Psychological, endocrine and polygenic predictors of emotional well-being during the COVID-19 pandemic

Thao Nguyen a, Lea Zillich b, Metin Cetin b, Alisha S.M. Hall b, Jerome C. Foo b, Lea Sirignano b, Josef Frank b, Tabea S. Send a, Maria Gilles a, Marcella Rietschel b, Michael Deuschle a, Fabian Streit b, 1 & Stephanie H. Witt b, 1

a Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany

b Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany

1 Shared last authorship

Correspondence: F. Streit, Dept. of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, J5, 68159 Mannheim, Germany, Tel.: +49 621 1703 6054, Fabian.Streit@zi-mannheim.de

Abstract

Stress is an established risk factor for somatic and mental disorders. The COVID-19 pandemic and the related countermeasures severely affect the lives of families. Prenatal stress, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, and genetic factors might impact the well-being of individuals.

The present work is part of an ongoing birth cohort study and aims to investigate maternal perceived stress, early childhood HPA axis activity and polygenic risk scores (PRSs) as predictors of emotional well-being during the COVID-19 pandemic. All participants are part of the ongoing birth cohort study POSEIDON. Emotional well-being of children (n = 259) and mothers (n = 211) was assessed during the COVID-19 pandemic using the CRISIS questionnaire. Furthermore, associations between previously assessed maternal perceived stress (Perceived Stress Scale), children’s salivary and morning urine cortisol measures at 45 months, PRSs for depression, schizophrenia, loneliness and current emotional well-being were investigated.

A positive association between the child’s and the mother’s emotional well-being was found. A worse emotional well-being was observed in both children and mothers during the COVID-19 pandemic.
Nguyen et al. - Well-being during the COVID-19 pandemic

pandemic compared to before. Children’s emotional well-being improved over the course of
the pandemic, while mothers’ well-being worsened. Maternal perceived stress, salivary and
morning urine cortisol and PRSs were not significantly associated with the assessed
emotional wellbeing.

The present study confirms that emotional well-being of children and mothers is
negatively affected by the COVID-19 pandemic, with differences in development over time.
Future studies should examine which mechanisms contribute to stress-related associations
and at which age they can be identified.

Key words: children, COVID-19, emotional well-being, HPA axis, polygenic risk score,
prenatal stress
1. Introduction

Stress is a major risk factor for somatic and mental health: it has been shown that stress increases the risk for cardiovascular, infectious, autoimmune and mental disorders (Agorastos and Chrousos, 2021).

The recent COVID-19 pandemic is a major stressor, as it affects the daily life of individuals and poses a severe risk to one’s physical well-being. It is assumed that external stressors such as school or workplace closures, financial instability, restrictions and internal stressors such as anxiety and depression can have an impact on the stress regulation system (Gruber et al., 2021). It is important to investigate short-, mid- and long-term consequences of the pandemic, its impact on stress and its consequences for mental health.

Understanding these effects will help prevent and deal with negative outcomes (Fegert et al., 2020). Internationally validated and established questionnaires have been designed, e.g. “The CoRonavIruS Health Impact Survey” (CRISIS) (Merikangas et al., 2020) and “Covid-19 Supporting Parents, Adolescents and Children during Epidemics” (Co-SPACE) (Waite and Creswell, 2020), to examine the impact and extent of the COVID-19 pandemic on mental health. Several online studies were conducted to survey mental health during the COVID-19 pandemic with heterogeneous findings. Results of the study from the multicenter German National Cohort (NAKO) have shown increased levels of anxiety, stress and depressive symptoms during the lockdown in April 2020 compared to before (Peters et al., 2020).

