Hybrid immunity from SARS-CoV-2 delta variant surge induced low to undetectable levels of neutralizing antibodies against Omicron variant

Janmejay Singh1, Heena Shaman1, Balwant Singh1, Anbalagan Anantharaj1, Kamal Pargai1, Partha Chattopadhyay3,4, Priti Devi3,4, Ranjeet Maurya3,4, Pallavi Mishra3, Namrata Kahlon2, Rajesh Pandey3, Anil Kumar Pandey2 and Guruprasad R. Medigeshi1#

1: Bioassay Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana. INDIA.
2: Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, INDIA.
3: INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, INDIA.
4: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

* These authors contributed equally

Corresponding author:

Guruprasad R. Medigeshi, PhD
Translational Health Science and Technology Institute,
P.O. Box # 4, Faridabad-Gurgaon Highway,
Faridabad 121001. INDIA.
Tel: +91-0129-2876311. Email: gmedigeshi@thsti.res.in

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

SARS-CoV-2 variants are emerging at frequent intervals with an ability to transmit faster and evade the immune responses. Most of Indian adults have received one or two doses of vaccination and, have also been infected naturally during the first and second waves. However, whether or not this hybrid immunity is protective against the emerging variants has not been determined. We found that a single dose of ChAdOx1 nCoV-19 vaccine in individuals with prior history of COVID-19 infection induced high levels of neutralizing antibodies which associated with protection from infection. Natural infection during the delta variant surge generated neutralizing antibodies against other lineages including the omicron variant. However, most of the subjects had undetectable levels of antibodies to neutralize omicron variant in the follow-up samples collected after six months suggesting that a large majority of people in India are at risk of infection by omicron variant due to waning antibody titers.

Keywords: COVID-19; RBD; Neutralizing antibodies; FRNT; ELISA; Omicron; Delta
INTRODUCTION

Most adults in India have received at least one dose of vaccination and have also been infected naturally during the first and second waves of SARS-CoV-2 pandemic. However, there are no reports on the effect of prior humoral immunity from natural infection on vaccine-induced antibody responses in India. In addition, there is no data on the longevity of such antibodies. We tested whether this hybrid immunity (infection+vaccination) is protective against the SARS-CoV-2 variants of concern (VoC). We assessed the neutralization titers of antibodies prior to and after natural infection with delta variant in a cohort of subjects who had received a single dose of ChAdOx1 nCoV-19 vaccination. We found that prior history of COVID-19 infection led to boosting of antibody responses and protected all the vaccinated subjects from infection by delta variant indicating a strong correlation between neutralizing antibody titers and protection from infection or severe disease. A subset of these patients also had neutralizing antibodies to the Omicron (B.1.1.529) variant. However, the neutralizing antibody titers reduced by half against the ancestral and delta variants and were below the level of detection of the assay for Omicron variant after six months.

MATERIALS AND METHODS

Human Ethics

The study was approved by the Institutional ethics committees for human research at ESIC Hospital and Medical College (No.134/R/10/IEC/22/2021/02) and THSTI (THS 1.8.1/ (93)). Informed consent was obtained from all the participants.
Human Samples

ChAdOx1 nCoV-19 cohort: Subjects (age 25-46) visiting ESIC Medical College & Hospital, Faridabad for vaccination were enrolled into the study after obtaining written informed consent. About 4 ml of whole blood was collected for serum preparation four weeks after first dose of vaccination. Nasopharyngeal/Oropharyngeal (NP/OP) swabs were collected from patients with symptoms of COVID-19 infection. Total RNA was isolated to detect SARS-CoV-2 using COVIDsure multiplex real time RT-PCR kit (Trivitron Healthcare) either at Employees State Insurance Corporation (ESIC) Medical College & Hospital or at the bioassay laboratory Translational Health Science and Technology Institute, Faridabad. Clinical presentations were mild to moderate fever, dry cough, and loss of sense of smell and taste. All COVID-19 positive patients were self-isolated and recovered without any need for clinical intervention or hospitalization. A follow-up blood sample was collected after 3-4 weeks post-recovery and after six months.

Whole genome sequencing

Three of the COVID-19 RNA samples were sent for whole genome sequencing as described in supplementary information and the genome sequences were deposited on the National centre for biotechnology database (MZ356901; MZ356904; MZ646055).

