Spatio-temporal epidemiology of SARS-CoV-2 virus lineages in Teesside, UK, in 2020: effects of social deprivation, weather and lockdown on lineage dynamics

¹ School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
² South Tees Hospitals NHS Foundation Trust
³ Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
⁴ Northumbria University, Newcastle upon Tyne, UK
⁵ NU-OMICS, Northumbria University, Newcastle upon Tyne, UK
⁶ Department of Medicine, University of Cambridge, UK.

*Correspondence Author
Roy Sanderson
School of Natural and Environmental Sciences
Newcastle University
Newcastle Upon Tyne
NE2 3NT
United Kingdom
roy.sanderson@newcastle.ac.uk

** See Supplementary Information for full list of Consortium names and affiliations.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background

SARS-CoV-2 emerged in the UK in January 2020 and spread rapidly in different communities. The UK Government introduced a series of measures including national ‘lockdowns’ and regional ‘tiers’ to control virus transmission. As the outbreak continued, new variants were detected through two national disease monitoring programmes. Longitudinal records of their emergence and spread provide information with which we investigate factors affecting disease spread and the effectiveness of interventions.

Methods

We analysed the spatio-temporal dynamics of positive tests for COVID-19 on Teesside, UK throughout 2020. We investigated putative risk factors for infection, specifically, socio-economic deprivation, weather, and government interventions (lockdown). We used a combination of disease mapping and mixed-effect modelling to investigate the dynamics of positive tests from two sampling strategies and the spread of particular variants of the virus as they emerged on Teesside.

Results

SARS-CoV-2 spread was related to the extent of social deprivation, lockdown interventions and weather conditions over the period of the study. Cases in the first wave appeared to be associated with the first lockdown, but interventions had less impact on the second wave.

Conclusions

There was spatial and temporal heterogeneity in the distribution of different lineages, with spread faster in some lineages than others and varying across the region. Positive tests within region appeared to be related to levels of socio-economic deprivation. The interventions appeared to have different effects in the two waves of disease, and were associated with reduced numbers of records in the first wave, but having no effect during the second.

Keywords

SARS-CoV-2, lineages, spatio-temporal models, deprivation
INTRODUCTION

In 2019 a new coronavirus respiratory infection (COVID-19) caused by the SARS-CoV-2 virus (1) emerged in China and rapidly spread globally, with first UK patients in January 2020. COVID-19 is highly infectious with transmission primarily via airborne droplets (2). Initial UK COVID-19 control measures aimed to break transmission through home quarantine of cases and suspected cases, social distancing, and disease tracking. Disease cases increased despite these controls and hence a complete social and economic lockdown was introduced on March 23rd 2020 (3). Understanding of the epidemiology of the disease in the early phases of the pandemic was low, for example it was not clear that at least 30% of infected individuals could be asymptomatic (4). However, there was early evidence that both the severity of disease, and mortality, were age-related, with older individuals (5) and those with comorbidities at substantially higher risk of developing severe illness requiring respiratory support (6). Whilst the first lockdown led to a rapid reduction in cases and pressures on secondary care, it was insufficient to stop the epidemic in the UK and the number of cases increased rapidly in autumn 2020 (7), leading to the introduction of further interventions to reduce social contact and spread (including a short national lockdown in November 2020). This failed to reduce hospital admissions and deaths, and a further lockdown was introduced in January 2021 (8).

In contrast with previous pandemics, that of COVID-19 occurred at a time when molecular techniques were available for rapid diagnosis of disease. This meant that from early in the epidemic, polymerase chain reaction (PCR) analyses were available not only to diagnose COVID-19 disease, but also for genomic sequencing (9) to characterise genetic lineages of SARS-CoV-2 in individual cases. The UK government introduced two ‘pillars’ of testing for case ascertainment. Initial pillar 1 testing was undertaken in Public Health England (PHE) laboratories and NHS hospitals for patients identified with a clinical need (10). It also included health and care workers who were likely to encounter infected individuals or transmit it to people vulnerable to disease. Later pillar 2 testing assessed community-level incidence of infection. Inevitably, pillar 1 case ascertainment omitted asymptomatic individuals or those who had not sought help from primary care. It therefore represents an underestimate of the spatio-temporal disposition of disease and a biased estimate of the burden of disease across different age demographics (11).