Several longitudinal studies have shown a decrease of mental distress over time (Adams et al., 2021; Bendau et al., 2021), with symptoms of loneliness and depression being highest at the beginning of lockdown (Daly et al., 2020; Fancourt et al., 2021). Online interim results of the CO-SPACE study displayed an increase of behavioral and attentional difficulties in children during the first lockdown and a decrease after the lockdown was eased from July 2020 (Skripkauskaite et al., 2020). Behavioral, emotional, and restless/attentional difficulties increased again during the second lockdown in January 2021 (Shum et al., 2021). In another longitudinal cohort study, children had more mental health problems and higher anxiety
levels than before the pandemic (Ravens-Sieberer et al., 2020). In other studies children's depressive symptoms increased over time (Bignardi et al., 2020).

It has been shown that children's psychosocial well-being is closely related to that of their parents (Cobham et al., 2016). External stressors can increase parental negative feelings, e.g. feelings of depression and anxiety (Bonanno et al., 2010). Parents who reported higher levels of depression and anxiety during the COVID-19 pandemic than before, also reported higher stress levels in their children (Russell et al., 2020). Other studies during the pandemic stated that children's behavioral and emotional problems are mediated by parent's individual stress (Cusinato et al., 2020; Spinelli et al., 2020). Moreover, perceived stress during the pandemic is associated with parental over reactivity and negative coping strategies in both children and parents (Achterberg et al., 2021).

Apart from such social influences, biological factors, such as functioning of the Hypothalamic-Pituitary-Adrenal (HPA) axis or genetic risk factors, might influence how individuals are impacted by stressful scenarios as the COVID-19 pandemic. The HPA axis is activated when an individual is confronted with a physiological or psychological stressor in addition to the diurnal rhythm the HPA axis follows. When activated, the steroid hormone cortisol is released, which impacts the regulation of the autonomic nerve and immune system (Agorastos and Chrousos, 2021; Koss and Gunnar, 2018). A dysregulation of the HPA axis is associated with mental disorders (Agorastos and Chrousos, 2021). Pre- and postnatal early life stress have been repeatedly associated with impairments in development and health of children (Van den Bergh et al., 2020). It was implicated that early life stress was linked to HPA axis dysregulation, for example lower cortisol reactivity, flatter diurnal slope or blunted HPA axis response (O'Connor et al., 2021). It is assumed that early life stress can have an effect on HPA axis regulation into adulthood (Van den Bergh et al., 2020).

Genetic factors play an important role in stress regulation (Kudielka et al., 2009) and mental disorders, such as major depressive disorder (Levinson, 2006). Genome-wide association studies (GWAS) identify common genetic variants associated with psychiatric
disorders or particular traits. In a GWAS it was shown that depression is a highly polygenic disorder (Howard et al., 2019). Polygenic risk scores (PRSs) capture the results of genome-wide genetic association studies and summarize them into a single score, reflecting the disease risk (Wray et al., 2014). Recent studies demonstrated associations between PRS for depression and depressive symptoms (McIntosh et al., 2019) as well as between PRS for schizophrenia and negative symptoms (Mistry et al., 2018). The polygenic risk for e.g. depression, schizophrenia or loneliness could be one tool to identify individuals at risk for a decline of emotional well-being during the pandemic.

The present study aims to investigate emotional well-being during the COVID-19 pandemic and whether it is associated with prenatal perceived stress, early childhood HPA axis activity and mental health related PRSs. We hypothesize that:

(H1a) the COVID-19 pandemic has short-term effects and (H1b) long-term effects on the emotional well-being of children and mothers;

(H2) the child's emotional well-being is positively associated with the mother's emotional well-being;

(H3) the change in the child's (3a) and the mother's emotional well-being is negatively associated with maternal perceived stress during pregnancy (3b) and at child's age of 45 months (3c)

(H4) the child's HPA axis regulation at 45 months of age is associated with the change in the child's emotional well-being during the pandemic;

(H5) PRSs for depression, schizophrenia and loneliness are associated with the change in the child's emotional well-being.
2. Materials and Methods

