Genomic characterization of invasive typhoidal and non-typhoidal *Salmonella* in southwestern Nigeria

Odion O. Ikhiimiukor¹, Anderson O. Oaikhena¹, Ayorinde O. Afolayan¹, Abayomi Fadeyi², Aderemi Kehinde³, Victoria Ogunlege³, Aaron O. Aboderin⁴, Oyinlola O. Oduyebo⁵, Charles J. Elikwu⁶, Erkison Ewomazino Odih¹, Ifeoluwa Komolafe¹, Silvia Argimón⁷, Abiodun Egwuenu⁸, Ini Adeluyi³, Oluwadamiloa A. Sadare⁶, Tochi Okwor⁸, Mihir Kekre⁷, Anthony Underwood⁷, Chikwe Ihekweazu⁸, David M. Aanensen⁷ and Iruka N. Okeke¹

¹ Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria.
² Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Kwara State, Nigeria.
³ Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria.
⁴ Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria.
⁵ Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria.
⁶ Department of Medical Microbiology, School of Basic Clinical Sciences, Benjamin Carson College of Health and Medical Sciences, Babcock University & Teaching Hospital, Ilishan-Remo, Ogun State, Nigeria.
⁷ Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom.
⁸ Nigeria Centre for Disease Control, Jabi, Abuja, Nigeria.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background: Salmonellosis causes significant morbidity and mortality in Africa. Despite being endemic in Nigeria, information on circulating lineages of invasive *Salmonella* is sparse.

Methods: Sixty-three *Salmonella enterica* isolated from blood (n=60) and cerebrospinal fluid (CSF, n=3) isolated between 2016 and 2020 from five tertiary hospitals in southwest Nigeria were Illumina-sequenced and analysed using publicly available bioinformatic tools.

Results: Isolates and sequence types (STs) from blood were *S.* Typhi [ST1 =1 and ST2 =43] and invasive non-typhoidal *Salmonella* (iNTS) (*S.* Enteritidis [ST11, n=7], *S.* Durham [ST10, n=2], *S.* Rissen [ST8756, n=2], *S.* Chester [ST2063, n=1], *S.* Dublin [ST10, n=1], *S.* Infantis [ST603, n=1], *S.* Telelkebir [ST8757, n=1] and *S.* Typhimurium [ST313, n=1], whereas it was *S.* Typhi ST2 (n=2) and *S.* Adabraka ST8757 (n=1) from CSF. Most *S.* Typhi belonged to genotype 3.1.1 (n=44, 95.7%) and had several antibiotic resistance genes (ARGs) including *bla*TEM-1 (86.4%, n=38), *aph*(6)-Id (72.7%, n=32), *tet*(A) (75%, n=33), *sul*2 (72.7%, n=32), *dfr*A14 (68.18%, n=30) as well as the quinolone resistance-conferring *gyr*A_S83Y SNPs (n=37, 84.09%). The 3.1.1 strains included a predominant sub-lineage (n=33) harbouring *gyr*A_S83Y and an IncY plasmid detected at all hospitals. Typhoidal toxins *cdt*B, *plt*A and *plt*B were detected in *S.* Typhi, Rissen, Chester, and Telelkebir.

Conclusion:

This study revealed the West African dominant lineage 3.1.1 to be majority of *S.* Typhi genotype harbouring ARGs. The increasing number of iNTS, including serovars harbouring typhoidal toxins, as well as the dominance of multidrug resistant isolates emphasizes the need for better diagnosis and surveillance of invasive *Salmonella*.
Author Summary

Whole genome sequencing of 63 invasive *Salmonella* from 5 tertiary hospitals in Nigeria revealed multiple serovars including a dominant antibiotic-resistance-gene harbouring *S. Typhi* 3.1.1 genotype comprising a *gyrA*_{S83Y} and IncY plasmid. We also report invasive non-typhoidal *Salmonella* harbouring typhoidal toxins.
INTRODUCTION

