Title: Associations between prenatal exposure to maternal diabetes and child adiposity markers: mediating effects of brain structure

Shan Luo PhD1,2,3,4, Eustace Hsu PhD1, Katherine E. Lawrence PhD5, Shana Adise PhD6, Megan M. Herting PhD7,6,9, Thomas Buchanan MD1,2, Kathleen A. Page MD1,2,9, Paul M. Thompson PhD5,9

1 Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
2 Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
3 Department of Psychology, University of Southern California, Los Angeles, CA, 90089, USA
4 Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, CA, USA
5 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
6 Division of Research on Children, Youth, and Families, Children’s Hospital Los Angeles, Los Angeles, CA, USA
7 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
8 Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
9 Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA

*Correspondence and reprint requests can be made to Dr. Shan Luo, PhD, Assistant Professor of Medicine, USC Keck School of Medicine, Division of Endocrinology, Diabetes and Obesity Research Institute, 2250 Alcazar Street; CSC 215, Los Angeles, CA 90089.

Email: shanluo@usc.edu

Phone: 323-865-1750

Key words: prenatal programming, maternal diabetes, obesity, brain structure

Manuscript word count: 2971

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Key Points

Question: How does prenatal exposure to maternal diabetes relate to brain structure, and does this relationship predict child adiposity markers.

Findings: Cortical gray matter volume was reduced in children prenatally exposed to maternal diabetes; and it partially mediated the link between prenatal exposure to maternal diabetes and waist-to-height ratio in children.

Meaning: The association between prenatal exposure to maternal diabetes and increased risk for obesity and metabolic disorders in children may be driven in part by aberrant brain structure development.

Abstract

Importance: Children prenatally exposed to maternal diabetes have a higher risk of developing obesity and metabolic disorders. Alterations in the brain development is hypothesized as a potential mechanism underlying this relationship but has not been fully tested in humans.

Objectives: To examine the mediating role of child brain structure in the relationships between prenatal exposure to maternal diabetes and child adiposity.

Design, setting and participants: This was a cross-sectional study of children (ages 9-to-10-years-old) from the baseline assessment of the Adolescent Brain and Cognitive Development (ABCD) Study® (N=11,875).

Exposures: Prenatal exposure to maternal diabetes was determined via self-reported questionnaire.

Main outcomes and measures: Child adiposity markers included age- and sex-specific body mass index (BMI z-scores), waist circumference, and waist-to-height ratio (WHtR). T1-weighted magnetic resonance imaging (MRI) was used to assess brain structure. Linear mixed effects models examined associations of prenatal exposure to maternal diabetes with child adiposity markers and brain structure controlling for sociodemographic covariates.
Mediation models were performed to investigate the mediating role of brain structure on the association between maternal diabetes exposure and child adiposity markers.

Results: The sample consisted of 8,521 children (age: 9.92±0.63 years; sex: 51.4% males; 7% exposed to maternal diabetes). Children prenatally exposed vs. unexposed to maternal diabetes had greater BMI z-scores (β (95% CI) = 0.175 (0.093, 0.256; FDR corrected P<0.001), waist circumference (β (95% CI) = 0.201 (0.121, 0.281); FDR corrected P<0.001), WHtR (β (95% CI) = 0.199 (0.119, 0.280); FDR corrected P<0.001). Prenatal exposure to maternal diabetes was associated with reduction in global (β (95% CI) = -0.096 (-0.168, -0.025); FDR corrected P=0.043) and regional cortical gray matter volume primarily in the frontal, temporal, and occipital areas. Whole-brain cortical gray matter volume partially mediated the association between prenatal exposure to maternal diabetes and WHtR (indirect path β (95% CI) = 0.0027 (0.0002, 0.0067), P=0.034).

Conclusion and relevance: Cortical gray matter volume partially mediated the link between prenatal exposure to maternal diabetes and WHtR. These results demonstrate a potential neurobiological mechanism by which prenatal exposure to maternal diabetes may be associated with increased risk for obesity and metabolic disorders in children.
Introduction

Hyperglycemia is a common medical condition during pregnancy, with an estimated 1 in 6 live births to pregnant women with some form of hyperglycemia\(^1\). Most of these cases (86\%) were due to gestational diabetes mellitus (GDM), and other cases were due to pre-existing diabetes. In addition to unfavorable health risks for women, offspring prenatally exposed to maternal diabetes have increased susceptibility for obesity and metabolic disorders later in life\(^2\)–\(^7\).

Parallel to effects of prenatal exposure to maternal diabetes on adiposity and metabolism, there is a growing body of work showing that prenatal exposure to maternal diabetes may affect brain development. It has been shown that levels of neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) – essential for neuronal growth, development, and differentiation – were lower in pregnant women with diabetes\(^8\) or infants prenatally exposed to maternal diabetes\(^9\). Infants and youth prenatally exposed to maternal diabetes also demonstrated brain structural deficits, such as reduced hippocampal thickness\(^10\), reduced white matter integrity in sensorimotor regions\(^11\), and reduced cortical excitability\(^12\) except for one study\(^13\).