2.1 Sample

This study is part of the longitudinal birth cohort study “POSEIDON” (Pre-, Peri-, and Postnatal Stress: Epigenetic Impact on Depression) examining prenatal stress, health and development of children. 410 pregnant women about 4-8 weeks prior to delivery were recruited for the first study wave (T1) from October 2010 to March 2013, at three obstetric clinics in the Rhine-Neckar Region of Germany. Five waves have been conducted so far: during the third trimester of pregnancy (T1), within a few days after childbirth (T2), six months postpartum (T3), 45 months postpartum (T4) and during the COVID-19 pandemic, when children were 7-10 years old (T5). At T4 dropouts were replaced by 101 children and their parents. Details on the recruiting process, inclusion criteria and sample characteristics have been described previously (Send et al., 2019a; Send et al., 2017).

The present work uses data from study waves T1, T4 and T5. In Germany, strict restrictions were enacted in March 2020 at the beginning of the pandemic. Restrictions were slowly eased starting mid-April and reinstated in November 2020. The current study wave T5 is divided into two parts. Baseline T5a took place between July and September 2020. Follow-up T5b took place between November 2020 and January 2021. A total of 482 children and their parents who were part of the POSEIDON cohort in at least one study wave were invited to participate again. Of these 482 children and parents, 260 participated. Final sample included 259 children in T5a and 170 in T5b. 211 mothers completed the questionnaire at T5a and 145 at T5b were included in the analyses. An overview of number of participants and samples is displayed in Figure 1.

The Ethics Committee of the Medical Faculty Mannheim of the University of Heidelberg approved the study. Before participation, all families provided written informed consent.
2.2 Procedure

First, the children's parents were contacted in July-August 2020 by telephone and asked whether they would be interested in participating in a short online survey. Parents who were not reachable by phone were approached by e-mail or through postal mail. If the family agreed to participate, they were provided with detailed information about the study and asked for their written informed consent. Participants who agreed to participate in the survey received an invitation by email, along with the link to the online survey and provided written consent. For participants who were either not reachable by e-mail or preferred a paper-pencil questionnaire, the questionnaires were sent by postal service. A follow-up survey was sent out between November-December 2020 to all subjects who had participated in the first online survey (T5a) and agreed to be recontacted.

The primary caregiver was asked to complete the parent/caregiver version of the CRISIS questionnaire (for measures, see 2.3.1) about the child. In addition to the parent/caregiver questionnaire, both parents were invited to answer the adult self-report
version of the CRISIS. Therefore, each family received three questionnaires. The online survey was created with REDCap, a web application for building and managing online surveys (Harris et al., 2019). Study data were collected and managed using REDCap electronic data capture tools.

2.3 Measures

2.3.1 Emotional well-being

Emotional well-being was assessed with the “Adult self report” and the “Parent caregiver report” versions of the emotional well-being questionnaire of the “CRISIS - The Coronavirus Health Impact Survey” (V0.2) (Merikangas et al., 2020). These questionnaires are licensed and available at crisissurvery.org. The emotional well-being scale consists of 10 items on a 5-point Likert scale, adapted from the circumplex model of affect (Larsen and Diener, 1992; Posner et al., 2005). In the first part of this study wave (T5a), children’s and parents’ emotional state three months prior to the pandemic was assessed retrospectively (referred to as T5 pre) as well as the current emotional state during the pandemic. At the second timepoint (T5b), the current emotional state during the pandemic was assessed.

2.3.2 Maternal perceived stress T1 & T4

At T1, prenatal perceived stress of the mothers was assessed with the Perceived Stress Scale (PSS) (Cohen et al., 1983). The self-report questionnaire consists of 14 items measuring the experienced level of stress during the last month (of pregnancy). Higher values regarding the sum score of all items indicate higher perceived stress. At T4 the perceived stress of the mothers was assessed again using the PSS.

