Development of machine learning models for the prediction of complications after colonic, colorectal and small intestine anastomosis in psychiatric and non-psychiatric patient collectives (P-Study)

Stephanie Taha-Mehlitz1, Bassey Enodien2, Marta Bachmann2, Vincent Ochs3, Ahmad Hendie4,
Anas Taha5

1. Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital, Basel, Switzerland
2. Department of Surgery, GZO Hospital, Wetzikon, Switzerland
3. Roche Innovation Center Basel, Department of Pharma Research & Early Development, Basel, Switzerland
4. Department of Computer Engineering, McGill University, Montreal, Canada
5. Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Allschwil, Switzerland

Correspondance: anas.taha@unibas.ch

Abstract

Psychiatric and psychosomatic diseases are an increasingly cumbersome burden for the medical system. Indeed, hospital costs associated with mental health conditions have been constantly on the rise in recent years. Moreover, psychiatric conditions are likely to have a negative effect on the treatment of other medical conditions and surgical outcomes, in addition to their direct effects on the overall quality of life. Our study aims to investigate the impact of preoperative risk factors, psychiatric and psychosomatic diseases on the outcomes of colorectal surgery and length of hospital stay via predictive modeling techniques.

Method: Patient data will be collected from several participating national and international surgical centers. The machine learning models will be calculated and coded, but also published according to the TRIPOD guidelines (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis).

Result: It is conceivable to arrive at generalizable models predicting the abovementioned endpoints through large amounts of data from several centers. The models will be subsequently deployed as a free-to-use web-based prediction tool using the Shiny environment [47]. The cost for the hosting server and digital infrastructure will be covered by Dr. Anas Taha. The sponsor will store the data for ten years.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1. Introduction

Psychiatric and psychosomatic diseases are an increasingly cumbersome burden for the medical system. Indeed, hospital costs associated with mental health conditions have been constantly on the rise in recent years. Moreover, psychiatric conditions are likely to have a negative effect on the treatment of other medical conditions and surgical outcomes, in addition to their direct effects on the overall quality of life [1, 2]. Our study aims to investigate the impact of preoperative Risk factor, psychiatric and psychosomatic diseases on the outcomes of colorectal surgery and length of hospital stay via predictive modeling techniques.

Colorectal anastomotic insufficiencies (AI) and other complications after surgery cause a substantial clinical and economic burden on patients and can lead to a significant increase in the morbidity and mortality rate [3]. Hospital stays are prolonged by 12 days on average, for patients who experience AI [3]. In expert centers, the estimated incidence of AI after colon anastomosis is at around 3.3%, and 8.6% for colorectal anastomoses [4]. In the literature, several somatic risk factors for the occurrence of anastomotic insufficiency have been described [5-8]. In contrast to this, and to the best of our knowledge, no studies are available that evaluate the influence of psychological risk factors on anastomotic insufficiency and other postoperative complications after colorectal surgery so far [9].
Our study aims to lay the basis for a predictive modeling service for postoperative complications and prolonged hospital stay in patients suffering from psychiatric diseases undergoing colorectal surgery. The service mentioned above will be publicly available as a web-based application.

2. Method

Patient data will be collected from several participating national and international surgical participants (hospitals, centers, university centers). The models will be built and published according to the transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines [10].

Ethical Considerations

Every participant is responsible for the IRB approval (ethics board/institutional review board) on their own. The centers must acquire approval, to collect retrospective and/or prospective data and to share it in a completely deidentified way with the sponsor. The study protocol can be used as an assistance, which the sponsor will register on ClinicalTrials.gov.

Dr. med Anas Taha is the sponsor of the study. Dr. med. Bassey Enodien and Dr. Stephanie Taha-Mehlitz are the principal investigators.

Authorship

Data of 300 patients (or more) which are complete, must be provided by each participating center. Each cooperating center is allowed to assign 2 center leads, and up to further 2 center-specific contributors will be stated as a contributor in PubMed/Medline in a group authorship model.

Inclusion and Exclusion Criteria

Patients who were diagnosed with a colocolic or colorectal anastomosis for several indications will be included, like diverticulitis, neoplasia, iatrogenic or traumatic perforation, mesenterial ischemia or inflammatory bowel disease. Patients which are underaged, patients which are suffering from bear peritoneal carcinomatosis, recurrent colorectal cancer bear peritoneal carcinomatosis or unresectable metastatic disease at the time of bowel resection and anastomosis will be excluded. Patients who are unable to provide informed approval to participate
according to each center’s rules will be excluded. Furthermore, if patients cannot be followed up on for more than six weeks after surgery, they will be excluded because the occurrence of AI can neither be confirmed nor excluded.