SARS-CoV-2 has had high mutation rates throughout the pandemic. Pathan et al. (12) reported high levels of three types of RNA substitution mutations: missense mutations, where the amino acid being coded is changed; nonsense mutations, which stop gene translation; and silent mutations, where the functional nature of the protein produced is unchanged (13). Missense, nonsense and silent mutation rates were 34%, 6.7% and 0.8% respectively (12). High rates of mutation led to the develop-
ment of several virus lineages, often with different epidemiological characteristics. Lineage B.1.1.7 (the Alpha variant, first identified in Kent, UK) emerged in autumn 2020 and had high transmission rates (14,15). SARS-CoV-2 spike proteins initiate infection and host-cell colonisation via binding the ACE2 receptor (16,17) and mutations that change the spike protein occur in lineages with higher infectivity (18). Mutation rates provide a tool for forensic analysis of spread in communities. Here we use longitudinal records of COVID-19 cases to determine the spatio-temporal dynamics of disease spread in the Teesside region of North East England during 2020. We use records of individual lineages from pillar 1 and 2 tests in conditional autoregression and mixed-effects models to quantify the impacts of social deprivation, demography, weather, and UK Government interventions on disease spread in this region.

METHODS

Data collation

Records of positive tests were collated for individual postcode districts (TS1 to TS29) in the Teesside area. The 29 separate postcode districts have a range of population sizes and different socio-demographic conditions (Table S1).

COVID-19 lineage types were derived from the Pangolin (19) and Civet (20) analyses of genomes for both pillar 1 and pillar 2 tests, analysed as part of the COG-UK initiative. Available data provided the dates and postcodes of all positive tests for SARS-CoV-2 from January 2020 to January 2021. Pillar 1 samples were collected 7 hospital trusts across the North East and Cumbria on a weekly basis and random sampling was employed to select a representative set of positive cases with CT values below 30 across these trusts. Pillar 2 samples were sequenced at the Wellcome Sanger Institute using a random sampling procedure again for samples with a CT below 30 from UK Lighthouse Laboratories. Lineages were defined as those recognised as of 31st January 2021, restricting analyses to pillar 1 and pillar 2 tests, and summarised for subsequent analyses by week of test. The extent to which the different sampling methods used by pillar 1 versus pillar 2 may have biased detection of lineages amongst cases was investigated by correlating the total numbers of each lineage recorded by each pillar during the period when sampling was run contemporaneously for both pillars (from week of year 30 to 53).

We collated covariates hypothesised as important in determining spread of disease. These were socio-demographics of the exposed populations, weather and interventions introduced by UK government to mitigate spread. Recent demographic data on socio-economic deprivation, Index of Multiple Deprivation IMD (21), was available for each postcode district, as SARS-CoV-2 may be higher in areas of social deprivation (22). Mean weekly temperature and rainfall were obtained
from Teesside Airport to provide weather covariates that might affect spread. We collated timings for Government interventions for the UK COVID-19 epidemic in two forms: first, complete national lockdowns; and second, more heterogeneous interventions that were applied at regional scales, sometimes referred to as a “Tier” system. These interventions were included as additional covariates into the models to estimate the extent to which the observed patterns of disease could be associated with attempts to mitigate spread.

Disease mapping

We used disease mapping (23) with postcode as the areal unit. We calculated expected risk of disease in each area as a function of the proportion of positive tests that might be expected given the population of that area. Excess or reduced risk in each area was then determined by comparison with the risk for the whole Teesside region.

Mixed-effect modelling

We used mixed-effect models to investigate the role of social deprivation, weather (temperature and rainfall), and UK Government interventions (lockdowns) on the dynamics of positive PCR test cases recorded in each postcode district for all positive tests. We used a negative binomial mixed-effect model with postcode as the random effect because data in postcodes represent repeated measures and there would be unmeasured variation in the postcodes that might affect recorded cases. Furthermore, we anticipated that cases in post-codes would not be normally distributed but aggregated as recorded in other large scale studies (24). To account for variation in date of infection to being tested, we included a time lag of two weeks on the introduction of lockdown interventions.