Although the exact physiological mechanisms underlying the link between prenatal exposure to maternal diabetes and brain-based alterations remain inconclusive, there is suggestive evidence that diabetes-induced changes in the intrauterine environment – such as hyperinsulinemia, hyperglycemia, and inflammation – may be responsible for aberrant brain development in offspring. For example, animal models demonstrated that hyperinsulinemia during the fetal period was associated with malformation of the hypothalamus\(^14\). Maternal hyperglycemia delayed dendritic development in fetal brain\(^15\). Human studies have shown that higher maternal gestational fasting glucose levels were associated with lower neonatal amygdala structural integrity\(^16\). Maternal inflammation during pregnancy, as quantified by IL-6 levels predicted newborn amygdala volumes\(^17\).

While there is emerging evidence suggesting that prenatal exposure to maternal diabetes may impact brain development in offspring, some weaknesses of prior work should
be noted. Previous imaging studies were limited to small sample sizes. They were also limited in scope. Previous studies did not comprehensively assess global and regional brain measurements; neither did they assess cortical structures. There exists a gap in robust and comprehensive investigation of brain structural correlates of prenatal exposure to maternal diabetes in children independent of sociodemographics, which are often confounding variables. Moreover, it is unknown if the brain plays a mediating role in the relationships between prenatal exposure to maternal diabetes and child adiposity. To elucidate gaps in the literature, we leveraged brain and anthropometric data in children aged 9 to 10 years old from the Adolescent Brain and Cognitive Development (ABCD) Study®, the largest and most diverse pediatric neuroimaging study to date. We examined relationships between prenatal exposure to maternal diabetes, adiposity markers, and global and regional brain structural measurements. Furthermore, a mediation analysis was performed to investigate whether brain structural measurements would mediate associations between prenatal exposure to maternal diabetes and adiposity markers in children. This is the first study to characterize brain structural alterations comprehensively and robustly in children prenatally exposed to maternal diabetes.

Methods

Participants

Data was obtained from the ABCD Study® 3.0 data release (DOI: 10.15154/1524660), and the current study focused on baseline assessments (N=11,875) collected from 9/1/2016 to 10/15/2018. Participants were excluded based on the following criteria: not fluent in English, history of seizures, premature birth (more than 12 weeks), birth weight less than 1200 grams, complications at birth, substance use disorder, intellectual disability, traumatic brain injury, brain tumor, stroke, aneurysm, brain hemorrhage, subdural hematoma, cerebral palsy, diabetes, lead poisoning, muscular dystrophy, autism spectrum disorder (ASD), and other medical conditions considered exclusionary. Additional exclusion criteria were applied based on anthropometric measurements, neuroimaging, and other covariates as
described in the next sections, resulting in a finalized baseline sample of 8,521 participants (Supplementary Figure 1). Briefly, subjects were only included if their anthropometric and neuroimaging measurements passed quality control and if they had complete nuisance covariate data.

Prenatal exposure to maternal diabetes

Prenatal exposure to maternal diabetes was self-reported by the parent via a question in the developmental history questionnaire: “During the pregnancy with this child, did you/biological mother have pregnancy-related diabetes?”. Response options were (1) “No”, (2) “Yes”, and (3) “I don’t know”.

Adiposity markers

Children’s weight and height and waist circumference were measured at baseline by a trained researcher. Waist circumference was measured with a tape around the highest point on the pelvic bone. Height (in inches) and weight (in lbs) were recorded as the mean of up to three separate measurements. These measurements were used to calculate waist-to-height ratio (WHtR) and Body Mass Index (BMI) (kg/m²).

Age and sex specific BMI percentiles, BMI z-scores, weight z-scores and height z-scores were calculated according to the Center for Disease Control (CDC) guidelines²⁰,²¹. Waist z-scores were calculated based on NHANES III data. Baseline anthropometrics data were excluded based on the following: 1) BMI z-scores ≤ -4 SDs or ≥ 8 SDs, 2) BMI < 10, 3) weight z-scores ≤ -5 SDs or ≥ 8 SDs, 4) height z-scores or waist z-scores ≤ -4 SDs or > 4 SDs, 5) WHtR ≤ 0.2 or ≥ 1²²,²³.

Neuroimaging

Magnetic resonance imaging (MRI) data collection methods were optimized for 28 3-T scanners across 21 ABCD Study sites²⁴. FreeSurfer (version 5.3.0) was used for cortical
surface reconstruction and subcortical segmentation, based on the T1-weighted anatomical scans, including cortical gray and white matter as well as subcortical volumes (mm3) using automated segmentation, and cortical thickness (mm), and cortical surface area (mm2) using the Desikan-Killiany Atlas26,27.