Data Collection

The data will be assembled and processed by each center from a dedicated clinical database before submitting them to the study-specific REDCap Database provided by the sponsor. Each participating center must provide data from at least 300 patients. Patient data will be collected between January 2012 and December 2020. The data-entries will be registered in a form in which patients cannot be directly identified (deidentification), to ensure anonymity of the data. Upon completion of data entrance of each patient, a study-specific patient identifier will be produced. The final data on the database will not contain any identifiable patient information. To ensure that processed patient data can be re-evaluating, each center will have to have a log file in which study-specific patient numbers can be traced.

Primary Endpoint Definition

The following three study endpoints will be assessed separately.

1. **Anastomotic insufficiency/leakage (AI)** as defined according to Gessler et al. [8] and Rahbari et al. [11]. Predictive model with an app for the development of anastomosis insufficiency based on the risk factors.

2. **Comprehensive Complication Index** as defined by Slankamenac et al., 2013 [12].

3. **Length of Hospital Stay**, defined as time span in days from surgery to discharge from the service, including admission and discharge date. And whether the patients who suffer from psychiatric and psychosomatic disorders are having higher complication rates and longer hospitalization.

4. How does the **intraoperative fluid management** play a role on the development of an anastomosis insufficiency?

5. **Development of a preoperative score** to better assess the patient’s condition and find patients at risk for morbidity/mortality in colorectal surgery.

Features and their definitions

- Age [13]
- Gender (M/F) [14]
- BMI [15]
• Height
• Weight [16]
• Charlson Comorbidity Index (CCI) [17]
• American Society of Anesthesiologists (ASA) Score [18]
• Nutritional status (NRS ≥ 3) [19]
• Smoking status [20]
• Alcohol abuse status [21]
• Renal function [22]
• Surgical indication [23]
• Operation [24]
• Prior abdominal surgery
• Emergent surgery [25]
• Surgical approach [26]
• Anastomotic technique [27]
• Protective ileostomy [28]
• TNM status [29]
• Liver metastasis [30]
• Distance from anal verge [31]
• Preoperative leucocyte count [32]
• Preoperative albumin count [33]
• Preoperative hemoglobin level [34]
• Preoperative steroid use [35]
• Preoperative radiotherapy and/or chemotherapy [36]
• Psychiatric and psychosomatic diseases according to the ICD-10 classification
 o Depression (F32.1 – F32.9, F33.1 – F33.9, F34.1)
 o Bipolar disorder (F30.1 – F30.9, F31.0 – F31.9)
 o Schizophrenia (F20-F29)
 o Obsessive-compulsive disorder (F42.0 – F42.9)
 o Anxiety and panic disorder (F40.0 - F40.9; F41.0 – F41.9)
 o Anorexia, bulimia, and other eating disorders (F50)
 o Dementia (F00-F03)
 o History of drug abuse (harmful use, drug addiction, withdrawal syndrome, and associated long-term consequences (F11-F19)
Assessment for postoperative complications

The complication rate was evaluated after colorectal surgery, and the Comprehensive Complication Index (CCI) [12, 37] will be calculated for each patient. Furthermore, the occurrence of anastomotic insufficiency (as defined by Gessler [8] and Rahbari [11]), length of hospital stay (LOS), mortality rate and readmission rate will be assessed and correlated to the occurrence of psychiatric and psychosomatic diseases.

Sample Size

There are two main problems associated with predictive modeling. The first of these is the relevance of the features used for model creation. Indeed, it is impossible to detect a relationship between a set of features and the outcome variable when there is none. Logically, this problem cannot be overcome even with the most sophisticated algorithms. Therefore, a comprehensive literature study was necessary to ensure that the risk factors listed as features above have been consistently reported as risk factors for postoperative complications after colorectal surgery. Admittedly, very little literature is available connecting psychiatric and psychosomatic diseases to adverse postoperative outcomes. Our group is currently aiming to fill this gap with a retrospective study that aims to clarify the putative connection between mental health and postoperative complications. The second important point is the sample size, since the relationship between the prediction performance and the sample size is almost directly proportional. There are three important considerations to be made when determining a suitable sample size. First, the sample size should be large enough to ensure that the sample is representative enough for the study population of interest. Second, the sample size should be appropriate for the algorithm used. For instance, deep neural networks require thousands of data sets to assemble a model, while stable results can be accomplished by a logistic regression model using only a few hundred data sets. Third, the number of input variables is proportional to the number of data sets necessary for a useful prediction. As an established rule of thumb, at least ten or more positive cases are required per input variable which have been included to model the relationships. Consequently, very rare outcomes need much larger data sets than common outcomes. For example, a prediction based on ten or more input variables for an outcome that occurs 10% of the time would require at least 100 positive cases and, consequently, at least 1000 cases total. Furthermore, larger sample sizes enable the evaluation to be more generous through a larger amount of patient data dedicated to train and validate the model. This will usually end up in having better results.