There were insufficient data to model the trends in each individual lineage across all postcodes and many postcodes had zero counts. To investigate spread of lineages in time and space we therefore used a zero-inflated negative binomial mixed-effect model with lineage type as a random effect, to relate the number of positive tests of each lineage against time, using the same covariates above. The model had random intercepts and random gradients for time for each lineage to enable comparison of the number of positive tests for each lineage as well as differences in their rates of increases with time.

For both the standard negative binomial and zero-inflated models all covariates were initially fitted (full model), and then covariates were eliminated as models were simplified based on Akaike Information Criterion (AIC) scores to find the best minimal model. All models were fitted in R with the glmmTMB package (25).
The data and trends in positive tests for all tests and individual lineages

The Teesside postal area has a population of 599,600 people across 29 postcode districts, with considerable variation in the proportion of the total population in the top 10th IMD decile (Table S1). The populations of urban postcode districts of central Middlesbrough (TS1, TS4 and TS3) all had high proportions of their populations in the top 10th decile for IMD, whereas many of the suburban and rural postcode districts had little to none of their population in this decile. There were 2,328 positive COVID-19 tests for all lineages of which 1,073 were pillar 1 and 1,255 were pillar 2. Temperature was highest in summer, but there were also periods of heavy rain in late spring and early autumn (Figure 1a).

The overall temporal trend in positive tests was bimodal with a first peak in week 12 (March 2020) followed by a decline through the summer, before the onset of a minor peak and decline in week 40 and a rapid increase in numbers of positive tests from week 42 (Figure 1b). This reflects the use of pillar 1 testing in clinical settings and the introduction of pillar 2 testing later in the epidemic.

Pillar 1 cases were detected from week 10 (2nd March 2020), reached a peak of 100 cases in week 13, before declining to 0 in week 28 after a UK Government lockdown (Figure 1c). Pillar 1 cases rose again from week 37 and stayed high to the end of 2020. In contrast, pillar 2 cases were first detected in week 18 (6th May 2020) as community testing was introduced. There was a strong positive correlation between the total number of cases recorded by the two different pillars (r=0.94, t=18.87, df=47, P<0.001), during the period when both pillars were in operation (weeks 30 to 53 inclusive), suggesting that both pillars were reflecting the similar patterns of infection across Teesside.

Out of 86 distinct lineages only 8 were recorded more than 60 times: B.1.1.1, B.1.1.119, B.1.1.309, B.1.1.315, B.1.1.37, B.1.1.7, B.1.177 and B.1.177.10 (Figure 1d). These 8 lineages were recorded elsewhere in the UK before being recorded on Teesside. There were two dominant lineages in the first wave of the epidemic, B.1.1.1 and B.1.1.119, records for which declined rapidly during the first lockdown and to zero by week 27. Patterns for other lineages were more complex in the second and third waves. B.1.177 and B.1.1.315 both increased in frequency during weeks 32 to 40 before declining in the second lockdown. However, after the end of this lockdown, B.1.177 increased substantially whilst B.1.1.315 did not. A new, highly transmissible SARS-CoV-2 variant, B.1.1.7 (Alpha variant; VoC 202012/1) was first detected in the UK in December 2020 (26) and increased hugely after the end of the second lockdown. The first lockdown appeared successful in reducing the most prevalent lineages during that part of the epidemic, whereas the second lockdown was less effective.
Disease mapping