Salmonella are a group of Gram negative, motile, facultative anaerobic rod-shaped bacteria belonging to the Enterobacteriaceae family. This genus consists of two known species, Salmonella enterica and Salmonella bongori. S. enterica are further distributed across six subspecies, of which the S. enterica subsp. enterica are most reported in infections involving homeotherm animals (1). Furthermore, S. enterica subsp. enterica consists of over 1500 serovars differentiated by distinct antigenic specificity (2). The human host adapted S. enterica subsp. enterica serovars are usually associated with three marked clinical syndromes. Salmonella enterica subsp. enterica serovar Typhi cause typhoid fever, and the non-typhoidal Salmonella (NTS) cause bacteraemia and gastroenteritis in immunocompromised (including persons with advanced HIV disease, cases of severe malaria and malnutrition in children) and immunocompetent persons, respectively (3,4). S. Paratyphi produce a syndrome similar to typhoid fever.

The public health impact of Salmonella infections is significant particularly in Africa and Asia where they have a great influence on morbidity and mortality (5,6). For instance, an estimated 17.8 million cases of typhoid fever occur each year in low and middle-income countries (LMICs) (7). An earlier estimate suggests that the burden of typhoid fever is >100 per 100000 individuals per annum in sub-Saharan Africa with an associated 1% mortality (8,9). Furthermore, an estimated 26% (33,490 lives lost) of the annual global typhoid-related mortality is reported to occur in Africa (9). The disease burden of typhoid in Nigeria is estimated at 364,791 typhoid cases resulting in 4,232 deaths (affecting 68% of individuals under 15 years of age) as at 2016 (10), however population-based data are only just becoming available (11). On the other hand, globally, NTS is estimated to cause approximately 94 million cases of gastroenteritis per annum worldwide with a resultant mortality of 155,000 (12). In immunocompromised cases of the disease (amongst HIV-positive adults), NTS is
reported to cause a 20% case fatality (212,000 deaths) in sub-Saharan Africa (SSA) annually, while also being responsible for over 1 million cases of bloodstream infections in children in SSA with a case fatality of 18.1% (197,000 child mortality) (4,13,14).

Although available reports suggest infection with *Salmonella enterica* to be the most common cause of bloodstream infections in Africa (15), the incidence and microbiology of typhoidal and invasive non-typhoidal Salmonella (iNTS) is still poorly understood. Many regions on the continent have garnered little or no attention in the literature (7). Blood culture-based surveillance represent standard methods for assessing the epidemiology and aetiology of the invasive infections (16). However, limited surveillance of invasive *Salmonella* on the Africa continent is majorly due to financial, logistical, and infrastructural constraints for the institution of blood culture-based surveillance systems in the region (7,8,16,17).

Such limitations not only obscure the true burden and prevalence of invasive *Salmonella* infections in resource limited settings but also limit opportunity for genomic surveillance of this pathogen. For instance, despite the huge burden of typhoid infections in Nigeria, there are only 131 Salmonella genomes (all *S. Typhi*) from the country on Pathogenwatch (https://pathogen.watch/, 15th November 2021) (18), a web-based platform for surveillance of microbial genomes all of which were collected on or before 2013, and most from only two centres. Lack of genomic surveillance information of invasive Salmonella in resource-limited countries, including Nigeria, may deter interventions necessary to ameliorate this burden, such as the typhoid conjugate vaccines (8,19,20). Hence, this report provides genomic characterization of 2016-2020 invasive *Salmonella* retrieved from tertiary hospitals enrolled into Nigeria’s Antimicrobial Surveillance Network coordinated by the Nigeria Centre for Disease Control (NCDC).
MATERIALS AND METHODS

Ethical considerations

Isolates were obtained as part of the surveillance efforts in line with Nigeria’s national action plan. Ethical approval for using them in research was obtained from the University of Ibadan/University College Hospital ethics committee (UI/EC/15/093).