Neuroimaging analyses excluded participants who failed to have quality T1 scan, as well as for abnormal radiological findings. Participants were also excluded based on quality control procedures on the cortical surface reconstruction for five categories of inaccuracy: severity of motion, intensity inhomogeneity, white matter underestimation, pial overestimation, and magnetic susceptibility of the artifact24.

Covariates

Race/ethnicity was categorized into 5 groups: White, Black, Hispanic, Asian, and Other, see Hagler et al, 201924 for further detail. Parental education was a binary variable indicating whether at least one parent has obtained a bachelor’s degree. Yearly household income places combined income into an ordinal range consisting of three categories: less than $50,000, between $50,000 and $99,999, and $100,000 or more. Pubertal stage was calculated using the parent-report pubertal development scale28 and reduced to three levels, pre-pubertal, early pubertal and mid-to post-pubertal stage29.

Data Analysis

Group differences (exposed vs. unexposed to maternal diabetes) of adiposity and brain were modeled using mixed effects models. The adiposity measurements included BMI z-scores, waist circumference and WHtR. Global brain measurements included total cortical surface area, mean cortical thickness, cortical gray matter volume, subcortical gray matter volume, and cerebral white matter volume. Family identification nested within site, were modeled as random effects. Covariates included age, sex assigned at birth, pubertal status, race/ethnicity, family income, and parental education. Scanner model and handedness were included as additional covariates for brain related models. Age and sex were not included as
covariates for BMI z-scores related models. To follow up with significant associations between prenatal exposure to maternal diabetes and whole-brain measurements, region of interest (ROI)-based analyses were performed. Cortical gray matter volume of 34 ROIs defined bilaterally on the Desikan-Killany atlas were included in follow-up analyses. Group differences in cortical gray matter volume in each ROI were assessed using models predicting bilateral structure based on prenatal exposure to maternal diabetes status by hemisphere (right, left) interaction. The main effect estimates of prenatal exposure status and exposure by hemisphere interactions were reported. Family identification nested within site were included in the model as random effects; furthermore, subject identification was included as a random effect to pool across hemispheres. Covariates included in the model were the same as global brain analysis.

Additional models were fitted to control for 1) gestational age at birth, 2) other health problems during pregnancy, and 3) health problems at birth. Results are included in Supplementary Table 2-10.

Mediation analysis

Mediation analysis was completed with the hypothesis that the correlations between prenatal exposure to maternal diabetes and adiposity markers were mediated by brain structural measurements, using the mediate package in R30. First, confounding covariates (site, family identification, age, sex, pubertal status, race/ethnicity, family income, parental education, scanner model, handedness) were regressed out of adiposity and brain structure variables using hierarchical regression. Next, separate components of the possible mediation paths were assessed (A: correlation between prenatal exposure to maternal diabetes and brain; B: correlation between brain and adiposity; C: correlation between prenatal exposure to maternal diabetes and adiposity). Mediation was then tested only for models where all direct paths were significantly intercorrelated. Nonparametric bootstrapped percentile confidence intervals were estimated from 1000 simulations.
Analyses used linear mixed effects models in R with the lme4 package. Standardized betas were reported. 95% Wald confidence intervals were calculated based on the local curvature of the likelihood surface. Cohen’s d effect sizes were calculated from least-squares means, model residual standard deviation, and residual degrees-of-freedom using the emmeans package. P-values were calculated using Satterthwaite’s method in the lmerTest package. Tests of significance (2-tailed) were corrected for multiple comparisons using the Benjamini-Hochberg false discovery rate (FDR) correction, with $P<.05$ as the corrected threshold for significance.

Results

Participants Demographics

Characteristics of the sample are described in Table 1. Around 7% children were prenatally exposed to maternal diabetes in our sample. Children prenatally exposed to maternal diabetes differed from those unexposed by race/ethnicity ($X^2 = 29.505, P<0.001$), family income ($X^2 = 11.728, P=0.003$), parental education ($X^2 = 16.988, P<0.001$), and pubertal status ($X^2 = 10.960, P=0.028$).

Child Adiposity

Prenatal exposure to maternal diabetes was associated with a higher likelihood of classification as overweight or obese ($X^2(3) = 43.160, P<0.001$). Mixed-effects models showed that prenatal exposure to maternal diabetes vs. unexposed was associated with greater adiposity markers (BMI z-scores: β (95% CI) = 0.175 (0.093, 0.256), FDR corrected $P<0.001$; Waist circumference: β (95% CI) = 0.201 (0.121, 0.281), FDR corrected $P<0.001$; WHtR: β (95% CI) = 0.199 (0.119, 0.280), FDR corrected $P<0.001$) (Figure 1). Effect sizes (Cohen’s d) were 0.265 for BMI z-scores, 0.345 for waist circumference, and 0.288 for WHtR. Raw adiposity data are included in Supplementary Table 1.

