Calprotectin and inflammation-associated serum biomarkers determine critical illness in COVID-19

Georgios Kassianides¹, Athanassios Siampanos², Garyphalia Poulakou³, George Adamis⁴, Aggeliki Rapti⁵, Haralampos Milionis⁶, George N. Dalekos⁷, Vasileios Petrakis⁸, Styliani Sympardi⁹, Symeon Metallidis⁹, Zoi Alexiou¹¹, Theologia Gkavogianni², Evangelos J. Giamarellos-Bourboulis²*, Theoharis C. Theoharides¹²,¹³,¹⁴,¹⁵*

*equal contribution

¹Intensive Care Unit, Korgialeneion-Benakeion Athens General Hospital, 115 27 Athens, Greece;
²⁴th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 124 62 Athens, Greece;
²³rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, 115 27 Athens, Greece;
¹⁴th Department of Internal Medicine, G. Gennimatas General Hospital of Athens, 115 27 Athens, Greece;
² Department of Pulmonary Medicine, Sotiria General Hospital of Chest Diseases, 115 27 Athens, Greece;
¹⁴st Department of Internal Medicine, University of Ioannina, Medical School, 455 00 Ioannina, Greece;
⁷Department of Medicine and Research Laboratory of Internal Medicine, National and European Expertise Center in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece;

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
2nd Department of Internal Medicine, Democritus University of Thrace, Medical School, 681 00 Alexandroupolis, Greece;
91st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
101st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, 546 21 Thessaloniki, Greece;
112nd Department of Internal Medicine, Thriasio General Hospital of Eleusis, 196 00 Magoula, Greece;
12Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston. MA 02111, USA
13School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
14Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
15Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA

*Corresponding author:
E. J. Giamarellos-Bourboulis, MD, PhD
4th Department of Internal Medicine
ATTIKON University Hospital
1 Rimini Street; 124 62 Athens; Greece
Tel: +30 210 58 31 994; Fax: +30 210 53 26446
e-mail: egiamarel@med.uoa.gr
Abstract

Little is known on the key contributing factors towards progression into acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV) in COVID-19. We determined serum levels, within 24 hours of diagnosis, of alarmins, as well as pro- and anti-inflammatory molecules in asymptomatic, moderate, severe and intubated patients compared to non-infected comparators. Levels of the pro-inflammatory interleukin (IL)-8, IL-18, matrix metalloproteinase-9, platelet-derived growth factor (PDGF)-B and calprotectin (S100A8/A9) were specific drivers of ARDS. Levels of the anti-inflammatory IL-1ra and IL-33r were increased; IL-38 was increased only in asymptomatic patients, but significantly decreased in the more severe COVID-19 cases. Multivariate ordinal regression showed that pathways of IL-6, IL-33 and calprotectin gave significant probability for worse outcome. These results indicate a dysfunctional response to the presence of alarmins that may be used for prognosis and development of effective treatments.

Key words

Corona virus, COVID-19, cytokines, IL-18, IL33r, IL-38, inflammation, S100A8/A9
The SARS-CoV-2 coronavirus infects human cells by first binding to their surface receptor, Angiotensin Converting Enzyme 2 (ACE2), via its corona spike protein\(^1\) leading to the development of COVID-19\(^2,3\). This condition involves a complex immune response that includes the release of a “storm” of pro-inflammatory cytokines\(^4,6\) associated with poor prognosis. Prominent among them have been IL-6\(^7,9\) and IL-1\(\beta\)\(^10\) but also the family of S100 alarmins, the S100A8/A9 of which is otherwise known as calprotectin\(^11\).

This knowledge led early to consider severe COVID-19 as a hyper-inflammatory disorder and encouraged the administration of modifiers of the biological response like dexamethasone, tocilizumab, anakinra and baricitinib in the forefront of management. However, after almost two years in this pandemic, we have realized that when severe COVID-19 is further progressing into acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV) the prognosis is poor. This fact emphasizes the need to identify the real drivers leading from moderate and severe COVID-19 to severe ARDS and MV. This may be the only way to prevent or efficiently address the most ominous consequence of COVID-19.

In this paper, we investigated serum levels of alarmins, as well as pro- and anti-inflammatory molecules leading to ARDS and MV, and how their presence tracks with disease severity.
RESULTS

Study participants

The sampling for the study took place between April and November 2020. Serum samples from 181 patients and 40 non-infected comparators were studied. Among the patient population, on the day of blood sampling 19 patients were asymptomatic; 42 patients had moderate disease; 78 patients had severe disease; and 42 patients were with ARDS on MV. Patients with ARDS on MV had higher values of the sequential organ failure assessment (SOFA) score, lower values of respiratory ratios and higher circulating C-reactive protein and ferritin (Table 1).

At the first stage of the study, the samples were analyzed in an effort to identify a set of mediators that may drive progression into ARDS and MV. At the second stage of the study, the mediators were serially followed over-time to define if the levels change over-time until ARDS and MV (Figure 1).