Isolate collection and Identification

Tertiary hospitals located in southwest Nigeria and enrolled into the Nigeria Antimicrobial Surveillance Network provided cryopreserved isolates from blood and cerebrospinal fluid to the AMR National reference laboratory. The isolates were from batched periods of 2016-2018 (retrospective isolates), 2019 and 2020. The national reference lab in partnership with the Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance (GHRU-GSAR) conducted the re-identification of the isolates using a VITEK 2 systems (version 2.0, Biomérieux).

DNA extraction and Library preparation

The isolates were processed for the extraction of genomic DNA using Wizard DNA extraction kit (Promega; Wisconsin, USA) following manufacturer’s instructions. The extracted DNA was quantified on a Qubit fluorometer (Invitrogen; California, USA) using dsDNA Broad Range quantification assay. Double-stranded DNA libraries were prepared using the Covaris LC220 for fragmentation, and NEBNext Ultra II FS DNA library kit for Illumina with 384-unique indexes (New England Biolabs, Massachusetts, USA; Cat. No: E6617L). Libraries were sequenced on an Illumina HiSeq X10 (Illumina, CA, USA).
Genome Assembly

Generated sequence reads from Illumina runs were *de novo* assembled following GHRU protocols (https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/assembly) using a Nextflow workflow which inclusively comprises of adapter trimming (trimmomatic v0.38), contamination detection (ConFindr v0.7.2), assembly (SPAdes v3.12.0), Quality Control (multiqc v1.7, qualifyr v1.4.4) and Bactinspector (v 0.1.3).

Sequence typing of *Salmonella* genomes

Sequence reads were deposited in the *Salmonella* database on EnteroBase (Zhou et al., 2020). Multi-locus sequence types (MLST) for the isolates were determined and core-genome MLST calculated. Evolutionary relationship based on cgMLST of all *S. Typhi* of human origin from Africa deposited in Enterobase were determined (Zhou et al., 2020). The *Salmonella* genome assemblies were analysed using the *Salmonella* In-Silico Typing Resource (SISTR) for the prediction of serovars and serogroups (https://github.com/phac-nml/sistr_cmd). Serovars belonging to *S. Typhi* were loaded unto pathogen watch for the prediction of their genotypes (Argimón et al., 2021).

Prediction of AMR, Plasmids, Virulence and Salmonella Pathogenicity islands

Prediction of AMR and virulence determinants, multi-locus sequence types (MLST) and plasmid replicons were done following GHRU protocols (https://gitlab.com/cgps/ghru/pipelines). Prediction of salmonella pathogenicity islands (SPIs) in the genomes was done by mapping raw reads to SPIs database ([https://bitbucket.org/genomicepidemiology/spifinder_db](https://bitbucket.org/genomiepidemiology/spifinder_db)).
Single Nucleotide Polymorphism (SNP) calling and phylogeny

The sequence reads of the Salmonella genomes from our study were mapped to NCBI reference sequence, Salmonella enterica subsp. enterica serovar Typhi strain H12ESR00755-001A (Assembly accession: GCF_001362195.2), to determine evolutionary relationship amongst the strains following GHRU nextflow SNP phylogeny protocols (https://gitlab.com/cgps/ghru/pipelines/snp_phylogeny). SNP distances between the genome pairs were calculated using snp-dists (https://github.com/tseemann/snp-dists) on the pseudo-genome alignment.

Availability of sequence data

Raw sequence data generated from this study are deposited in the European Nucleotide Archive under Bioproject PRJEB29739. Accession numbers for each genomes are available as Supplementary information.