Child Global Brain Measurements
Prenatal exposure to maternal diabetes was, in general, associated with smaller brain structure across global brain measures (Figure 2a, Table 2a). Only total cortical gray matter volume survived for FDR correction (β (95% CI) = -0.096 (-0.168, -0.025), FDR corrected P=0.042). Total cortical surface area and subcortical gray matter volume were marginally significant after FDR correction. Raw global brain measurements are reported in Supplementary Table 1.

Child Regional Brain Measurements

Associations between prenatal exposure to maternal diabetes and bilateral cortical gray matter volume in the ROIs were shown in Table 2b, while significant ROIs were displayed in Figure 2b. Prenatal exposure to maternal diabetes was associated with smaller cortical gray matter volume in the bilateral cuneus cortex (β(95% CI) = -0.104 (-0.174, -0.035), FDR corrected P=0.038), bilateral pericalcarine cortex (β(95% CI) = -0.111 (-0.188, -0.034), FDR corrected P=0.039), bilateral rostral middle frontal gyrus (β(95% CI) = -0.117 (-0.189, -0.045), FDR corrected P=0.026), bilateral superior temporal gyrus (β(95% CI) = -0.135 (-0.209, -0.061), FDR corrected P= 0.012), and bilateral transverse temporal cortex (β(95% CI) = -0.099 (-0.172, -0.027), FDR corrected P= 0.049). Exposure by hemisphere interactions were not significant in any ROI after FDR correction.

Mediation analysis

Using linear regressions to test for prerequisite components of mediation, it was determined that the only plausible model consisted of cortical gray matter volume as the mediator between maternal diabetes exposure and WHtR (maternal diabetes and cortical gray matter volume: β(95% CI) = -0.102 (-0.186, -0.018), P=0.018; cortical gray matter volume and WHtR: β(95% CI) = -0.028 (-0.049, -0.007), P=0.010; maternal diabetes and WHtR: β(95% CI) = 0.195 (0.111, 0.280), P<0.001). In the full mediation model, there was a significant indirect effect of cortical gray matter volume on the relationship between prenatal exposure...
to maternal diabetes and WHtR (β (95% CI) = 0.0027 (0.0002, 0.0067), P=0.034) with the
direct path being reduced from (β (95% CI) = 0.195 (0.111, 0.280), P<0.001) to (β (95% CI)
= 0.193 (0.104, 0.287), P<0.001) (Figure 3).

Discussion

Prenatal exposure to maternal diabetes was associated with greater adiposity markers and
smaller global and regional cortical gray matter volume in youth aged from 9-to-10-years-old,
after adjusting for age, sex, puberty status, race/ethnicity, parental education, and family
income. Moreover, global cortical gray matter volume in part mediated the link between
prenatal exposure to maternal diabetes and WHtR, suggesting a neurobiological pathway by
which prenatal exposure to maternal diabetes may be associated with increased risk for
obesity and metabolic disorders in children.

Children prenatally exposed to maternal diabetes had greater BMI z-scores, waist
circumference and WHtR after adjusting for sociodemographic factors. Results remained
significant after further adjustment of gestational age, other health problems during
pregnancy or health problems at birth. Waist circumference (a marker of abdominal fat) had
the largest effect size. These findings are in line with prior work indicating that the impact
of prenatal exposure to maternal diabetes is larger in abdominal fat distribution than overall
adiposity during childhood$^{31-34}$.

Prenatal exposure to maternal diabetes was significantly associated with smaller
global and regional cortical gray matter volume primarily in frontal, temporal, and occipital
cortex, after accounting for sociodemographic variables as well as scanner and handedness.
Results remained largely the same after further adjustment of gestational age, other health
problems during pregnancy or health problems at birth. There were marginally significant
findings that children prenatally exposed to maternal diabetes had smaller total surface area
and total subcortical gray matter volume. Compared with previous studies$^{10-12}$, ABCD study
consisted of a larger and more diverse pediatric population across 21 sites in the US. The
directionality of group differences were consistent with prior imaging studies$^{10-12}$. Effect
sizes observed in brain outcomes were small yet comparable with other disorders observed in youth, such as attention deficit hyperactivity disorder, ASD, obsessive compulsive disorder, and major depressive disorder35–37. Gray matter volume in the frontal and temporal areas exhibits an inverted U-shape trajectory with a preadolescent increase followed by postadolescent decrease38. Smaller cortical gray matter volume in children prenatally exposed to maternal diabetes may be associated with accelerated brain maturation, a phenomenon observed in offspring with early life exposure to adversity39,40 and individuals with overweight or obesity41. This hypothesis needs confirmation from longitudinal brain imaging data. The largest regional effect size was in the superior temporal gyrus (STG). Reduction of gray matter volume in the temporal gyrus has been shown in individuals with obesity42. Furthermore, lower neural density in the temporal gyri was reported in donors with overweight or obesity vs. normal weight43. Our results added to the literature by showing prenatal exposure to maternal diabetes may relate to obesity-associated reduction in the gray matter volume of STG. Based on preclinical studies14,15, a hypothesis was formulated that metabolic insults induced by maternal diabetes during fetal development may contribute to aberrant brain development. A functional imaging study in pregnant women provided proof-of-concept results that fetuses exposed to maternal diabetes displayed slower brain responses to auditory stimuli44, implying that alterations in brain development may occur as early as in utero. Our results highlight a need to directly test whether prenatal exposure to maternal diabetes would be associated with alterations in fetal brain development in pregnant women.