First stage: Presence of inflammation-associated mediators

Among the pro-inflammatory mediators, interleukin (IL)-1β, IL-6, IL-17, IL-33 and tumour necrosis factor-alpha (TNFα) did not differ between the different stages of severity. However, IL-8 and IL-18 were significantly greater among patients with critical ARDS necessitating MV compared to less severely ill patients. Among anti-inflammatory cytokines, IL-33r (souble ST2) was significantly greater among patients at critical ARDS. IL-1ra (soluble receptor antagonist) was greater among patients with mild to critical COVID-19 without, however, significant difference between those with severe and critical disease. IL-10 did not differ among patients and controls. IL-38 levels were
decreased from asymptomatic patients to the more severe stages (Figure 2). Interferons did not differ between patients (Supplementary Figure 1).

Platelet-derived growth factor (PDGF)-B, and to a lesser extent PDGF-A, were increased among critically ill ARDS; PAF did not differ. The same was the case for calprotectin and matrix metalloproteinase (MMP)-9. PAF and S100B did not differ among different stages of severity (Figure 3).

First stage: drivers of acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV)

ROC curve analyses identified that IL-8, IL-18, MMP-9, IL-33r, PDGF-B and calprotectin were associated with ARDS necessitating MV (Figure 4A). The cut-offs of each of the six mediators providing the best trade-off of sensitivity and specificity were defined and entered the equation of multivariate analysis. Only increased IL-33r, increased PDGF-B and increased calprotectin were found to be drivers of ARDS necessitating MV (Figure 4B).

First stage: drivers of 28-day mortality

The analysis involved hospitalized patients with moderate and severe COVID-19 and patients with ARDS necessitating MV. For this analysis, we decided to follow a pathway-like division of biomarkers into clusters. To this end, nine pathways were defined as follows: a) IL-1ra activation when both IL-1β and IL-1ra were above the median of the entire cohort; b) IL-6 pathway when IL-6 was above the median of the entire cohort; c) IL-18 pathway when IL-18 was above the cut-off defined for critical illness; d) neutrophil activation when at least two of IL-8 above >100 pg/ml, MMP-9
above 870 pg/ml or IL-17 above the lower limit of detection were met; e) interferon pathway when at least one of the three measured interferons was above the median of the entire cohort; f) IL-33 pathway when IL-33r was above 170 ng/ml; g) IL-38 pathway when IL-38 was above the median of the entire cohort; h) PDGF-B pathway when PDGF-B was above 2.7 ng/ml; and i) calprotectin pathway when calprotectin was above 7.8 μg/ml (Figure 5 and Figure 6A).

Multivariate ordinal regression analysis showed that the pathways of IL-6, of IL-33 and of calprotectin were associated with allocation into more severe states of the WHO-CPS after 28 days (Figure 6B). On the contrary, the pathways of IL-1ra and of IL-38 were associated with allocation into less severe states of the WHO-CPS after 28 days. The pathways of IL-6, IL-33 and calprotectin were independent drivers for mortality acting synergistically. On the contrary, the pathways of IL-1ra and IL-38 did not affect survival (Figures 6C and 6D).

Second stage: validation of the role of S100A8/A9 (calprotectin) for progression into ARDS necessitating MV

The SAVE-MORE trial enrolled patients who were not in either ARDS and MV categories. Among participants allocated to placebo treatment, samples collected serially from patients who progressed into ARDS and MV were analyzed. This was done since patients's follow-up under placebo are considered to represent the progression of COVID-19 under the current standard-of-care management. At baseline, circulating levels of calprotectin and of PDGF-B were similar among patients who eventually progressed into ARDS and MV and among those who did not progress into ARDS and MV (Figures 7A and 7B). On day 4, there was a trend for increase of calprotectin from...
baseline among patients who developed ARDS and necessitated MV. This trend
became a largely significant difference on day 7 (Figure 7C). No similar changes were
found for PDGF-B (Figure 7D). Following ROC curve analysis, it was found that any
one-fold or more increase of calprotectin from baseline was associated with the
development of ARDS and MV. This association was proven to be independent of
disease severity and of dexamethasone treatment after multivariate forward step-wise
Cox regression analysis (Figure 7E).

DISCUSSION

Our results highlight for the first time the conditions necessary for patients with
COVID-19 to demonstrate the most worrisome features of critical illness with ARDS
necessitating MV. The pathways of danger-associated molecular patterns (DAMPs), IL-
33 (ST2) and coagulation are driving ARDS and MV while final outcome is dominated by
excess of pro-inflammation through the pathways of IL-6, IL-33 and DAMPs and by
decreased levels of the anti-inflammatory pathways IL-38 and IL-1ra.