RESULTS

Invasive Salmonella from sentinel hospitals from Nigeria’s AMR Surveillance Network

A total of 69 invasive and presumptive Salmonella spp. identified using VITEK at the reference laboratory were retrieved from patients from five (n=5) sentinel hospitals. However, whole-genome sequencing confirmed 61 of these to be Salmonella enterica, as well as two Salmonella enterica isolates initially identified as Escherichia coli and Acinetobacter baumanii using VITEK. (Five VITEK-identified ‘Salmonella’ were Klebsiella spp and one an Enterobacter spp. Strain). The sixty-three (63) WGS-confirmed invasive Salmonella isolates were retrieved from blood (n=60) and cerebrospinal fluid (n=3). The sending sentinel hospitals include: University of Ilorin Teaching Hospital (ILO, Ilorin, Kwara
State, n=25), University College Hospital, Ibadan (UCH, Ibadan, Oyo State, n=23), Obafemi Awolowo University Teaching Hospital, Ile-Ife (OAU, Ile-Ife, Osun State, n=8), Lagos University Teaching Hospital (LUT, Idi-Araba, Lagos State, n=4) and Babcock University Teaching Hospital (BUT, Ilishan-Remo, Ogun State, n=3). The hospitals are all in the southwestern part of Nigeria with ILO just north of the South-West geopolitical zone and all the rest within it. All the *Salmonella* isolates from cerebrospinal fluid were obtained from LUT.

Distribution of *Salmonella enterica* subsp. *enterica* serovars across sentinel hospitals

All the *Salmonella enterica* isolates belonged to the subspecies *enterica* but differed by serotype with a total of 10 serovars detected. They include Typhi (n=46), Enteritidis (n=7), Durham (n=2), Rissen (n=2), Adabraka (n=1), Chester (n=1), Dublin (n=1), Infantis (n=1), Telelkebir (n=1), Typhimurium (n=1). Three *Salmonella enterica* isolates belonging to serovars Adabraka (n=1) and Typhi (n=2) were retrieved from cerebrospinal fluid from LUT. All other *Salmonella* serovars were retrieved by blood culture at the respective sentinel sites (Supplementary data 1). *Salmonella* Typhi and iNTS were recovered from all sentinel sites, with iNTS being much less frequently recovered. Among the iNTS, *S. Enteritidis* was the most ubiquitous, being recovered in three of the five sentinels. The other iNTS serovars recovered more than once were *S. Rissen* =2 and *S. Durham* =2, both from UCH, which had the broadest range of iNTS serovars (4).

Sequence types, genotypes, and Nucleotide polymorphisms.

Salmonella sequence-typing based on Achtman’s MLST scheme (21) identified two *S. Typhi* Sequence Types (STs) (ST1 =1 and ST2 = 45). There were nine different iNTS STs. These included previously reported invasive STs: *S Enteritidis* ST11 (n=7) and *S Typhimurium*
ST313 (n=1), which are repeatedly reported from Africa. Other iNTS were S. Dublin (ST10), S. Enteritidis (ST11), S. Typhimurium (ST313), S. Infantis (ST603), S. Durham (ST2010), S. Chester (ST2063), S. Telelkebir (ST2222). Two novel STs belonging to S. Rissen and S. Adabraka were curated and designated STs 8756 and 8757 respectively by EnteroBase.

To further place our S. Typhi genomes in a wider context, we performed MLST analysis based on differences in core genomes of our strains and all S. Typhi from Human sources in Africa deposited in EnteroBase (Fig 1). S. Typhi genomes from this study clustered with others from West Africa, including Nigeria, Cameroon, Togo, Mauritania, Mali, Burkina Faso, Guinea, Benin, and Ivory Coast, emphasizing further on their endemicity in the West Africa region (Fig 1).

Further, based on S. Typhi genotyping scheme, we observed that S. Typhi ST1 belonged to genotype 4.1 (UCH), whereas genotypes 2.3.1 (n=1, UCH) and 3.1.1 (n=44) were S. Typhi ST2 isolates. In addition, S. Typhi genomes from CSF (n=2) belonged to the 3.1.1 genotype. Expectedly, S. Typhi genotypes 2.3.1 and 4.1 accounted for greatest pairwise SNP difference among the S. Typhi genomes (between 397 to 549 single nucleotide substitutions), whereas SNP differences ranged between 0 and 47 in the other S. Typhi genomes (genotype 3.1.1) from the 5 sentinel hospitals. Among S. Enteritidis pairwise SNP difference ranged from 0 to 37 in the three sentinel labs (UCH, OAU, ILO) where they were isolated. S. Enteritidis isolates from ILO (n=3) were near identical having pairwise SNP range from 0 to 1, whereas it was between 0 and 32 in UCH.