The relative risk of cases in each Teesside postcode for the 8 commonest lineages varied greatly amongst lineages and between the two waves of the epidemic (Figure 2). The spatial pattern of risk of a test being positive for COVID-19 of any lineage was highest in western Middlesbrough (TS5). In the first wave of the pandemic lineages B.1.1.1 and B.1.1.119 were predominant; both were associated with urban postcodes of Middlesbrough although B.1.1.1 was more widespread and was also relatively high in parts of Stockton-on-Tees (TS18), Redcar (TS10), and Guisborough (TS14) as well as some south western suburban and rural areas. Cases during the second wave of the epidemic were more widespread and represented more lineages (B.1.1.119, B.1.1.309, B.1.1.7, B.1.1.37, B.1.177, B.1.177.10). The risks for B.1.177 and B.1.1.315 were widespread in urban and suburban areas across the central part of Teesside. The risk of B.1.1.37 was also widespread but had a patchier distribution. The remaining three lineages had more concentrated distributions, with the highest risks in either Thornaby in TS17 (B.1.1.309), southern Redcar in TS25 (B.1.1.7), or both (B.1.177.10).

Mixed-effect modelling

There was a significant negative relationship between total positive tests for COVID-19 and mean weekly temperature, rainfall, and the time since imposition of the second lockdown (Table 1a). Cases were positively related to week of the year, the time since imposition of the first lockdown, the total population, and the population resident in areas in the top decile of social deprivation for England. There was broad agreement in the observed and predicted distributions of cases (Figure 3).
Table 1. Summary of results of mixed-effects models for a) all-lineages combined with a negative binomial error with postcode district as a random effect and b) zero-inflated negative binomial errors with random intercepts for postcode district and lineages, and week of year as a random gradient for lineages. Both models relate observed number of positive tests of COVID-19 in Teesside postcode districts to demographics of postcode, weather, and imposition of interventions to restrict disease spread. Temperature and rainfall are the mean values per week, calculated from daily means and daily totals respectively. The interventions include a two-week time lag to account for the delay in symptom onset (and testing) after infection.

a) Negative binomial error model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-2.879</td>
<td>0.226</td>
<td>-12.712</td>
<td><0.001</td>
</tr>
<tr>
<td>Temperature</td>
<td>-0.041</td>
<td>0.009</td>
<td>-4.759</td>
<td><0.001</td>
</tr>
<tr>
<td>Rainfall</td>
<td>-0.098</td>
<td>0.021</td>
<td>-4.571</td>
<td><0.001</td>
</tr>
<tr>
<td>First Lockdown (+2 weeks)</td>
<td>0.052</td>
<td>0.015</td>
<td>3.503</td>
<td>0.001</td>
</tr>
<tr>
<td>Second lockdown (+2 weeks)</td>
<td>-0.132</td>
<td>0.036</td>
<td>-3.686</td>
<td><0.001</td>
</tr>
<tr>
<td>Week of year</td>
<td>0.073</td>
<td>0.003</td>
<td>22.352</td>
<td><0.001</td>
</tr>
<tr>
<td>Tier 2 (+2 weeks)</td>
<td>0.100</td>
<td>0.040</td>
<td>2.511</td>
<td>0.012</td>
</tr>
<tr>
<td>Deprived population (IMD 10th decile)</td>
<td>0.021</td>
<td>0.009</td>
<td>2.248</td>
<td>0.025</td>
</tr>
<tr>
<td>Total population</td>
<td>0.047</td>
<td>0.006</td>
<td>7.834</td>
<td><0.001</td>
</tr>
</tbody>
</table>

b) Zero-inflated negative binomial error model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-7.935</td>
<td>1.900</td>
<td>-4.068</td>
<td><0.001</td>
</tr>
<tr>
<td>Temperature</td>
<td>0.061</td>
<td>0.014</td>
<td>4.248</td>
<td><0.001</td>
</tr>
<tr>
<td>Rainfall</td>
<td>-0.060</td>
<td>0.025</td>
<td>-2.426</td>
<td>0.015</td>
</tr>
<tr>
<td>First Lockdown (+2 weeks)</td>
<td>-0.040</td>
<td>0.021</td>
<td>-1.877</td>
<td>0.061</td>
</tr>
<tr>
<td>Week of year</td>
<td>0.165</td>
<td>0.097</td>
<td>1.705</td>
<td>0.088</td>
</tr>
<tr>
<td>Tier 2 (+2 weeks)</td>
<td>0.254</td>
<td>0.036</td>
<td>7.094</td>
<td><0.001</td>
</tr>
<tr>
<td>Deprived population (IMD 10th decile)</td>
<td>0.025</td>
<td>0.011</td>
<td>2.207</td>
<td>0.027</td>
</tr>
<tr>
<td>Total population</td>
<td>0.051</td>
<td>0.007</td>
<td>7.054</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Zero-inflated model