Global cortical gray matter volume partially mediated the association between prenatal exposure to maternal diabetes and WHtR. These findings expand on prior studies33,34 by showing direct evidence of the mediating role of the brain in the associations between prenatal exposure to maternal diabetes and offspring’s adiposity. Our mediation results were specific to WHtR vs. BMI z-scores. WHtR is more directly associated with cardio-metabolic risk factors than BMI in youth45–47. Prospective studies have shown that
WHtR predicted diabetes and other cardiometabolic disorders46. Together these results suggested a neurobiological pathway by which prenatal exposure to maternal diabetes might increase the risk for obesity, and impaired metabolic health later in life. Metabolic health was not assessed here, however, prior studies reported that children prenatally exposed to maternal diabetes had poorer metabolic health profiles49–52.

Our findings have important clinical implications. This was a well powered study with over 11,000 children from different demographic and socio-economic backgrounds, demonstrating that there were lasting adverse effects of prenatal exposure to maternal diabetes on brain development in children. Clinicians should convey this message to women who plan to become pregnant and are at a high risk for diabetes in pregnancy so that interventions could start early to prevent formation of aberrant brain development in offspring. Such early intervention strategies may have the potential to break the perpetuating cycle of obesity and metabolic disorders across generations.

Limitations

Although the reported prevalence of maternal diabetes in the ABCD Study® was similar to the prevalence of GDM in the US53, we could not distinguish between GDM and pre-existing diabetes based on the self-reported questionnaire. Detailed information on treatment and severity of diabetes in pregnancy were not available; thus, we were not able to assess relationships between those variables and adiposity/brain assessments. The ABCD study® did not record maternal obesity status during pregnancy, which is closely related to maternal diabetes. Thus, we could not separate maternal obesity exposure effects from those of maternal diabetes. Including metabolic health markers during follow-up visits in the ABCD Study® would be helpful in further elucidating associations between brain structure deficits associated with prenatal exposure to maternal diabetes and metabolic health profiles.

Conclusions

This was the first large, multi-site study investigating relationships between prenatal
exposure to maternal diabetes and brain structure and adiposity markers in children. In a cohort of 11,875 children between the ages of 9 and 10, we found that prenatal exposure to maternal diabetes was associated with smaller cortical gray matter volume, which consequently led to greater WHtR. These results provided mechanistic insight of a neurobiological pathway by which offspring prenatally exposed to maternal diabetes may have increased vulnerability for developing obesity and metabolic disorders later in life.
Acknowledgements: The authors would like to thank the volunteers who participated in the ABCD Study.

Author Contributions: Dr. Luo and Dr. Hsu performed the statistical analysis. Dr. Luo and Dr. Hsu drafted the manuscript. All authors provided critical review, commentary, and revisions to the manuscript, approved the final manuscript as submitted, and agree to be accountable for all aspects of the work.

Competing Interest Statement: The authors have nothing to disclose.

Financial Support: This work was supported by the National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases K01DK115638 (PI: SL) and R03DK129186 (PI: SL).