Our finding of elevated serum level S100A8/A9 (calprotectin) is in line with
previous results in the serum13, 14 and in the bronchoalveolar lavage of COVID-19
patients15 showing, as we did, that calprotectin levels are greater among patients with
the more severe state. However, our results are the first to demonstrate that COVID-19
is a disease which is driven in severity by calprotectin. It is known that SARS-CoV-2 per
se cannot elicit large amounts of inflammatory mediators leading to ARDS and MV16.
However rapid viral replication in the lungs leads to the destruction of the lung epithelial
cells and to the subsequent release of intracellular DAMPs like calprotectin. Our findings
suggest that as the disease progresses, and the patient is worsening towards ARDS,
released calprotectin increases and this leads the patient to MV. This pathway of.

DAMPs is acting synergistically with the pathways of IL-6 and IL-33 mediating

unfavorable outcomes.

Although PDGF-B was not increased over-time towards progression into ARDS

and MV, the increased circulating PDGF-B described herein is interesting given reports

of widespread pulmonary microthromboses in lungs from deceased COVID-19

patients\(^\text{17}\).

Our findings of increased levels of IL-1ra and IL-33r are intriguing as serum levels

of IL-1\(\beta\) and IL-33 levels are not significantly increased. This apparent oxymoron may be

explained by the autocrine mode of action of these cytokines following their production

and implies that COVID-19 patients, especially those with severe disease, produce

soluble IL-1ra and IL-33r (sST2) in an apparent effort to curtail the effect of IL-1\(\beta\) and IL-

33, respectively. Elevated sST2 has also been reported in severe (especially non-

surviving), patients with COVID-19\(^\text{18}\). A recent publication reported that analysis of

published scRNseq data from bronchoalveolar lavage fluid from patients with mild to

severe COVID-19 contained a population of cells that produce IL-33 and correlate with

the severity of the disease\(^\text{19}\). Two other publications reported a unique correlation of IL-

12p70/IL-33 with disease severity\(^\text{20}\) and increased expression of IL-33 in cultured

epithelial cells infected with SARS-CoV-2\(^\text{21}\). Taken together, these findings seem to

imply that there may be local synthesis of IL-33 especially in the lungs leading to

reactive production of IL-33r (sST2). IL-33 can stimulate resident mast cells to produce

impressive amounts of proinflammatory cytokines\(^\text{22,23}\), and the findings of increased IL-

33r should be interpreted as counterbalance to the increased IL-33.
Similar to the increased levels of IL-1ra and IL-33r, the anti-inflammatory IL-38 was increased only in the asymptomatic patients as compared to non-infected comparators but decreased significantly in the more severe patient groups. This finding implies that patients cannot produce sufficient IL-38 to counteract the pro-inflammatory cytokines produced during COVID-19. IL-38 belongs to the IL-1 family and has been reported to have anti-inflammatory activity. IL-38 exists intracellularly as a precursor full-length form and must be cleaved at the N-terminus before it is secreted extracellularly as active forms. We showed that IL-38 can inhibit release of IL-1β from cultured human microglia stimulated by bacterial lipopolysaccharide (LPS).

At the end, the final outcome of the patient appears to be determined by the excess activation of the pathways of IL-6, IL-33 and DAMPs, while the anti-inflammatory pathways IL-1ra and IL-38 are not sufficient to counterbalance them. A recent paper reported that elevated plasma levels of IL-6, IL-10 and IP-10 anticipated clinical progression of COVID-19 patients. Our results are in line with the positive treatment outcomes with IL-6 receptor antagonists and with anakinra (the recombinant non-glycosylated form of IL-1ra) because they have showed the need to attenuate the exaggerated IL-6 responses and to enhance the weakened IL-1ra responses.

Tocilizumab and sarilumab were shown to decrease the number of days under organ dysfunction and 28-day mortality in the platform adaptive trials REMAP-CAP and RECOVERY, respectively. In these trials, the two IL-6 receptor antagonists were administered in patients already in critical illness. In the open-label SAVE trial and in the double-blind, randomized trial SAVE-MORE anakinra was administered in hospitalized non-critical patients with plasma levels of the biomarker suPAR (soluble...
urokinase plasminogen activator receptor 6 ng/ml or more); suPAR was used in these
studied as a biomarker of an attack of the host by DAMPs.

Our present results suggest that the innate increase in IL-1ra and IL-33r, along
with the drop in IL-38, are not sufficient to halt the progression of COVID-19. Attenuating
the pathways of IL-6, IL-33 and DAMPs in parallel with enhancing the pathways of IL-1ra
and IL-33r, and potentially administration of recombinant IL-38, seem the most
promising strategies to combat critical COVID-19.
Acknowledgments

The authors wish to express their gratitude to Bio-Techne (Minneapolis, MN) for providing the reagent kits. We are also very grateful for generous funding from the Hellenic Institute for the Study of Sepsis. Collection of biomaterial and clinical information from patients enrolled in the ESCAPE trial was funded by the Horizon 2020 Grant RISKinCOVID.