2.3.3 HPA axis measures T4

The nocturnal activity of the HPA axis was assessed through the cortisol concentration in the morning urine of the children at T4. Details are described elsewhere (Send et al., 2019b).
Stress reactivity was operationalized by salivary cortisol concentration before and at three timepoints after finishing the stress test at T4. Briefly, the children and the researcher played a game, where the children had to attach colored magnets to a matching animal. A red stop light indicated that the time was up. The researcher switched the light remotely before the children could finish. Therefore, the children experienced failure and received negative feedback repeatedly. Full details are described elsewhere (Send et al., 2019a).

2.3.4 Polygenic risk scores

For children of the original cohort, DNA was extracted from cord blood. For children newly recruited at T4, DNA was extracted from saliva using the ORAgene sampling kit (DNA Genotek, Ottawa, Ontario, Canada). The Illumina Psych Array, V1.0 for original cohort and V1.3 for newly recruited children (Illumina, Inc., San Diego, CA, USA), was used for genome-wide genotyping. Quality control and filtering was performed using PLINK 1.9 (Chang et al., 2015), according to recommendations published in Turner et al. (Turner et al., 2011). We removed participants with a mismatch between phenotypic and genotypic sex, > 0.02 missingness, or a heterozygosity rate > |0.2|. We removed SNPs with a minor allele frequency (MAF) of < 0.01, missing data > 0.02, or deviating from Hardy-Weinberg equilibrium (HWE) with a p-value < 10^{-6}.

A SNP set filtered for high quality SNPs (MAF > 0.20, missingness = 0, HWE p > 0.02) and LD pruning (pairwise r^2 < 0.1 within a 200 SNP window) was used to filter for relatedness and population structure and cryptically related (π/σ > 0.20) subjects were excluded at random. Principal components were generated to control for population stratification and to remove outliers (> 6 SD on one of the first 20 principal components).

After quality control, genotypic data was available for 229 subjects, who also had T5 data.

PRSs for depression (PRS-DEP), schizophrenia (PRS-Schizophrenia) and loneliness (PRS-Loneliness) were calculated using PRSice 2.1.6 (Choi and O'Reilly, 2019). The PRS-DEP based on GWAS summary statistics from Howard (Howard et al., 2019), excluding
German samples and all SNPs with an info score < 0.9. The same info score filtering was applied for the PRS-Schizophrenia, which was calculated based on Ripke (Ripke et al., 2014) and the PRS-Loneliness, which was calculated based on Day (Day et al., 2018). For all three PRSs, a p-value threshold of nominal significance (p < 0.05) was used.

2.4 Statistical analysis

All statistical analyses were performed in the R statistical environment version 3.5.1. For emotional well-being, inverted items were recoded and mean scores were calculated for the three time points. For perceived stress, a total sum score of the PSS was calculated (Cohen et al., 1983).

Morning urinary cortisol concentrations were corrected for urinary creatinine concentration by dividing cortisol by creatinine concentration. The urinary cortisol concentrations corrected for creatinine were log10-transformed to reduce skewness. The salivary cortisol concentrations at the four timepoints were also log10-transformed to reduce skewness. The area under the curve with respect to increase (AUCi) was calculated (Pruessner et al., 2003) in relation to baseline cortisol concentration. AUCi reflects the course of cortisol concentration in response to stress induction. Outliers above or below three standard deviations from the mean were winsorized to the closest value within three standard deviations.

To investigate the emotional well-being over time, repeated measures ANOVA was calculated and differences between the timepoints were investigated using post-hoc t-tests (H1). Pearson correlations were performed to test associations between the child’s and the mother’s emotional well-being (H2). Linear multiple regression analysis was used to investigate the relationship between perceived stress and the change in the emotional well-being of the child (H3a) and the mother (H3bc). For maternal perceived stress, the child’s sex (H3a) and age (3abc) were added as covariates because of possible influences of these variables on emotional well-being.
Investigating the relationship between the child’s AUCi, the child’s urinary cortisol level and the change in the emotional well-being (H4) linear multiple regression analysis was used. For the AUCi, time of measurement was added as a covariate, for urinary cortisol the time of urine sample and whether the children wore a diaper was included because of possible influences of these variables on cortisol levels.