Data Availability Statement: ABCD data is publicly available.
Reference

Table 1. Sample Characteristics by Maternal Diabetes Status

<table>
<thead>
<tr>
<th></th>
<th>Exposed (N=578)</th>
<th>Unexposed (N=7943)</th>
<th>All (N=8521)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD) or N (%)</td>
<td>Mean (SD) or N (%)</td>
<td>Mean (SD) or N (%)</td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>9.92 (0.62)</td>
<td>9.92 (0.63)</td>
<td>9.92 (0.63)</td>
<td>0.802</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.587</td>
</tr>
<tr>
<td>Female</td>
<td>274 (47.4%)</td>
<td>3864 (48.6%)</td>
<td>4138 (48.6%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>304 (52.6%)</td>
<td>4079 (51.4%)</td>
<td>4383 (51.4%)</td>
<td></td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>White</td>
<td>277 (47.9%)</td>
<td>4510 (56.8%)</td>
<td>4787 (56.2%)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>72 (12.5%)</td>
<td>991 (12.5%)</td>
<td>1063 (12.5%)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>127 (22.0%)</td>
<td>1521 (19.1%)</td>
<td>1648 (19.3%)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>19 (3.3%)</td>
<td>121 (1.5%)</td>
<td>140 (1.6%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>83 (14.4%)</td>
<td>800 (10.1%)</td>
<td>883 (10.4%)</td>
<td></td>
</tr>
<tr>
<td>Family Income</td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>$49,999 or less</td>
<td>189 (32.7%)</td>
<td>2207 (27.8%)</td>
<td>2396 (28.1%)</td>
<td></td>
</tr>
<tr>
<td>Between $50,000 and $99,999</td>
<td>177 (30.6%)</td>
<td>2261 (28.5%)</td>
<td>2438 (28.6%)</td>
<td></td>
</tr>
<tr>
<td>$100,000 or greater</td>
<td>212 (36.7%)</td>
<td>3475 (43.7%)</td>
<td>3687 (43.3%)</td>
<td></td>
</tr>
<tr>
<td>Parental Education (highest)</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>No Bachelor's Degree</td>
<td>260 (45.0%)</td>
<td>2885 (36.3%)</td>
<td>3145 (36.9%)</td>
<td></td>
</tr>
<tr>
<td>Bachelor's Degree or Higher</td>
<td>318 (55.0%)</td>
<td>5058 (63.7%)</td>
<td>5376 (63.1%)</td>
<td></td>
</tr>
<tr>
<td>Pubertal Stage</td>
<td></td>
<td></td>
<td></td>
<td>0.028</td>
</tr>
<tr>
<td>Pre-Puberty</td>
<td>272 (47.1%)</td>
<td>4173 (52.5%)</td>
<td>4445 (52.2%)</td>
<td></td>
</tr>
<tr>
<td>Early Puberty</td>
<td>141 (24.4%)</td>
<td>1857 (23.4%)</td>
<td>1998 (23.4%)</td>
<td></td>
</tr>
<tr>
<td>Mid-Post Puberty</td>
<td>165 (28.5%)</td>
<td>1913 (22.6%)</td>
<td>2078 (24.4%)</td>
<td></td>
</tr>
<tr>
<td>Weight categorization</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Underweight</td>
<td>16 (2.8%)</td>
<td>308 (3.9%)</td>
<td>324 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>Normal weight</td>
<td>319 (55.2%)</td>
<td>5287 (66.6%)</td>
<td>5606 (65.8%)</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td>105 (18.2%)</td>
<td>1137 (14.3%)</td>
<td>1242 (14.6%)</td>
<td></td>
</tr>
<tr>
<td>Obese</td>
<td>138 (23.9%)</td>
<td>1211 (15.2%)</td>
<td>1349 (15.8%)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2a. Associations between Prenatal Exposure to Maternal Diabetes and Global Brain Measurements

<table>
<thead>
<tr>
<th>Global Brain Measurements</th>
<th>β</th>
<th>95% CI</th>
<th>P-value</th>
<th>FDR-adjusted P-value</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cortical Surface Area (mm²)</td>
<td>-0.073</td>
<td>(-0.144, -0.003)</td>
<td>0.042</td>
<td>0.069</td>
<td>-0.144</td>
</tr>
<tr>
<td>Mean Cortical Thickness (mm)</td>
<td>-0.057</td>
<td>(-0.132, 0.017)</td>
<td>0.132</td>
<td>0.132</td>
<td>-0.089</td>
</tr>
<tr>
<td>Cortical Gray Matter Volume (mm³)</td>
<td>-0.096</td>
<td>(-0.168, -0.025)</td>
<td>0.008</td>
<td>0.042</td>
<td>-0.184</td>
</tr>
<tr>
<td>Subcortical Gray Matter Volume (mm³)</td>
<td>-0.087</td>
<td>(-0.161, -0.013)</td>
<td>0.022</td>
<td>0.054</td>
<td>-0.157</td>
</tr>
<tr>
<td>Cerebral White Matter Volume (mm³)</td>
<td>-0.070</td>
<td>(-0.144, 0.004)</td>
<td>0.064</td>
<td>0.080</td>
<td>-0.132</td>
</tr>
</tbody>
</table>

Table 2b. Associations between Prenatal Exposure to Maternal Diabetes and Regional Cortical Gray Matter Volume (mm³)