Antimicrobial resistance determinants and plasmids replicons in TS and NTS

A combined total of 14 acquired antimicrobial resistance genes (ARGs) conferring resistance to drugs within seven antibiotic classes were detected amongst the genomes (Fig 2, Supplementary data).
Amongst the S. Typhi genomes, 76.08% (n=36/46) harboured at least one ARG specifying reduced susceptibility to 5 antibiotic classes, with 89.13% harbouring a sulphonamide resistance gene \([sul1 – 19.56\% (n=9/46), sul2 – 71.73\% (n=33/46)] \) and 84.78% (n=39/46) each harbouring a beta-lactam (\(\text{bla}_{\text{TEM-1}} \)), tetracyclines (\(\text{tetA} [n=33, 71.73\%] \) and \(\text{tetB} [n=6, 13.04\%] \)), and trimethoprim resistance determinant (\(dfrA1 [n=1, 2.17\%], dfrA15 [n=8, 17.39\%] \) and \(dfrA14 [n=30, 65.21\%] \)). In addition, quinolone resistance genes, \(\text{catA1}, \) were also detected in the genomes (n=8, 17.39%). Chromosomal gene mutations occurring among the sequenced S. Typhi isolates were those associated with the quinolone resistance determining region \(\text{gyrA_{S83Y}} \) SNPs (n=37, 84.09%), which mediate reduced susceptibility to fluoroquinolones. Furthermore, 97.82% (n=45) of the S. Typhi genomes had at least one plasmid predicted to occur in each genome. Majority (71.73%, n=33) possessed an IncY plasmid replicon, plasmid replicons IncFIA_H11, IncHIA and IncHIB were respectively detected in 19.56% (n=9) of S. Typhi genomes whereas one isolate harboured an IncQ plasmid replicon.

For the iNTS, S. Enteritidis genomes possessed at least one ARG to six antibiotic classes. All isolates of this serotype harboured \(\text{aph(3'')}\text{-Ib}, \text{bla}_{\text{TEM-1}}, \text{catA1}, \text{dfrA7}, \text{sul1}, \text{sul2}, \text{tet(B)} \) genes, and only differed in the absence/presence of \(\text{aph(6)}\text{-Id} \) (n=4, 57.14%). In tandem, S. Typhimurium harbour ARGs \([\text{aadA1}, \text{aph(3'')}\text{-Ib}, \text{aph(6)}\text{-Id}, \text{bla}_{\text{TEM-1}}, \text{catA1}, \text{dfrA1}, \text{sul1}, \text{sul2}] \) specifying resistance to 5 antibiotic classes. The only occurring quinolone resistance gene among isolates in this study, \(\text{qnrB19} \), was detected in S. Telekebiir. No ARGs were detected in Salmonella serovars Chester, Rissen, Durham, Infantis, Adabraka and Dublin. Chromosomal gene mutations among iNTS were associated with \(\text{gyrA} \) and \(\text{parC} \) gene regions. The quinolone resistance conferring \(\text{gyrA}_{D87Y} \) SNPs were detected only amongst S. Enteritidis (ILO = 3 and UCH = 1), whereas quinolone resistance conferring \(\text{parC}_{T57S} \)
SNPs were detected in all iNTS except S. Enteritidis and S. Typhimurium. Plasmids were predicted to occur only in S. Dublin [IncFII(S), IncX1 and IncX1_1], S. Enteritidis (IncI1 and IncQ1), S. Typhimurium [IncFIB, IncFII(S) and IncQ1] among the iNTS.