Linear regression models were calculated to explore an association between the PRS-DEP, PRS-Schizophrenia, PRS-Loneliness and the change in the emotional well-being during the pandemic, correcting for the first five genetic principal components, age and sex (H5).

The significance level was set to $p < 0.05$.

A post-hoc power analysis was calculated for the primary hypothesis, emotional well-being of children, using GPower 3.1.9.7 (Faul et al., 2009). With a total sample size of $n = 170$, an observed effect of $f = 0.24$, a mean correlation of repeated measures of $r \sim 0.6$ and three measurements, the achieved power for this analysis was >0.99.

3. Results

3.1 Descriptive statistics

An overview of used variables is provided in Table 1. From a total of $N = 260$ children and $N = 215$ mothers, $n = 1$ child and $n = 4$ mothers were excluded from the analyses in T5a due to missing values. From a total of $N = 173$ children and $N = 145$ mothers, $n = 3$ children were excluded from the analyses in T5b due to missing values. Mean age of the children at T5a was $M = 7.74$ (SD = 0.71) years and at T5b $M = 8.03$ (SD = 0.77) years. Mean age of the mothers at T5a was $M = 40.69$ (SD = 4.41) years and at T5b $M = 41.03$ (SD = 4.6) years. In the analyses including morning urine cortisol, $n = 225$ children and in the analyses including salivary cortisol (AUCi) $n = 202$ children were analyzed. Regarding maternal perceived stress, $n = 206$ mothers for T1 and $n = 239$ for T4 were included in the analyses.

Table 1 Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Children</th>
<th></th>
<th></th>
<th>Mothers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>M</td>
<td>SD</td>
<td>range</td>
<td>n</td>
<td>M</td>
</tr>
<tr>
<td>Age T5a</td>
<td>260</td>
<td>7.74</td>
<td>0.71</td>
<td>7 - 9</td>
<td>215</td>
<td>40.69</td>
</tr>
<tr>
<td>Age T5b</td>
<td>173</td>
<td>8.03</td>
<td>0.77</td>
<td>7 - 10</td>
<td>145</td>
<td>41.03</td>
</tr>
<tr>
<td>Emotional pre</td>
<td>259</td>
<td>1.9</td>
<td>0.57</td>
<td>1 - 4.3</td>
<td>212</td>
<td>2.44</td>
</tr>
<tr>
<td>Emotional T5a</td>
<td>170</td>
<td>2.29</td>
<td>0.66</td>
<td>1 - 4</td>
<td>145</td>
<td>2.69</td>
</tr>
<tr>
<td>Emotional T5b</td>
<td>225</td>
<td>-0.46</td>
<td>0.37</td>
<td>-1.62 - 0.55</td>
<td>206</td>
<td>29.88</td>
</tr>
<tr>
<td>Cortisol morning urine*</td>
<td>202</td>
<td>2.58</td>
<td>9.49</td>
<td>-24.32 - 26.85</td>
<td>239</td>
<td>23.19</td>
</tr>
<tr>
<td>PSS T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>206</td>
<td>29.88</td>
<td>3.7</td>
<td>18 - 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSS T4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>239</td>
<td>23.19</td>
<td>7.73</td>
<td>7 - 46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*log10-transformed
3.2 H1: Emotional well-being in course of the pandemic

The children’s emotional well-being differed before and over the course of the pandemic, as shown by a significant ANOVA ($F(2,338) = 77.66, p < 0.001$), as depicted in Figure 2. A worse emotional well-being during the pandemic (T5a) compared to before the pandemic (T5 pre) was observed ($t(169) = -12.1, p < 0.001$). In the course of the pandemic (T5b) the emotional well-being of the children improved compared to the beginning of the pandemic (T5a) ($t(169) = 2.62, p = 0.03$), but is still worse compared to before the pandemic ($t(169) = -9.04, p < 0.001$).