Quantitative RBD ELISA
Recombinant spike protein receptor binding domain (RBD) ELISA was performed as described earlier [1, 2]. Detailed description is provided in the supplementary information.

Virus microneutralization assay

Virus microneutralization assay by focus reduction neutralization titer assay using indicating virus isolates was performed as described earlier [2].

Statistical analysis

Data was analysed and final graphs were prepared using GraphPad Prism (Version 9) software. Statistical significance was estimated by two way ANOVA or Mann-Whitney test with correction for multiple comparisons by Bonferroni-Dunn method.

RESULTS AND DISCUSSION

A single dose of vaccination boosts antibody levels in seropositive individuals

Less than 10 % of the Indian population had received one dose of COVID-19 vaccine at the onset of second wave of COVID-19 in April 2021 and recent reports including results from our group attribute this sudden spike in cases to the capacity of the virus to escape neutralization by antibodies thereby compromising vaccine effectiveness and increased infectivity and transmission of Delta variant [3-7]. To further understand how vaccination and neutralizing antibodies impact Delta variant and disease outcomes, we enrolled 25 subjects (Median age 31; 9 Female, 16 Male) out of which 20 subjects received their first dose of ChAdOx1 nCoV-19 vaccine and 18 of the 20 subjects
consented for collection of blood samples three weeks after the first dose of vaccination to quantitate serum antibodies against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein by quantitative ELISA. 5 subjects were non-vaccinated controls. 8 of the 20 vaccinated subjects were seropositive at least three months prior to receiving the first dose of vaccine. Geometric Mean Titers (GMT) of antibodies against the RBD of SARS-CoV-2 spike protein in subjects with no prior history of COVID-19 infection was 58.9 ELU/ml (95% CI: 25.3 - 137.3) as compared to 562.5 ELU/ml (95% CI: 123.9 - 2555) in subjects who had prior history of COVID-19 clearly demonstrating a ten-fold higher levels of antibodies after one dose of vaccination (Fig. 1A). The GMT of antibodies in non-vaccinated subjects was 8.6 ELU/ml (95% CI: 2 - 36.7) which was below the limit of quantitation (12 ELU/ml) of the assay. As the second wave of COVID-19 coincided with the study, 8 of the 25 subjects showed symptoms of COVID-19 and were diagnosed positive by RT-PCR. Interestingly, all the eight subjects had no history of COVID-19 infection before the second wave and six of the eight subjects had received the first dose of ChAdOx1 nCoV-19 vaccine. The GMT of RBD antibodies prior to second wave infection in subjects who tested COVID-19 positive was 22.5 ELU/ml (95% CI: 7.7 - 65.6) whereas the same was 194.4 ELU/ml (95% CI: 66.0 - 572.2) in subjects who remained uninfected or did not show any symptoms of infection (Fig. 1B). All the eight subjects who were infected showed mild to moderate symptoms and recovered after home isolation. These results show a strong association between high levels of pre-existing RBD antibody titers and protection from infection or from severe disease. This also suggests that natural infection before the second wave of COVID-19 (in India) or even one dose of vaccine conferred protection from reinfection or severe
disease in this age group. We performed paired analysis for GMT of RBD antibodies prior to and after second wave infection. Mean titers of antibodies in individuals who were COVID-19 positive in the second wave increased from 22.5 ELU/ml (95% CI: 7.7 - 65.6) to 629.5 ELU/ml (95% CI: 219.5 - 1805) (Fig. 1C). We did not observe any significant change in antibody levels in individuals who were not infected during the second wave. The antibody levels in these subjects was 135.4 ELU/ml (95% CI: 46.2 - 396.9) which showed a declining trend with a titer of 80 ELU/ml (95% CI: 29.6 - 216.8) in the second bleed further demonstrating lack of exposure to SARS-CoV-2 in these subjects (Fig. 1D).