Author Contributions

GK, AS, GP, GA, AR, HM, GND, PP, SS, SM and ZA collected patient data, revised the manuscript and gave permission for the version to be submitted.
TG performed measurements, revised the manuscript and gave permission for the version to be submitted.
EGB supervised the study, analyzed and plotted the results, wrote the manuscript and takes full responsibility of data integrity.
TCT conceived the study, secured the reagents, participated in data analysis and wrote the manuscript.

Competing Interests

G. Poulakou has received independent educational grants from Pfizer, MSD, Angelini, and Biorad.
H. Milionis reports receiving honoraria, consulting fees and non-financial support from healthcare companies, including Amgen, Angelini, Bayer, Mylan, MSD, Pfizer, and Servier.
G. N. Dalekos is an advisor or lecturer for Ipsen, Pfizer, Genkyotex, Novartis, Sobi, received research grants from Abbvie, Gilead and has served as PI in studies for Abbvie, Novartis, Gilead, Novo Nordisk, Genkyotex, Regulus Therapeutics Inc, Tiziana Life Sciences, Bayer, Astellas, Pfizer, Amyndas Pharmaceuticals, CymaBay Therapeutics Inc., Sobi and Intercept Pharmaceuticals.

E. J. Giamarellos-Bourboulis has received honoraria from Abbott CH, bioMérieux, Brahms GmbH, GSK, InflaRx GmbH, Sobi and XBiotech Inc; independent educational grants from Abbott CH, AxisShield, bioMérieux Inc, InflaRx GmbH, Johnson & Johnson, MSD, Sobi and XBiotech Inc.; and funding from the Horizon2020 Marie-Curie Project European Sepsis Academy (granted to the National and Kapodistrian University of Athens), and the Horizon 2020 European Grants ImmunoSep and RISKinCOVID (granted to the Hellenic Institute for the Study of Sepsis).

The other authors do not have any competing interest to declare.
Figure legends

Figure 1. Study flow chart
Abbreviations: ARDS= acute respiratory distress syndrome; MV= mechanical ventilation; n=number of patients

Figure 2. Concentrations of pro-inflammatory and anti-inflammatory cytokines.
Dot plots with horizontal lines indicating the median of each group. The numbers of subjects evaluated are listed in the parentheses. Double arrowhead lines indicate comparisons between groups. Only statistically significant differences are indicated as follows: *p <0.05; ** p <0.01; ***p< 0.001; ****p< 0.0001. Abbreviations: ARDS= acute respiratory distress syndrome; IL=interleukin; MV= mechanical ventilation; n=number of patients; NIC= non-infected comparators; TNFα=tumor necrosis factor-alpha.

Figure 3. Concentrations of platelet-associated mediators and of other measured inflammatory mediators.
Dot plots with horizontal lines indicating the median of each group. The numbers of subjects evaluated are listed in the parentheses. Double arrowhead lines indicate comparisons between groups. Only statistically significant differences are indicated as follows: *p <0.05; ** p <0.01; ***p< 0.001; ****p< 0.0001. Abbreviations: ARDS= acute respiratory distress syndrome; MMP: matrix metallo-proteinase; MV= mechanical ventilation; n=number of patients; NIC= non-infected comparators; PAF=platelet activation factor; PDG= platelet derived growth factor.
Figure 4. Main drivers of acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation. (A). Receiver operator characteristics (ROC) curves of the six studied mediators that are providing statistically significant area under the ROC curve (AUC) for the detection of ARDS necessitating mechanical ventilation (MV). The AUC, their 95% confidence intervals and the p-values of significance are provided. The ROC curves of the other 14 mediators measured are not provided because they did not have any statistical significance. (B). Following Youden index analysis, the cut-offs of each of the six mediators shown in panel A were determined. These cut-offs entered univariate and multivariate forward stepwise logistic regression analyses to select the mediators associated with ARDS necessitating MV. *variables excluded after 3 steps of forward analysis. Abbreviations: CI=confidence interval; OR=odds ratio.

Figure 5 Principles of pathway analysis
Abbreviations: ARDS= acute respiratory distress syndrome; DAMP= danger-associated molecular pattern; IFN= interferon; IL= interleukin; MV= mechanical ventilation; PAF=platelet activation factor; PDG= platelet derived growth factor

Figure 6. Main drivers of 28-day outcome.
The analysis involves patients with COVID-19 hospitalized with moderate COVID-19, severe COVID-19 and hospitalized with ARDS necessitating mechanical ventilation
(A). Univariate ordinal regression analysis of factors associated with patterns of activation or inhibition of the inflammatory response. Factors are analyzed by ordinal regression analysis. The principles for the selection of variables used to classify pathways are provided in Supplementary Figure 1.

(B). Multivariate ordinal regression analysis of pathways of the inflammatory response

(C). Impact of the three factors associated with high-risk for worse outcome coming from the multivariate ordinal regression analysis are analyzed by Cox regression analysis for their impact on 28-day mortality.