The same overall effect of emotional well-being was observed for mothers as the ANOVA showed significant differences in the mothers’ emotional well-being before and during the pandemic ($F(2,288) = 25.86, p < 0.001$), as depicted in Figure 3. A worse emotional well-being was observed comparing before the pandemic (T5a pre) to during the pandemic at T5a ($t(144) = -4.55, p < 0.001$) and T5b ($t(144) = -7.11, p < 0.001$). In the course of the pandemic (T5b), the emotional well-being of the mothers worsened compared to the beginning of the pandemic (T5a) ($t(144) = -2.43, p < 0.05$).
Fig. 2 Mean levels and range of emotional well-being (CRISIS score) of the children at all three assessed time points. Significant differences in post hoc tests **** p < 0.001; * p < 0.05

Fig. 3 Mean levels and range of emotional well-being (CRISIS score) of the mothers at all three assessed time points. Significant differences in post hoc tests **** p < 0.001; * p < 0.05

3.3 H2: Association between the mothers’ and the child’s emotional well-being
The emotional well-being of the mother and child was positively associated at all time points, as shown by correlation coefficients of moderate size: T5 pre (n = 211, r = 0.38, p < 0.001), T5a (n = 210, r = 0.46, p < 0.001) and T5b (n = 140, r = 0.4, p < 0.001).

3.4 Association between maternal perceived stress and change in the emotional well-being
H3a: The overall model predicting the change in the child’s emotional well-being during the pandemic with prenatal perceived stress of the mother at T1 was not significant (F(3, 201) = 0.42, p = 0.74, R² = 0.01).
H3b: The model predicting the change in the mother’s emotional well-being during the pandemic with prenatal perceived stress at T1 was not significant ($F(2, 157) = 1.25, p = 0.29, R^2 = 0.02$).

H3c: Furthermore predicting the change in the mother’s emotional well-being during the pandemic with perceived stress at T4 was not significant ($F(2, 191) = 1.94, p = 0.15, R^2 = 0.02$).

3.5 H4: Association between HPA axis reactivity and the change in the child’s emotional well-being

The model predicting the change in the child’s emotional well-being with cortisol concentration in morning urine was not significant ($F(3, 220) = 0.45; p = 0.72, R^2 = 0.01$). The model predicting the change in the child’s emotional well-being with AUCi was not significant ($F(2, 198) = 0.42; p = 0.66, R^2 = 0.004$).

3.6 H5: Association between polygenic risk for MDD, schizophrenia and loneliness and the change in the child’s emotional well-being

The change in the child’s emotional well-being during the pandemic could not be predicted by PRS for depression ($F(8, 220) = 0.85; p = 0.56, R^2 = 0.03$), schizophrenia ($F(8, 220) = 0.76; p = 0.64, R^2 = 0.03$) or loneliness ($F(8, 220) = 0.73; p = 0.67, R^2 = 0.03$) as shown by a non significant model.
Discussion

The present study investigated the stress response of children and adults during the COVID-19 pandemic, as well as the association of prenatal perceived stress, early childhood HPA axis activity, PRSs and the current emotional well-being.

Consistent with our hypotheses (H1), the emotional well-being of children and mothers worsened during the pandemic compared to before the pandemic. The mothers’ emotional well-being worsened in the first (T5a) and the second (T5b) part of our assessment. In contrast, children's emotional well-being was poorer at the beginning of the pandemic compared to pre-pandemic but improved during the second part of this study wave. Other studies have also shown that emotional well-being worsened in adults (Adams et al., 2021; Daly et al., 2020; Fancourt et al., 2021; Peters et al., 2020) and children (Achterberg et al., 2021; Bignardi et al., 2020; Ravens-Sieberer et al., 2020) at the beginning of the pandemic. There have been inconsistent findings considering emotional well-being over the course of the pandemic. Our results are in line with previous results showing deterioration of emotional well-being among adults (González-Sanguino et al., 2020) and improvement of emotional well-being among children (Achterberg et al., 2021; Skripkauskaite et al., 2020) over the course.

