>
<td>Patient 2</td>
<td>Meropenem-Linezolid</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>14th days of admission</td>
<td>45</td>
<td>76</td>
</tr>
<tr>
<td>Patient 3</td>
<td>Ampicillin</td>
<td>3 d</td>
<td>9 d</td>
<td>None</td>
<td>5 months after discharge</td>
<td>9 days (AAS)</td>
<td>36</td>
<td>55</td>
</tr>
<tr>
<td>Patient 4</td>
<td>Ceftriaxone</td>
<td>1 d</td>
<td>7 d</td>
<td>None</td>
<td>2 months after discharge</td>
<td>4 days (AAS)</td>
<td>117</td>
<td>68</td>
</tr>
<tr>
<td>Patient</td>
<td>Medication</td>
<td>Days 1</td>
<td>Days 2</td>
<td>Days 3</td>
<td>Days 4</td>
<td>Days 5</td>
<td>Days 6</td>
<td>Days 7</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Patient 5</td>
<td>Amoxicillin-Clavulanate, Ampicillin-Ceftriaxone</td>
<td>5 d</td>
<td>7 d</td>
<td>None</td>
<td>None</td>
<td>4 days (AAS)</td>
<td>83</td>
<td>55</td>
</tr>
<tr>
<td>Patient 6</td>
<td>Ceftriaxone Ampicilline</td>
<td>1 d</td>
<td>10 d</td>
<td>7 d + 20 d</td>
<td>2nd day of hospitalization</td>
<td>3 days (ASi)</td>
<td>127</td>
<td>134</td>
</tr>
<tr>
<td>Patient 7</td>
<td>Piperacillin-Tazobactam</td>
<td>5 d</td>
<td>4 d</td>
<td>None</td>
<td>2nd day of symptoms</td>
<td>None</td>
<td>100</td>
<td>112</td>
</tr>
<tr>
<td>Patient 8</td>
<td>Ceftriaxone</td>
<td>1 d</td>
<td>14 d</td>
<td>3 d</td>
<td>2nd day of hospitalization</td>
<td>10th days of admission</td>
<td>131</td>
<td>123</td>
</tr>
<tr>
<td>Patient 9</td>
<td>Ceftriaxone</td>
<td>1 d</td>
<td>21 d</td>
<td>None</td>
<td>None</td>
<td>12th days of admission</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>Patient 10</td>
<td>Meropenem</td>
<td>7 d</td>
<td>21 d</td>
<td>10 d</td>
<td>None</td>
<td>14 days (AAS)</td>
<td>70</td>
<td>36</td>
</tr>
<tr>
<td>Patient 11</td>
<td>Ceftriaxone</td>
<td>8 d</td>
<td>28 d</td>
<td>None</td>
<td>1st day of hospitalization</td>
<td>5 days (AAS), but confusion permanent</td>
<td>74</td>
<td>95</td>
</tr>
<tr>
<td>Patient 12</td>
<td>Patient 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone and levofloxacin</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 d</td>
<td>8 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 d</td>
<td>21 d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7th day of hospitalization</td>
<td>3rd day of hospitalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days (AAS)</td>
<td>3 days (AAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time from symptoms onset to treatment initiation

CNS: Central nervous system; AAS: After acyclovir stopped; ASI: After steroid initiation