(D). Impact of the two factors associated with low-risk for worse outcome coming from the multivariate ordinal regression analysis are analyzed by Cox regression analysis for their impact on 28-day mortality.

Abbreviations: ARDS=acute respiratory distress syndrome; CI=confidence interval; IL=interleukin; n=number of patients; OR=odds ratio; PDGF=platelet derived growth factor

Figure 7. S100A8/A9 (calprotectin) as an independent variable of progression into acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation (MV).

The analysis involves serial measurement among 52 patients with severe COVID-19 participating in the study SAVE-MORE. Only statistically significant differences are shown.

(A). Circulating concentrations of calprotectin at baseline

(B). Circulating concentrations of PDGF-B at baseline
(C). Changes of circulating concentrations of calprotectin on days 4 and 7 of follow-up from baseline.

(D). Changes of circulating concentrations of PDGF-B on days 4 and 7 of follow-up from baseline.

(E). Univariate and multivariate forward step-wise Cox regression analysis of variables associated with progression into ARDS and MV.

Ordinal regression analysis of pathways of the inflammatory response.

Abbreviations: CI=confidence interval; HR: hazard ratio; PDGF=platelet derived growth factor.
Table 1. Demographic characteristics of participants at the first stage of the study

<table>
<thead>
<tr>
<th></th>
<th>Comparators</th>
<th>Asymptomatic</th>
<th>Moderate</th>
<th>Severe</th>
<th>ARDS and MV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>40</td>
<td>19</td>
<td>42</td>
<td>78</td>
<td>42</td>
</tr>
<tr>
<td>Age (years) mean ± SD</td>
<td>58.3 ± 15.8</td>
<td>59.5 ± 10.8</td>
<td>55.3 ± 14.8</td>
<td>61.4 ± 13.9</td>
<td>64.9 ± 12.8</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>28 (70)</td>
<td>12 (63.2)</td>
<td>25 (59.5)</td>
<td>56 (71.8)</td>
<td>35 (83.3)</td>
</tr>
<tr>
<td>SOFA, mean ± SD</td>
<td>NA</td>
<td>NA</td>
<td>0.9 ± 0.9</td>
<td>2.3 ± 1.6</td>
<td>6.5 ± 2.5</td>
</tr>
<tr>
<td>CCI, mean ± SD</td>
<td>1.0 ± 0.2</td>
<td>1.3 ± 1.9</td>
<td>2.3 ± 2.3</td>
<td>2.6 ± 2.1</td>
<td>2.4 ± 1.5</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2 diabetes mellitus</td>
<td>0 (0)</td>
<td>5 (26.3)</td>
<td>13 (31.0)</td>
<td>20 (25.6)</td>
<td>6 (14.3)</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (7.1)</td>
<td>5 (5.1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Chronic renal disease</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (4.8)</td>
<td>3 (3.8)</td>
<td>2 (4.8)</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>5 (11.9)</td>
<td>8 (10.3)</td>
<td>6 (14.3)</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>0 (0)</td>
<td>4 (21.1)</td>
<td>14 (33.3)</td>
<td>17 (21.8)</td>
<td>4 (9.5)</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>0 (0)</td>
<td>2 (10.5)</td>
<td>7 (16.7)</td>
<td>7 (9.0)</td>
<td>3 (7.1)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>0 (0)</td>
<td>2 (10.5)</td>
<td>16 (38.1)</td>
<td>24 (30.8)</td>
<td>7 (16.7)</td>
</tr>
<tr>
<td>Stroke</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (4.8)</td>
<td>1 (1.3)</td>
<td>1 (2.4)</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>2 (4.8)</td>
<td>6 (7.7)</td>
<td>3 (7.1)</td>
</tr>
<tr>
<td>COPD</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (7.1)</td>
<td>2 (2.6)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>pO2/FiO2, mean ± SD</td>
<td>NA</td>
<td>NA</td>
<td>397.5 ±</td>
<td>274.5 ±</td>
<td>127.1 ± 72.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>84.3</td>
<td>103.8</td>
<td></td>
</tr>
<tr>
<td>White blood cells count, mean ± SD (/mm³)</td>
<td>NA</td>
<td>NA</td>
<td>5394.3 ±</td>
<td>7000.1 ±</td>
<td>11977.8 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2379.8</td>
<td>2945.8</td>
<td>6094.2</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>4.9 (30.6)</td>
<td>39.0 (80.1)</td>
<td>82.9 (173.5)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>CRP, median (IQR), mg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritin, median (IQR), ng/ml</td>
<td></td>
<td></td>
<td>293.2</td>
<td>485.3</td>
<td>1189.5 (1686.8)</td>
</tr>
<tr>
<td>ng/ml</td>
<td></td>
<td></td>
<td>(534.2)</td>
<td>(832.5)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations ARDS= acute respiratory distress syndrome; CCI= Charlson’s comorbidity index; CRP= C-reactive protein; COPD= chronic obstructive pulmonary disease; FiO₂: fraction of inspired oxygen; IQR= interquartile range; MV= mechanical ventilation; NA=not available; pO₂: partial oxygen pressure; SD= standard deviation; SOFA sequential organ failure assessment score
References