In the P-Study, a total of 13 different features were selected. Consequently, at least 130 patients suffering from anastomotic insufficiency postoperatively will be necessary. However, to ensure the quality of our
study through extensive model calibration, a goal of 200 patients was set. With an frequency of anastomotic insufficiency of 2% in Small intestine anastomosis, 4% in colon anastomosis and 9% for colorectal anastomosis, a total of 3000 to 4000 patients will be necessary to create a high-performing model. To ensure the best results possible, a total patient number of 4,000 was established as a target value. A usual approach for model validation and calibration is to reserve 20% of the data set for testing purposes, while 80% of the data are used to train the model. Thus, 1,000 more patients will be necessary to provide a sufficient test data set. Consequently, a total number of 5,000 patient data sets will be necessary for this study. However, greater performance and better calibration will be most likely achieved through more data.

Predictive Modelling

Missing data will be tolerated up to a margin of 25% per patient or feature. A concomitantly trained nearest neighbor imputer will be used to impute missing data up to the abovementioned margin [38]. Feature patients and patients lacking more than 25% of the data will be systematically excluded. Random upsampling or synthetic minority oversampling (SMOTE) will be used on the train data set, if major imbalances for the outcome should be discovered [39, 40]. If necessary, recursive variables elimination (RFE) will be employed for feature selection on the training set [41].

The following algorithms will be trialed for binary classification: the stochastic gradient boosting machine (GBM), random forest, generalized additive model (GAM), artificial neural network, the generalized linear model (GLM), support vector machine (SVM), and naïve Bayes classifier. Each model will be fully trained and hyperparameter tuned where applicable. For the best-performing model, the resampled training performance will be examined. The model with the best performance in the training set will subsequently be examined on the test data set for external validation. A bootstrap of the test data will be used to calculate the 95% confidence intervals (CI) for the external validation metrics. The threshold for binary classification will either be identified on the training data alone using the AUC-based “closest-to-(0,1)-criterion” or Youden’s index the training set. For the analyses, Python Version 3.7.12 will be used [42 - 44].
Evaluation

Model discrimination and calibration are the most common metrics applied to evaluate classification models [45]. Discrimination describes the procedure of a model to correctly identify and assign binary problems. This means its ability to correctly predict whether or not a certain outcome will occur. In comparison, calibration describes how precisely the continuous probabilities (probability range from zero percentage to one-hundred) from a model correspond to the observed true occurrence of a binary outcome. Even though calibration metrics are scarcely reported in publications, they are much appreciated by clinicians and patients as they allow for a more figurative description of the patient’s risk [45].

For calibration as well as for discrimination, the resampled training performance and the external validation performance will be evaluated. For discrimination performance, we will use the following metrics: AUC, accuracy, recall, precision, positive predictive value (PPV), negative predictive value (NPV), and F1 Score will be assessed. For calibration metrics, the following metrics will be used: the Brier score, expected-observed (E/O) ratio, calibration slope and intercept, and the Hosmer-Lemeshow goodness-of-fit test will be calculated for both data sets.

Interpretability

The degree of interpretability of this study’s results will be based on the best-performing algorithm. While certain algorithms by design provide easily interpretable insights into the effect that features have on the outcome (e.g., GLM, GAM, or naïve Bayes classifier), more complex models such as neural networks or stochastic gradient boosting machines cannot provide definite explanations for their results. For the latter group of algorithms, an AUC-based variable importance and the LIME principle will be used to provide a model-agnostic local interpretation of variable importance [46].

3. **Expected Results**

It is conceivable to arrive at generalizable models predicting the abovementioned endpoints through large amounts of data from several centers. The models will be subsequently deployed as a free-to-use web-based prediction tool. The cost for the hosting server and digital infrastructure will be covered by Dr. Anas Taha. The model and the data will stored for 10 years by the sponsor.
Literature