Predominant IncY + gyrA_S83Y harbouring S. Typhi variants in Nigeria

We observe that all S. Typhi of the 3.1.1 lineage harbouring an IncY plasmid replicon (71.73%, n=33/46) similarly possessed the *gyrA_S83Y* chromosomal gene mutation and harboured a *tetA* gene. This phenomenon was observed to occur in all the sentinel hospitals in this study. Additionally, pairwise SNP distance between the variants ranged from 0 to 18.

Salmonella virulence determinants and predicted pathogenicity islands

The isolates possessed a plethora of virulence determinants (Supplementary data). Among the S. Typhi genomes, a total of 98 virulence determinants were detected, and 97 (98.97%) of these were conserved within members of this serovar (difference from the absence of *pipB2* gene in an S. Typhi 3.1.1 from UCH). Expectedly, a wider variety of virulence determinants were seen among iNTS, compared to S. Typhi. A total of 122 virulence genes were detected in the iNTS genomes, and 86 (70.49%) of these were conserved in all iNTS genomes. For instance, the iNTS possessed genes encoding (i) Adherence; such as AgF – thin aggregative fimbrae or curli (*csgABCDEGF*), MisL – an autotransporter protein, Pef - plasmid-encoded fimbrae (present only in S. Typhimurium) *ratB* (carried by iNTS strains harbouring CS54 islands), *shdA* (only found in S. Infantis), SinH (detected in all NTS except S. Enteritidis) and Type 1 fimbrae (*fimCDFHI*) (ii) Stress adaptation; *sodCI* – superoxide dismutase (detected in iNTS serovars except Durham, Chester and Rissen and Infantis and Telelkebir), *sopA* (not detected in S. Infantis) (iii) Nutritional/metabolic factor (*mgtBC*, present in all strains) (iii) Antimicrobial activity/competitive advantage; such as macrophage inducible genes (*mig-14*,...
present in all strains) and (iv) Enterotoxin; T3SS effectors – \textit{spvB} (In S. Typhimurium, Enteritidis and Dublin), AvrA (In all iNTS except S. Dublin) and Typhoidal toxin - \textit{cdtB} (present in S. Durham, S. Telelkebir and S. Chester).

Since the \textit{cdtB} are reported to be co-located with other cytolethal distending toxins (cdt), pertussis-like toxins A (\textit{pltA}) and B (\textit{pltB}), on same pathogenicity islet (Simon et al., 2014), we ran a blast search of our strains for the presence of \textit{pltA} and \textit{pltB}. The nucleotide sequences were extracted from the virulence factor database (VFDB) and used as a local database for a blast search against our iNTS genomes. Our results reveal high similarity (100% coverage and $\geq 96.62\%$ identity) with \textit{cdtB}, \textit{pltA} and \textit{pltB} genes in the iNTS genomes (S. Chester, S. Durham and S. Telelkebir).

Prediction of Salmonella pathogenicity islands (SPIs) gave 11 and 12 hits in S. Typhi and iNTS genomes respectively. All S. Typhi were predicted to have 10 SPIs, i.e., SPI-1, SPI-2, SPI-3, SPI-4, SPI-5, SPI-6, SPI-7, SPI-8, SPI-9, SPI-10 and SPI-12. However, SPI-4 was predicted to occur only in S. Typhi lineages 2.3.1 and 4.1. In contrast to S. Typhi, only SPI-3 was predicted to occur in all the iNTS genomes. SPIs were shown to be associated with members of certain serovars. For instance, SPI-2 and SPI-8 were detected only in S. Typhimurium and S. Rissen, respectively. Other pathogenicity islands were detected in this study (Fig 3, supplementary data), such as SPI-4 (S. Adabraka, Chester, Typhimurium), SPI-6 (all NTS except S. Durham, Rissen and Telelkebir), SPI-12 (all NTS except S. Chester, Durham, Rissen and Telelkebir) and CS54_island was detected in S. Dublin, S. Typhimurium, S. Infantis and S. Enteritidis (n=67, 85.71%).