METHODS

Patient cohorts

Studied patients were adults with molecular detection of SARS-CoV-2 and classified into four groups using the WHO classification of COVID-19 severity: (a) asymptomatic; (b) hospitalized with moderate COVID-19; (c) hospitalized for severe COVID-19; and (d) hospitalized with acute respiratory distress syndrome (ARDS) necessitating mechanical ventilation. Ten ml of blood samples were collected the first 24 hours from admission in the emergency department or in the general ward or in the intensive care unit and collected into pyrogen-free tubes (Becton Dickinson, Cockeysville Md). Patients have already participated as comparators receiving usual care in the studies ACHIEVE33, SAVE32 and ESCAPE34 that have been approved by the National Ethics Committee of Greece and by the National Organization for Medicines of Greece (approval numbers 45/20 and IS 36/20 respectively for ACHIEVE; approval numbers 38/20 and IS 28/20 for SAVE; and approval numbers approval 30/20 and IS 021-20 respectively for ESCAPE). Patients were enrolled after written informed consent provided by themselves or legal representatives.

Ten ml of blood were also collected from comparators matched for age and sex with the patients and who were admitted at the emergency departments for unspecified complaints. These comparators were adults without any specific diagnosis of disease as this was certified by a phone call after 30 days. Their inclusion was provisioned in the above studies and they also signed a written informed consent.

In order to provide evidence for the role of the mediators for progression into ARDS necessitating MV, samples collected from 52 patients participating in the SAVE-MORE trial were studied. SAVE-MORE is a double-blind randomized clinical trial where
patients were allocated to treatment with placebo or anakinra plus standard-of-care to prevent progression into severe respiratory failure\(^\text{12}\) (approval 161/20 by the National Ethics Committee of Greece; approval 01.02.2021 by the Ethics Committee of the National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS in Rome; EudraCT number, 2020-005828-11; ClinicalTrials.gov NCT04680949). The studied samples were coming from patients with severe disease in need of treatment with oxygen and who were allocated to the placebo group so that comparative levels of the mediators at serial time points may dictate their role towards development into ARDS and MV. For this aim only patients from the placebo group not being under modulation with biologicals with all three time periods of sampling available (baseline, day 4 and day 7) were studied; 19 patients progressed into ARDS and MV the first 28 days; another 33 patients matched for age, gender and comorbidities who did not progress into ARDS and MV were studied as comparators.

Laboratory assays

All blood samples were processed immediately and the serum was stored in \(-80^\circ\text{C}\) until assayed. Levels of biomarkers were quantified by using commercially available kits of enzyme immunosorbent assays from Bio-Techne (R&D Systems, Minneapolis, MN) according to the manufacturer’s instructions. The lower limits of detection were: 16 pg/ml for tumor necrosis factor-alpha (TNF\(\alpha\)); 8 pg/ml for interleukin (IL)-1\(\beta\); 31 pg/ml for IL-1ra (receptor antagonist); 40 pg/ml for IL-6; 31 pg/ml for IL-8 and IL-10; 8 pg/ml for IL-17; 62 pg/ml for IL-18; 31 pg/ml for IL-33r (receptor); 62 pg/ml for IL-38; 156 pg/ml for interferon (IFN)-alpha; 78 pg/ml for IFN\(\beta\); 156 pg/ml for IFN\(\gamma\); 80 pg/ml for platelet activation factor (PAF); 313 p/ml for platelet-derived growth factor (PDGF)-A.
and PDGF-B; 61 pg/ml for S100A8/A9; 31 pg/ml for matrix metallpeptidase (MMP)-9; and 46 pg/ml for S100B.

Study endpoints

The study primary endpoint was to define a set of cytokines and inflammatory mediators that are independently driving the progression into critical ARDS necessitating mechanical ventilation.

The study secondary endpoints were to define a set of cytokines and inflammatory mediators which are independently associated with the outcome of COVID-19 after 28 days as this is expressed both by the strata of the WHO Clinical Progression Scale (CPS) and by mortality.