<table>
<thead>
<tr>
<th>Regional Cortical Gray Matter Volume</th>
<th>β</th>
<th>95% CI</th>
<th>P-value</th>
<th>FDR-adjusted P-value</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks of the Superior Temporal Sulcus</td>
<td>-0.061</td>
<td>(-0.129, 0.007)</td>
<td>0.080</td>
<td>0.160</td>
<td>-0.079</td>
</tr>
<tr>
<td>Caudal Anterior Cingulate Cortex</td>
<td>0.017</td>
<td>(-0.082, 0.048)</td>
<td>0.608</td>
<td>0.689</td>
<td>0.019</td>
</tr>
<tr>
<td>Caudal Middle Frontal Gyrus</td>
<td>-0.045</td>
<td>(-0.117, 0.028)</td>
<td>0.227</td>
<td>0.336</td>
<td>-0.072</td>
</tr>
<tr>
<td>Cuneus Cortex</td>
<td>-0.104</td>
<td>(-0.174, -0.035)</td>
<td>0.003</td>
<td>0.038</td>
<td>-0.164</td>
</tr>
<tr>
<td>Entorhinal Cortex</td>
<td>0.045</td>
<td>(-0.022, 0.111)</td>
<td>0.187</td>
<td>0.318</td>
<td>0.059</td>
</tr>
<tr>
<td>Fusiform Gyrus</td>
<td>-0.061</td>
<td>(-0.131, 0.009)</td>
<td>0.090</td>
<td>0.169</td>
<td>-0.105</td>
</tr>
<tr>
<td>Inferior Parietal Cortex</td>
<td>-0.062</td>
<td>(-0.134, 0.011)</td>
<td>0.094</td>
<td>0.169</td>
<td>-0.111</td>
</tr>
<tr>
<td>Inferior Temporal Gyrus</td>
<td>0.006</td>
<td>(-0.065, 0.077)</td>
<td>0.869</td>
<td>0.895</td>
<td>0.011</td>
</tr>
<tr>
<td>Isthmus Cingulate Cortex</td>
<td>-0.039</td>
<td>(-0.109, 0.032)</td>
<td>0.284</td>
<td>0.365</td>
<td>-0.058</td>
</tr>
<tr>
<td>Lateral Occipital Cortex</td>
<td>-0.078</td>
<td>(-0.146, -0.010)</td>
<td>0.023</td>
<td>0.095</td>
<td>-0.146</td>
</tr>
<tr>
<td>Lateral Orbital Frontal Cortex</td>
<td>-0.081</td>
<td>(-0.154, -0.008)</td>
<td>0.029</td>
<td>0.097</td>
<td>-0.171</td>
</tr>
<tr>
<td>Lingual Gyrus</td>
<td>-0.082</td>
<td>(-0.156, 0.008)</td>
<td>0.031</td>
<td>0.095</td>
<td>-0.161</td>
</tr>
<tr>
<td>Medial Orbital Frontal Cortex</td>
<td>-0.042</td>
<td>(-0.111, 0.027)</td>
<td>0.231</td>
<td>0.336</td>
<td>-0.065</td>
</tr>
<tr>
<td>Middle Temporal Gyrus</td>
<td>-0.074</td>
<td>(-0.144, -0.003)</td>
<td>0.402</td>
<td>0.114</td>
<td>-0.145</td>
</tr>
<tr>
<td>Parahippocampal Gyrus</td>
<td>0.004</td>
<td>(-0.067, 0.074)</td>
<td>0.918</td>
<td>0.918</td>
<td>0.005</td>
</tr>
<tr>
<td>Parascentral Lobule</td>
<td>-0.064</td>
<td>(-0.135, 0.007)</td>
<td>0.076</td>
<td>0.160</td>
<td>-0.089</td>
</tr>
<tr>
<td>Pars Opercularis</td>
<td>-0.044</td>
<td>(-0.115, 0.026)</td>
<td>0.220</td>
<td>0.336</td>
<td>-0.061</td>
</tr>
<tr>
<td>Pars Orbitalis</td>
<td>-0.079</td>
<td>(-0.149, -0.010)</td>
<td>0.025</td>
<td>0.095</td>
<td>-0.113</td>
</tr>
<tr>
<td>Pars Triangularis</td>
<td>-0.039</td>
<td>(-0.111, 0.033)</td>
<td>0.290</td>
<td>0.365</td>
<td>-0.054</td>
</tr>
<tr>
<td>Pericalcarine Cortex</td>
<td>-0.111</td>
<td>(-0.188, -0.034)</td>
<td>0.005</td>
<td>0.039</td>
<td>-0.226</td>
</tr>
<tr>
<td>Postcentral Gyrus</td>
<td>-0.068</td>
<td>(-0.140, 0.005)</td>
<td>0.068</td>
<td>0.153</td>
<td>-0.120</td>
</tr>
<tr>
<td>Posterior Cingulate Cortex</td>
<td>-0.018</td>
<td>(-0.087, 0.051)</td>
<td>0.604</td>
<td>0.689</td>
<td>-0.025</td>
</tr>
<tr>
<td>Precentral Gyrus</td>
<td>-0.010</td>
<td>(-0.081, 0.061)</td>
<td>0.775</td>
<td>0.849</td>
<td>-0.020</td>
</tr>
<tr>
<td>Precuneus Cortex</td>
<td>-0.068</td>
<td>(-0.140, 0.004)</td>
<td>0.063</td>
<td>0.153</td>
<td>-0.147</td>
</tr>
<tr>
<td>Rostral Anterior Cingulate Cortex</td>
<td>-0.042</td>
<td>(-0.110, 0.027)</td>
<td>0.237</td>
<td>0.336</td>
<td>-0.055</td>
</tr>
<tr>
<td>Rostral Middle Frontal Gyrus</td>
<td>-0.117</td>
<td>(-0.189, -0.045)</td>
<td>0.002</td>
<td>0.026</td>
<td>-0.240</td>
</tr>
<tr>
<td>Brain Region</td>
<td>Z-score</td>
<td>Lower CI</td>
<td>Upper CI</td>
<td>p-value</td>
<td>Lower Effect Size</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Superior Frontal Gyrus</td>
<td>-0.092</td>
<td>(-0.165,-0.019)</td>
<td>0.014</td>
<td>0.078</td>
<td>-0.210</td>
</tr>
<tr>
<td>Superior Parietal Cortex</td>
<td>-0.072</td>
<td>(-0.144, 0.000)</td>
<td>0.051</td>
<td>0.134</td>
<td>-0.140</td>
</tr>
<tr>
<td>Superior Temporal Gyrus</td>
<td>-0.135</td>
<td>(-0.209,-0.061)</td>
<td><0.001</td>
<td>0.012</td>
<td>-0.268</td>
</tr>
<tr>
<td>Supramarginal Gyrus</td>
<td>-0.038</td>
<td>(-0.108, 0.032)</td>
<td>0.287</td>
<td>0.365</td>
<td>-0.063</td>
</tr>
<tr>
<td>Frontal Pole</td>
<td>0.020</td>
<td>(-0.087, 0.047)</td>
<td>0.554</td>
<td>0.673</td>
<td>0.027</td>
</tr>
<tr>
<td>Temporal Pole</td>
<td>-0.009</td>
<td>(-0.061, 0.079)</td>
<td>0.799</td>
<td>0.849</td>
<td>-0.011</td>
</tr>
<tr>
<td>Transverse Temporal Cortex</td>
<td>-0.099</td>
<td>(-0.172,-0.027)</td>
<td>0.007</td>
<td>0.049</td>
<td>-0.147</td>
</tr>
<tr>
<td>Insular Cortex</td>
<td>-0.086</td>
<td>(-0.160, 0.013)</td>
<td>0.021</td>
<td>0.095</td>
<td>-0.211</td>
</tr>
</tbody>
</table>
Figure 1: Association of prenatal exposure to maternal diabetes with child adiposity markers