It is important to consider the circumstances, e.g., whether there was a lockdown and how strict restrictions were. Restrictions during the first assessment in June and July, were already partly eased in Germany. During the second assessment in November, the second lockdown began, accompanied by more restrictions. These were comparable to those during the first assessment. On account of increasing corona infections, a “hard lockdown” followed in December. Therefore, adults and children were affected by more restricting circumstances during the second assessment compared to the first. In addition, seasonal effects during the second assessment from November-December could have affected the emotional well-being negatively (Meesters and Gordijn, 2016). Another aspect could be that mothers already had additional difficulties with parenting (Spinelli et al., 2020) for a long period since the first lockdown. The combination of strict restrictions, depressive symptoms caused by seasonal
effects and parenting difficulties could explain why mothers had a worse emotional well-being at both assessed timepoints during the COVID pandemic and even worse during the second assessment.

Interestingly, children had a better emotional well-being in the second assessment compared to the first. Probably this finding could be explained by adaptation to their environment and developing better coping mechanisms over the course of the pandemic. Also the social environment, e.g., families and schools, could have developed adapted routines, promoted resilience and had better strategies to support children compared to the beginning of the pandemic (Masten and Motti-Stefanidi, 2020). In the light of the ongoing pandemic, future studies should evaluate which specific factors are helpful to strengthen children's resilience.

A moderate association between the emotional well-being of the mother and the child during the pandemic (H2) was confirmed. This association has been implicated by several studies before (Russell et al., 2020; Spinelli et al., 2020) underlining that parent's well-being is a mediator for children's emotional and behavioral problems (Achterberg et al., 2021). Especially during stressful times like the COVID-19 pandemic, parents play an important role by influencing the mental health of their children (Russell et al., 2020).

There was no significant association between the perceived stress of the mother assessed in previous study waves and the change in the emotional well-being of the child and the mother (H3). Previous findings have already shown that, prenatal stress has an impact on children's development and health (Van den Bergh et al., 2020). Furthermore, the child’s age at the assessment during the pandemic, type and timing of stressor may influence the association between prenatal perceived stress and the child's well-being. Assuming that additional pandemic-caused stressors can influence the children's well-being, these should be taken into account in further studies.

In another longitudinal study results suggest that increases in depression and anxiety symptoms during the COVID-19 pandemic in mothers occurred universally, regardless of previous mental health history (Racine et al., 2021). Depending on current life circumstances
the amount of stress, its perception and response can vary. For example during pregnancy (T1) and when children are at preschool age (T4) different stressors could have impacted the mother’s perceived stress. These stressors could be limited to the existing circumstances at the assessed time. Thus, the emotional well-being during the pandemic is additionally affected by pandemic related stressors and independently from former perceived stress.

There was no significant association between the change in the emotional well-being of the child and the cortisol stress reactivity at 45 months (H4). In the same longitudinal birth cohort, prenatal stress was associated with a hyporegulation of the children's HPA axis, as indicated by lower cortisol levels after a stress test (Send et al., 2019a) and lower cortisol and cortisone levels in the first morning urine of the then 45 month-old children (Send et al., 2019b). Various factors influencing the emotional well-being during the COVID-19 pandemic could lead to intraindividual changes, such as HPA axis reactivity. Interestingly, in another study loneliness during the COVID-19 pandemic had been associated with higher levels of cortisol at waking and a blunted CAR in adolescents. Pandemic related circumstances may influence diurnal cortisol patterns (Jopling et al., 2021). Including cortisol measurements in future assessments, allows us to explore the development of the HPA axis reactivity during childhood and adolescence.