Microreact main data:
In this report we present outcome of genomic characterization of invasive *Salmonella* infections from AMR surveillance in sentinel hospitals in Nigeria. The genomic characterization of invasive Salmonella isolates in this study was possible because these hospitals perform blood culture and enrolled in Nigeria’s new antimicrobial resistance surveillance system, which offers genomic services at the National Reference Laboratory level (22). Nonetheless, blood culture is available at very few institutions in Nigeria, a limitation still prevalent in many African settings that impacts the genomic surveillance of invasive Salmonella. (8,16,23).

Using to high-throughput WGS and bioinformatic analytics, we were able to determine prevalent multiple serotypes and dominant genotypes of invasive *Salmonella* infections. Most of the isolates were *Salmonella* Typhi, which have been more frequently recovered in Nigeria (24,25), even though iNTS may predominate at other African settings (3,26). While our data are few, the predominance of Typhi at all sites points to a significant burden of severe disease that could be averted were Typhoid Conjugate Vaccines available in Nigeria. Out of a total of 10 *S.* Typhi genotypes recorded in Nigeria from Pathogenwatch, three were identified in this study. The prevalence of *S.* Typhi genotype 3.1.1 in our report was similarly observed in the Nigeria cluster on Pathogenwatch (n=87/131, 66.41%). As in our study, this cluster possessed similar prevalence of genetic determinants of beta-lactam (*bla*TEM-1 – 83.90%) resistance, indicating that these determinants are well-conserved in the genotype. However, prevalence of other AMR genetic determinants from this lineage such as *catA1* (86.20%),
were not similar from what is reported from this study (\textit{catA} - 18.18\%, \textit{sul1} - 18.18\%, \textit{sul2} - 72.72\%, \textit{dfrA14} - 68.18\%, \textit{dfrA15} - 18.18\%, \textit{tetA} - 75\%, \textit{tetB} - 11.36). This multidrug-resistance gene-encoding \textit{S}. Typhi 3.1.1 is shown to be one of the broadest lineages in sub-Saharan Africa and endemic in the West Africa region (Wong et al., 2016; Park et al., 2018; Ingle et al., 2019). Additionally, we observed \textit{S}. Typhi genotype 3.1.1 clone variants harbouring IncY + \textit{gyrA_S83Y} + \textit{tetA} genes. The Pathogenwatch database contains two strains isolated in Abuja, north-central part of the country in 2013 with similar clonal characteristics. Our data suggest that the resistant sublineage is predominant in our setting and should be sought elsewhere in Nigeria and the region.

\textit{S}. Enteritidis were the most frequently recovered NTS in our study and were recovered at three sentinel hospitals. This outcome contrasts with earlier reports of \textit{S}. Typhimurium ST313 in Eastern Africa, but also present across the continent, including Nigeria (15,27,28), but is concordant with more recent higher \textit{S}. Enteritidis reports from invasive infections in The Gambia (29). We observed that \textit{S}. Enteritidis retrieved from different patients in ILO (in 2019) had highly similar genetic features (antimicrobial resistance determinants, virulence, plasmids replicons) including pairwise SNP between 0 and 1. The isolates were recovered on the 27th of June, 26th of August and 28th of August 2019 and their genetic, geographic and temporal connectedness may be indicative of a previously unrecognized outbreak. Both \textit{S}. Typhimurium ST313 and \textit{S}. Enteritidis ST11 are dominant, human-adapted clones in sub-Saharan Africa (30) that are a major cause of invasive disease, with a corresponding high case-fatality rate (14). These serovars are justifiably vaccine development priorities.