Figure 1. Violin plots display distributions for adiposity markers (adjusting for family nested within site, age, sex, pubertal status, race/ethnicity, family income, parental education) separated by prenatal exposure to maternal diabetes status. Horizontal bold lines within the violin represent the median of the respective distribution.
Figure 2a: Association of prenatal exposure to maternal diabetes to global brain measurements

Violin plots display distributions of global brain measurements (adjusting for family nested within site, scanner model, handedness, age, sex, pubertal status, race/ethnicity, family income, parental education) separated by prenatal exposure to maternal diabetes status. Horizontal bold lines within the violin represent the median of the respective distribution.
Figure 2b: Prenatal exposure to maternal diabetes and cortical gray matter volume

Figure 2b. Associations between prenatal exposure to maternal diabetes and child regional cortical gray matter volume in the significant regions of interest. T score denotes regions significantly associated with prenatal exposure to maternal diabetes from linear mixed effects models (FDR corrected $P<0.05$) where family identification nested within site identification, as well as subject, were included as random effects, and age, sex, pubertal status, race/ethnicity, family income, parental education, scanner model and handedness were included as covariates. All regions of interest analysis were bilateral in the models.
Figure 3: Mediation role of cortical gray matter in the association between prenatal exposure to maternal diabetes and waist-to-height ratio

Path A:
\[\beta(95\% CI) = -0.102 (-0.186, -0.018), P=0.018 \]

Path B:
\[\beta(95\% CI) = 0.0027 (0.0002, 0.0067), P=0.034 \]

Path A:
\[\beta(95\% CI) = 0.195 (0.111, 0.280), P<0.001 \]

Path C:
\[\beta(95\% CI) = 0.028 (-0.049, -0.007), P=0.010 \]

Path C:
\[B(95\% CI) = 0.193 (0.104, 0.287), P<0.001 \]

Figure 3: Cortical gray matter volume partially mediating the relationships between prenatal exposure to maternal diabetes and waist-to-height ratio. Age, sex, pubertal status, race/ethnicity, family income, and parental education were included as covariates in mediation modeling.