PRSs did not significantly predict the change in the child's emotional well-being during the pandemic (H5). It has to be taken into account that the application of PRSs is limited to the underlying GWAS and that to date even large GWASs in psychiatric genetics are still underpowered (Wray et al., 2014). Also, environmental factors such as isolation and school closures could have a larger effect on well-being than genetic risk factors.

The present study has several limitations. First, data acquisition only took place online or via mailed questionnaires. None of the participants were interviewed face to face, due to the restrictions. Second, the children did not answer the questions themselves. The main parent caregiver, in most cases the mother, answered the questions about the child. There is possible bias as answers about the emotional well-being of the child are influenced
by the caregiver’s perspective and his/her own mental distress (De Los Reyes and Kazdin, 2005). In particular, the association between the mother’s and the child’s well-being could be affected by that bias. Third, there were only two assessments. Since the pandemic is not over, it would be interesting to pursue the course of mental health linked to the prevailing circumstances. Fourth, the questionnaires assessing three months prior to the pandemic were answered retrospectively, therefore biases and pitfalls could emerge from that assessment. Fifth, our sample had limited diversity (mostly high educational background and high socio-economic status) and may not be representative of the general population.

The present study is among the first longitudinal birth cohort studies assessing the impact of prenatal stress on children’s emotional well-being during the COVID-19 pandemic. The use of internationally established and validated screening instruments to assess mental health enables comparison with other studies. The study contributes to the emerging evidence that mental health of children and adults is affected by the COVID-19 pandemic. Furthermore, it indicates that while the well-being of the children and their mothers was linked at each assessed time point, children react differently over the course of the pandemic than adults. Due to the longitudinal study model, it is possible to set findings in relation to previous assessments of this cohort. While in the present study, associations with chosen genetic, endocrine and psychological predictors were not significant, differential results might be observed in children and adolescents of different age groups. Further, it is of interest to investigate whether the experience of the pandemic has an impact on the health and development of the children in the future, especially in regard to their stress perception and endocrine stress regulation.

Funding & Disclosure

This work was supported by the German Federal Ministry of Education and Research (BMBF) through ERA-NET NEURON “Impact of Early life MetaBolic and psychosocial strEss on susceptibility to mental Disorders; from converging epigenetic signatures to novel targets for therapeutic intervention” (01EW1904 to M.R.), ERA-NET NEURON “SynSchiz - Linking
synaptic dysfunction to disease mechanisms in schizophrenia—a multilevel investigation.”
(01EW1810 to M.R.), and by a grant of the Dietmar Hopp Foundation. The study was
supported by the German Research Foundation (DFG; GRK2350/1).

Conflict of Interest
The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Author contributions
Substantial contributions to the conception or design of the study, or the acquisition of data,
or analysis and interpretation of data: T.N., L.Z, M.C., A.S.M.H., J.C.F., L.S., J.F., T.S.S.,
M.G., M.R., M.D., F.S, S.H.W.; Drafting the article or revising it critically for important
intellectual content: T.N., L.Z., J.C.F., S.H.W., F.S; All authors approved the final version of
the manuscript.

Acknowledgements
We thank all parents and children for taking part in this study and our student employees
and interns for their support with data acquisition and data entry. Furthermore, we would like
to thank Prof. Dr. Manfred Laucht for his helpful advice.
T. Nguyen et al.

References

Choi, S.W., O'Reilly, P.F., 2019. PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8, giz082.

T. Nguyen et al.

Meesters, Y., Gordijn, M., 2016. Seasonal affective disorder, winter type: current insights and treatment options. Psychology research and behavior management

T. Nguyen et al.

The box plots show the distribution of CRISIS scores at different time points: T5 pre, T5a, and T5b. The scores range from 1 to 5, with T5 pre showing a lower median score compared to T5a and T5b. The plots indicate a statistically significant difference between T5a and T5b, as marked by asterisks (***) and ****).