Statistical analysis

Concentrations of biomarkers between groups of patients were compared using the Mann-Whitney U non-parametric test following Bonferroni correction for multiple testing. Receiver operator characteristics (ROC) curve analysis was done for each of the measured mediators to define a cut-off that can significantly discriminate patients with ARDS necessitating MV; the areas under the curve of the ROC (AUC), 95% confidence intervals (CIs) and p-values were determined. For variables which were significant, the cut-off concentration providing the best trade-off for sensitivity and specificity was determined by the Youden index. In order to define the variables which were drivers of ARDS necessitating MV forward step-wise logistic regression analysis was done. ARDS necessitating MV entered the equation as dependent variable and all significant mediators at the pre-defined cut-offs as independent variables.
Mediators were divided into a pathway-like approach as follows: a pathway-like division of biomarkers. To this end, nine pathway were defined as follows: a) IL-1ra activation using IL-1β and IL-1ra; b) IL-6 pathway using IL-6; c) IL-18 pathway using IL-18; d) neutrophil activation using IL-8, MMP-9 and IL-17; e) interferon pathway using the three measured IFNs; f) IL-33 pathway using IL-33 and IL-33r; g) IL-38 pathway using IL-38; h) platelet activation pathway using PAF, PDGF-A and PDGF-B; and i) calprotectin/alarmin pathway using S100A8/A9. The pathway was defined in a hierarchical order using as first step the cut-offs of ROC curve analysis in case of mediators being significant; and as second step the median levels of the entire cohort (Figure 5). Patients were sub-grouped for each of the nine pathways into those belonging or not-belonging to this pathway of activation (Yes/No). Comparisons of the WHO-CPS strata at each sub-group were done by univariate ordinal regression analysis followed by multivariate ordinal regression analysis. 28-day mortality was compared between subgroups by Cox forward step-wise multiple regression analysis. 28-day mortality was the dependent variable and variables being significant for WHO-CPS were the independent variables.

The fold-change of mediators shown from the first stage of analysis to be associated with ARDS and MV on days 4 and 7 from baseline was calculated and compared by the Mann-Whitney U test. The cut-off of fold-change that was associated with ARDS and MV was defined by the area under the ROC curve using the Youden index. The value of this cut-off was further validated by forward step-wise Cox regression analysis. Progression into ARDS and MV was the dependent variables; the defined cut-offs, baseline severity and dexamethasone treatment were the independent variables.
Data Availability

Requests for deidentified patient data by researchers with proposed use of the data can be made to corresponding author with specific data needs, analysis plans and dissemination plans.
First stage: identifying set of mediators associated with progression into ARDS and MV

Comparators (n=40)
COVID-19 (n=181)

Asymptomatic (n=19)
Moderate (n=42)
Severe (n=42)
ARDS and MV (n=42)

Sampling < 24 hours
- 11 different Pro-/anti-inflammatory cytokines
- 3 interferons
- 3 mediators of coagulation
- 3 mediators of inflammation/DAMPs
- Clustering into pathways

Primary endpoint
Set of cytokines/mediators linked with ARDS and MV

Secondary endpoint
- Cluster association with 28-day outcome
- WHO-CPS and mortality

Second stage: validation of mediators associated with progression into ARDS and MV

Participants of the SAVE-MORE trial
- Under need of supplemental oxygen
- Three serial time-points of sampling available (baseline, days 4, day 7)
- Receiving placebo

Not progression into ARDS and MV the first 28 days (n=33)
Progression into ARDS and MV the first 28 days (n=19)

Measurement of the mediators identified at the first stage
Platelet activation mediators

Inflammatory mediators

Calprotectin (S100A8/A9)

S100B

MMP-9
A)

- **Sensitivity (%)**
- **100 - Specificity**
- **AUC**:
 - $AUC_{IL-8}: 0.65 (0.56-0.75); p: 0.003$
 - $AUC_{IL-18}: 0.69 (0.60-0.78); p<0.0001$
 - $AUC_{MMP-9}: 0.67 (0.57-0.77); p: 0.001$
 - $AUC_{IL-33r}: 0.89 (0.84-0.97); p<0.0001$
 - $AUC_{PDGF-B}: 0.74 (0.65-0.73); p<0.0001$
 - $AUC_{S100A8/A9}: 0.84 (0.77-0.90); p<0.0001$

B)

<table>
<thead>
<tr>
<th></th>
<th>No MV (n= 139)</th>
<th>MV (n= 42)</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-8 > 100 pg/ml</td>
<td>26 (18.7)</td>
<td>19 (45.2)</td>
<td>OR (95% CIs): 3.6 (1.7-7.5) p: 0.001</td>
<td>*</td>
</tr>
<tr>
<td>IL-18 > 350 pg/ml</td>
<td>54 (38.8)</td>
<td>30 (71.4)</td>
<td>OR (95% CIs): 3.9 (1.8-8.3) p: <0.0001</td>
<td>*</td>
</tr>
<tr>
<td>MMP-9 > 870 pg/ml</td>
<td>42 (30.2)</td>
<td>25 (59.5)</td>
<td>OR (95% CIs): 3.4 (1.7-6.9) p: 0.001</td>
<td>*</td>
</tr>
<tr>
<td>IL-33r > 170 ng/ml</td>
<td>11 (7.9)</td>
<td>26 (61.9)</td>
<td>OR (95% CIs): 18.9 (7.8-45.4) p: <0.0001</td>
<td>9.6 (3.4-27.2) p: <0.0001</td>
</tr>
<tr>
<td>PDGF-B > 2.7 ng/ml</td>
<td>41 (29.5)</td>
<td>30 (71.4)</td>
<td>OR (95% CIs): 5.9 (2.8-12.8) p: <0.0001</td>
<td>4.8 (1.8-12.7) p: 0.002</td>
</tr>
<tr>
<td>S100A8/A9 > 7.8 µg/ml</td>
<td>18 (12.9)</td>
<td>29 (69.0)</td>
<td>OR (95% CIs): 14.9 (6.6-34.1) p: <0.0001</td>
<td>8.1 (3.1-21.4) p: <0.0001</td>
</tr>
<tr>
<td>At least one IFN detectable</td>
<td>24 (17.3)</td>
<td>2 (4.8)</td>
<td>OR (95% CIs): 0.23 (0.1-1.0) p: 0.051</td>
<td></td>
</tr>
</tbody>
</table>
IL-1ra pathway