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z value</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-32.475</td>
<td>9.066</td>
<td>-3.582</td>
<td><0.001</td>
</tr>
<tr>
<td>Week of year</td>
<td>-2.432</td>
<td>0.662</td>
<td>-3.672</td>
<td><0.001</td>
</tr>
</tbody>
</table>
For individual lineages, parameter estimates for the best zero-inflated model with postcode and lineage as random intercepts and with a random gradient for week for lineages are shown in Table 1b. The more urban and suburban postcodes of Middlesbrough (TS1 to TS8) and some of the rural postcodes in the south east (TS9, TS12 and TS14) and north west (TS21 and TS22) had positive random effects (Figure 4a). This indicates that records of positive cases in these postcodes were higher even after adjusting for total population density. Random effects for week, showing relative rate of change in number of positive cases of each lineage in sequenced samples, indicated that B.1.1.7 (Alpha variant) increased substantially faster than the others (Figure 4b).

DISCUSSION

Our analyses indicate considerable spatial and temporal variation in occurrence of SARS-CoV-2 lineages in Teesside in 2020 and that the patterns were related to several hypothesised covariates. These results must be interpreted with caution because of the way in which positive test results were ascertained and also due to relatively large sizes of geographical areas used. Positive tests were derived from two collection strategies: first, pillar 1, that focussed on patients and individuals showing illness in primary or secondary care; and second, pillar 2, from general sampling in the community. As the first wave declined the number of pillar 1 samples declined, whereas pillar 2 sampling accelerated, and this may have biased the results. Pillar 1 samples may have been biased away from asymptomatic carriage, which will have been detected in pillar 2 samples. Furthermore, lineages may differ in the extent to which they lead to serious illness, which may have impacted on what was detected in pillar 1 (27, 28). However, the relative abundance of each lineage in the overlapping period for pillar 1 and pillar 2 was highly correlated, suggesting that both pillars provided similar representations of lineages in general circulation amongst the population on Teesside. The geographies (postcodes) used to define the areas for the mixed-effect modelling may not capture spatial variation in the underlying epidemiological process of transmission or other social and environmental drivers. Postcodes ensured anonymity of records, but many covariates associated with disease transmission, including proximity to infectious individuals and social contacts, could not be measured. The covariates used in these models were therefore surrogates for the underlying mechanisms associated with disease transmission and spread.

Notwithstanding these caveats, four main conclusions can be drawn from our analyses. First, there was considerable spatio-temporal variation in positive SARS-CoV-2 tests across the region. Middlesbrough has the most ethnically diverse communities on Teesside with an ethnic minority population of 27.2% (29). There is a well-established link between risk of serious disease from SARS-CoV-2 with both ethnicity (30) and deprivation (22). However, separating the possible contributions
of ethnicity and deprivation on Teesside is difficult as we do not have information on the ethnic
status of the individuals subject to PCR testing. Furthermore, whilst deprivation, population density,
and ‘urbanness’ are strongly related, analysis of COVID-19 in Norfolk indicates that they can have
independent contributions to levels of disease (31).

Second, there was variation in the extent to which cases appeared spatially and temporally. Many of
the more urban postcodes recorded cases earlier and records tended to expand in different
directions from these foci with time. The lineages had all been recorded elsewhere in the UK before
they appeared emerged on Teesside suggesting that lineages were introduced rather than arising
locally. Indeed, B.1.177 emerged in Spain during summer 2020 before rapidly spreading across
Europe (32). Teesside urban centres (TS1 to TS6), which function as a local transport and population
hubs, may have played a role in the initiation and local spread of cases.