The second wave of COVID-19 infection between March-May 2021 in India was mostly due to B.1.617.1 and B.1.617.2 variants[8]. We sequenced viral RNA from three of the positive samples in our study and found them to be either B.1.617.1 or B.1.617.2. To verify the neutralization potential of antibodies in the serum samples of subjects from this study, we estimated 50% virus neutralization titers from pre- and post-infection serum using a focus reduction microneutralization assay (FRNT_{50}) against the B.6, B.1.1.7 and B.1.617.2 lineages respectively [2, 6]. We first analyzed the effect of single dose vaccination with ChAdOx1 nCoV-19 in subjects who had the history of prior COVID-19 infection. Samples collected three weeks after first dose of vaccination showed that the GMT for virus neutralization were higher by over one order of magnitude in individuals with prior history of COVID-19 infection as compared to those with no prior history of COVID-19 infection (Table 1) suggesting that a single dose of vaccination boosts the antibody titers due to T and B-cell memory responses. In order to
further verify if the pre-infection antibody titers correlate with protection from infection or severe disease, the data was analyzed based on the infection status in the second wave of COVID-19 which followed few days after the collection of first bleed. The pre-infection GMT for virus neutralization of subjects who got infected in the second wave (n=8) was 71 (95% CI: 42, 118), 44 (95% CI: 25, 78) and 34 (95% CI: 34, 46) for B.6, Alpha and Delta variants respectively (Fig. 2A-C) (Supplementary Table S1). The GMT of neutralizing antibodies in the first bleed after one dose of vaccination in subjects who were seronegative prior to vaccination and were protected from SARS-CoV-2 infection during the second wave was 185 (95% CI: 129, 265), 67 (95% CI: 46, 99) and 83 (95% CI: 40, 174) for B.6, Alpha and Delta variants respectively (Supplementary Table S2). This suggests that the GMT for virus neutralization between 34 to 83 is required to prevent infection from delta variant which is within the estimated values from mathematical models[9]. As expected, participants with hybrid immunity were protected from SARS-CoV-2 infection during the second wave and had very high levels of neutralizing antibodies (Supplementary Table S3). While the neutralizing antibody levels clearly showed a steep increase in participants who got infected during the second wave (Figure 2 A-C), the same remained unchanged in those who were protected from infection during the second wave (Figure 2D-E and Supplementary Table S2 and S3). Exposure to delta variant led to generation of neutralizing antibodies for both Alpha variant and SARS-CoV-2 B.6 lineage from the year 2020 (Figure 2A-C).

We were able to obtain a follow-up sample six months after two dose vaccination from 14 of our study participants. RBD-ELISA antibody titers reduced significantly (P<0.05)
from a GMT of 237 (95% CI: 97, 584) to 76 (95% CI: 40, 146) within six months (Figure 2H). Similarly, the neutralizing antibody titers for delta variant in FRNT assays reduced by two-fold from a GMT of 232 (95% CI: 100, 538) to 100 (66, 154) but this reduction was not significant (Figure 2I). While this study was in progress Omicron (B.1.1.529) emerged as a new variant of concern with over 30 substitutions in the Spike region alone and multiple studies demonstrating neutralization escape [2, 10, 11]. We tested these paired samples for neutralizing antibodies against Omicron. Only 5 out 14 samples had detectable antibodies against Omicron. Only 2 out of 14 samples were positive for Omicron in the follow up sample collected after six months (Figure 2J). These data suggest that, while a subset of individuals who are both vaccinated and exposed to natural infection may have antibodies against Omicron variant during early convalescence, a large majority may either have insufficient or no antibodies against this new VoC in the present situation in India which has led to a surge in infection.

CONCLUSIONS

This study was conducted during the second wave of COVID-19 in India when delta variant was the major circulating strain. Our results are in concordance with previous observations in people vaccinated with the mRNA vaccines (Pfizer-BioNTech) [12-14]. We see a convincing association between the pre-existing high antibody titers against both Alpha and Delta variants and protection from re-infection in these individuals. Our data suggests that a FRNT$_{50}$ of 34 - 83 may be sufficient to protect from delta variant infection in younger adults. Interestingly, hybrid immunity led to generation of neutralizing antibodies against the Alpha variant and the earlier B.6 lineage which
explains the reason for rapid decline in case load after July 2021 in India. However, the
same was not true for Omicron variant as only a subset of individuals had detectable
levels of antibodies to this VoC during early convalescence. Cohort data of patients with
mild COVID-19 infection has shown that RBD antibodies decay with a half-life of 69
days [15]. We observed a three-fold reduction in RBD antibody titers after six months,
however, neutralizing antibody levels reduced by 50% for delta variant and none of the
samples had any neutralizing antibodies to omicron after six months suggesting that
waning neutralizing titers are an important determinant of reinfections and may also
contribute to increased susceptibility to new VoCs that escape pre-existing humoral
immunity.