Step 1: IL-1β above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-1β of the entire cohort

Step 1: IL-1ra above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-1ra of the entire cohort

Neutrophil pathway

At least two of the following:

Step 1: IL-8 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-8 of the entire cohort

Step 1: IL-17 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-17 of the entire cohort

Step 1: MMP-9 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of MMP-9 of the entire cohort

IL-6 pathway

Step 1: IL-6 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-6 of the entire cohort

IL-18 pathway

Step 1: IL-18 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-18 of the entire cohort

Interferon pathway

At least one of the following:

Step 1: IFNα above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IFNα of the entire cohort

Step 1: IFNβ above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IFNβ of the entire cohort

Step 1: IFNγ above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IFNγ of the entire cohort

IL-33 pathway

At least one of the following:

Step 1: IL-33 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-33 of the entire cohort

Step 1: IL-33r above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-33r of the entire cohort

IL-38 pathway

Step 1: IL-38 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of IL-38 of the entire cohort

DAMP pathway

At least one of the following:

Step 1: S100A8/A9 above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of S100A8/A9 of the entire cohort

Step 1: S100B above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of S100B of the entire cohort

Platelet activation pathway

At least one of the following:

Step 1: PAF above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of PAF of the entire cohort

Step 1: PDGF-A above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of PDGF-A of the entire cohort

Step 1: PDGF-B above the cut-off for ARDS/MV after ROC analysis
OR if Step 1 is negative Step 2: ≥ median of PDGF-B of the entire cohort
A) Univariate analysis of mediators on 28-day WHO-CPS

B) Multivariate analysis of mediators on 28-day WHO-CPS

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>95% CIs</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1ra pathway</td>
<td>0.2</td>
<td>0.0-0.9</td>
<td>0.036</td>
</tr>
<tr>
<td>IL-6 pathway</td>
<td>2.0</td>
<td>1.0-3.9</td>
<td>0.039</td>
</tr>
<tr>
<td>IL-18 pathway</td>
<td>0.8</td>
<td>0.4-1.6</td>
<td>0.548</td>
</tr>
<tr>
<td>Neutrophil pathway</td>
<td>0.8</td>
<td>0.4-1.6</td>
<td>0.440</td>
</tr>
<tr>
<td>Interferon pathway</td>
<td>0.9</td>
<td>0.4-2.2</td>
<td>0.868</td>
</tr>
<tr>
<td>IL-33 pathway</td>
<td>3.5</td>
<td>1.5-8.1</td>
<td>0.003</td>
</tr>
<tr>
<td>IL-38 pathway</td>
<td>0.4</td>
<td>0.2-0.8</td>
<td>0.010</td>
</tr>
<tr>
<td>Platelet activation</td>
<td>1.1</td>
<td>0.6-2.3</td>
<td>0.613</td>
</tr>
<tr>
<td>DAMP pathway</td>
<td>4.9</td>
<td>2.1-11.5</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

C) Impact of risk factors on 28-day mortality

D) Impact of protective factors on 28-day mortality
A) S100A8/A9 AT BASELINE

B) PDGF-B AT BASELINE

C) Over-time change of S100A8/A9

D) Over-time change of PDGF-B

E)

<table>
<thead>
<tr>
<th></th>
<th>No ARDS/MV</th>
<th>ARDS/MV</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=33)</td>
<td>(n=19)</td>
<td>HR (95% CIs)</td>
<td>p</td>
</tr>
<tr>
<td>≥1x baseline increase of S100A8/A9 on day 7, n (%)</td>
<td>25 (75.8)</td>
<td>18 (94.7)</td>
<td>2.9 (1.1-7.0)</td>
<td>0.023</td>
</tr>
<tr>
<td>Severe pneumonia, at baseline n (%)</td>
<td>33 (100)</td>
<td>19 (100)</td>
<td>*</td>
<td>0.433</td>
</tr>
<tr>
<td>Dexamethasone treatment, n (%)</td>
<td>25 (75.8)</td>
<td>18 (94.7)</td>
<td>0.2 (0.1-1.6)</td>
<td>0.126</td>
</tr>
</tbody>
</table>