Third, Government interventions introduced to manage the disease during 2020 had mixed impacts
on the spatial and temporal dynamics of records in Teesside. Numbers of positive tests were,
counter-intuitively, correlated positively with the imposition of three of the interventions and only
negatively associated with the introduction of Tier 2 which was a local intervention. This probably
reflects the fact that the imposition of early interventions on Teesside was not driven by the state of
disease in the region (only 100 pillar 1 cases out of a regional population of nearly 600,000) but
rather spread elsewhere in the UK.

Fourth, the mixed-effect models demonstrated distinct differences in both the spatial and temporal
patterns amongst the numbers of positive tests for different lineages in Teesside. For example,
lineage B.1.1.7 increased rapidly across the region towards the latter part of 2020, despite initially
having a relatively restricted geographical distribution in Teesside (Figures 2 and 4). B.1.1.7 emerged
in the South East of the UK in December 2020 after a temporary relaxation of social restrictions
relaxed prior to Christmas.

These analyses have demonstrated low effectiveness of national-level interventions for COVID-19 on
disease patterns in Teesside, particularly in late 2020. This contrasts with other studies undertaken
at larger national and trans-national scales (24) where timings of interventions were demonstrated
to have impacts on spread of disease. However, our results suggest that disease management
should be more orientated toward local epidemiological conditions at the time point of delivery,
indicating a need for more temporal precision. In addition, our analyses also support the hypothesis
that socio-economic deprivation played a role in the spread of the disease. Since this is to a large
extent spatially defined it is likely that interventions could also have been targeted with greater
Our results also suggest that the rate of increase in cases, as measured by the pillar testing system, was similar for most lineages, except for the alpha variant (B.1.1.7) which subsequently spread over much of the UK in 2021. We conclude that the spatio-temporal spread of COVID-19 on Teesside in 2020 was to a large extent opportunistic, but mediated locally by socio-economic deprivation and reactive rather than proactive interventions.

ACKNOWLEDGEMENTS

The authors thank colleagues within COG-UK for constructive comments on earlier versions of this manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

FUNDING

This research was funded under COG-UK; this is supported by funding from the Medical Research Council (MRC) part of UK Research & Innovation (UKRI), the National Institute of Health Research (NIHR) [grant code: MC_PC_19027], and Genome Research Limited, operating as the Wellcome Sanger Institute.
REFERENCES

Figure 1. Trends in weather and positive tests of COVID-19 over the course of 2020, in Teesside. (a) Mean temperature and rainfall per week (calculated from daily means and daily totals respectively). (b) Total positive tests per week (across all lineages), coloured areas represent the periods of different interventions: complete national lockdown (National lockdown), weak regional restrictions (Regional tier 2), stricter regional restrictions (Regional tier 3), and the ‘Eat out to help out’ government scheme to promote eating within restaurants via financial incentive (Hospitality promotion). (c) Positive tests detected via the two testing regimes per week. (d) Positives tests of the eight most commonly detected lineages in Teesside per week.
Figure 2. Relative risk of the 8 most common COVID-19 lineages (and all cases) being detected in each Teesside postcode district during 2020 (from the spatial CAR models). Lineages B.1.1.1 and B.1.1.119 occurred mainly in the first wave in spring 2020. Lineages B.1.1.309, B.1.1.315, B.1.1.37, and B.1.1.77 occurred mainly in the second wave beginning in late August 2020, while lineages B.1.1.7 and B.1.1.77.10 occurred mainly at the end of the year. The central Middlesbrough postcode districts predominated in the first wave and the remaining districts (including Hartlepool) more in the second wave.
Figure 3. Predicted and observed total number of positive cases of COVID-19 (across all lineages) in Teesside during 2020. The predicted estimates (red) are fitted values from a negative binomial mixed effect model of the total number of positive test results in different Teesside postcodes.
Figure 4. Random effects and associated 95% confidence intervals for the intercepts from the zero-inflated negative binomial mixed effect model relating counts of positive test results for different lineages of COVID-19 in a) different Teesside postcodes and b) amongst lineages. Blue values indicate random effects that were greater than the mean and an earlier increase in positive cases, while red indicates the converse.