Invasive NTS vaccines in the pipeline will not cover other NTS serovars and we identified several in this study, harbouring an assortment of virulence, plasmids and antimicrobial resistance determinants. This points to the need for widespread and robust access to invasive
Salmonella diagnostics in Nigeria. The single occurrence of an acquired quinolone resistance gene, qnrB19 in this study was detected in S. Telelkebir. To the best our knowledge, this serovar has been reported just once on the African continent, in Mali (ENA accession number SRR8987873). However, it is more commonly reported in parts of Europe, China and USA (31). The expansion of atypical Salmonella serovars in invasive infections is associated with a high health burden (19,29).

We observed that NTS (S. Telelkebir, S. Durham and S. Chester) harboured the cytolethal distending toxin islet genes (cdtB, pltA, pltB) also known as typhoid toxin. These toxins were originally thought to be restricted to serovars Typhi and Paratyphi A (32). However, these have now been reported in other NTS serovars including Bredeney, Javiana, Montevideo, Schwarzengrund, and more recently in Telelkebir (33–35). The cytolethal distending toxin islet cause DNA damage and cell cycle arrest in impaired cells (36). More implicity, these genes encoded by NTS serovars have been reported to play vital roles in disease pathogenesis (34,35). Thus, this study emphasizes on an expanding number of serovars causing invasive infections in the country, and the public health implications therein.

CONCLUSION

The outcome of our study emphasizes the need for expanded genomic surveillance of invasive Salmonella infections in Nigeria as a valuable tool to monitor antibiotic resistance spread and genetic characterization of circulating lineages in Nigeria. Close monitoring of the antibiotic resistance genes harbouring S. Typhi 3.1.1 IncY + gyrA_S83Y variants and other serovars is vital, and this may inform strategies for empirical treatment and control of spread of antibiotic resistant lineages. Our data demonstrate that introducing typhoid conjugate vaccines, recommended by the World Health Organization for countries like Nigeria that have a high typhoid disease burden, will have a significant impact on health (37). In addition,
development of vaccines which target NTS would be useful in reducing the overall burden of NTS on the continent and rigorous surveillance is essential for determining which serovars most require coverage. Even broader protective effects may be achieved by improvements in water, sanitation and hygiene that could interrupt transmission of the causes of typhoid and other invasive salmonellosis.

ACKNOWLEDGEMENT

This work was supported by Official Development Assistance (ODA) funding from the National Institute of Health Research [grant number 16_136_111] and the Wellcome Trust grant number 206194. INO was an African Research Leader supported by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement that is also part of the EDCTP2 program supported by the European Union. The funders had no role in the content, crafting or submission of this paper.

We thank Chinenye Ekemezie and Ifeoluwa Akintayo for excellent technical contributions and Jola-Ade J. Ajiboye for logistic assistance. We are grateful to the administration and staff of the five sentinels for supporting them in surveillance.

REFERENCES

Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res [Internet]. 2009 Dec 1 [cited 2021 Nov 25];19(12):2279–87. Available from: https://genome.cshlp.org/content/19/12/2279.full

33. den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML, Degoricija L, et al. Genome sequencing reveals diversification of virulence factor content and

Figure Legends

Fig 1: Grape tree showing core genome MLST of S. Typhi from human sources in Africa, deposited in the EnteroBase database. Red leaf labels are genomes from this study.

Fig 2: A SNP-phylogeny based tree and heatmap showing the genomic profile of Salmonella genomes retrieved from 5 sentinel laboratories in Nigeria.

Fig 3: Frequency of occurrence of Salmonella pathogenicity island in TS (Typhoidal Salmonella) and NTS (Non-typhoidal Salmonella).
Fig 1: Grape tree showing core genome MLST of S. Typhi from human sources in Africa, deposited in the EnteroBase database. Red leaf labels are genomes from this study.
Fig 2: A SNP-phylogeny based tree and heatmap showing the genomic profile of *Salmonella* genomes retrieved from 5 sentinel laboratories in Nigeria.
Fig 3: Frequency of occurrence of *Salmonella* pathogenicity island in TS (Typhoidal Salmonella) and NTS (Non-typhoidal Salmonella).