Data availability

All the data are presented in this manuscript. The following SARS-CoV-2 sequences
are available in NCBI database. SARS-CoV-2 to B.6 lineage (GenBank: MW422884.1)
[16]. Alpha variant or B.1.1.7 (GenBank: MW881790.1) and delta variant or B.1.617.2
(GenBank: MZ356566.1) and kappa variant or B.1.617.1 (GenBank: MZ356902.1).

ACKNOWLEDGEMENTS

We thank all the members of bioassay lab, COVID-19 testing team, Amresh Kumar
Singh and Maniram for technical support. We thank Jigme Wangchuk for help with
sequencing data analysis. We thank Neha Garg and Shamsher Singh for data
management. We thank all the participants who consented to enrolment into the study.
AUTHOR CONTRIBUTIONS

JS, HS, BS, AA, KP, PC, PD, RM and PM performed experiments and analyzed the data. NK and AKP coordinated the study at clinical site and contributed reagents. RP designed the sequencing experiments and analyzed the data. GRM conceived the study, designed the experiments, and analyzed the data. GRM wrote the manuscript. All authors have reviewed and approved the final version of the manuscript.

FUNDING INFORMATION

This work was supported by the Department of Biotechnology (DBT) grants through IndCEPI Mission (BT/MB/CEPI/2016) and Translational Research Program (BT/PR30159/MED/15/188/2018). RP acknowledges funding support from IUSSTF (CLP-0033) and BMGF (CLP-0036). The funders had no role in study design, data collection and interpretation or the decision to submit the work for publication.

CONFLICT OF INTEREST STATEMENT

The authors have declared that no conflict of interest exists.

REFERENCES

by Vaccine alone or SARS-CoV-2 Infection plus Vaccine (Hybrid Immunity) post 6-
months. medRxiv. 2022:2022.01.04.22268747.

inactivated virus-based SARS-CoV-2 vaccine, BBV152, in India: a test-negative, case-

Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature.
2021;596:276-80.

et al. Effectiveness of ChAdOx1 nCoV-19 vaccine against SARS-CoV-2 infection during
the delta (B.1.617.2) variant surge in India: a test-negative, case-control study and a
mechanistic study of post-vaccination immune responses. The Lancet Infectious

Neutralization against B.1.351 and B.1.617.2 with sera of COVID-19 recovered cases
and vaccinees of BBV152. bioRxiv. 2021:2021.06.05.447177.

Genomic characterization and Epidemiology of an emerging SARS-CoV-2 variant in
Delhi, India. medRxiv. 2021:2021.06.02.21258076.

mild COVID-19 patients during acute phase of infection. medRxiv. 2020:2020.11.05.20226621.

SUPPLEMENTARY INFORMATION
Detailed methods description is provided as supplementary information.

FIGURE LEGENDS

Figure 1: Quantitation of RBD antibodies by ELISA. Serum levels of antibodies against SARS-CoV-2 RBD was estimated by quantitative ELISA in study participants after one dose of ChAdOx1 nCoV-19 vaccine. (A) Participants were sub-grouped based on prior history of infection as uninfected, infected. Four non-vaccinated individuals served as controls. (B) Pre-infection RBD antibody titers in participants who got infected with COVID-19 after few days of receiving first dose of vaccine. Dotted line indicates the limit of quantitation (C) RBD antibody titers in samples collected before and after infection in participants who were COVID-19-positive and (D) RBD antibody titers from samples collected at the same time-point from participants who did not get infected with COVID-19 during the second wave. Data was expressed as ELU/ml (international units) as the secondary reference reagent was calibrated against the WHO international reference standard. P values are indicated by - * p<0.05; ** p<0.01; *** p < 0.001; ns - not significant.

Figure 2: Estimation of 50% virus neutralization antibody titers by FRNT assay. (A-C) FRNT_{50} titers for the three indicated virus lineages in paired samples collected prior to and after infection in samples collected from participants who were RT-PCR
positive during the second wave. (D-F) FRNT$_{50}$ titers of samples from participants who were not positive for COVID-19 during the second wave. (H) RBD-ELISA titers in paired samples collected six months post-vaccination. (I) FRNT$_{50}$ titers in paired samples for delta variant and (J) Omicron variant. BAU: Binding Antibody Units. P values are indicated by - * p<0.05; ** p<0.01; *** p < 0.001; ns - not significant.

Table 1: Virus neutralization titers post single-dose vaccination with or without prior history of SARS-CoV-2 infection.

<table>
<thead>
<tr>
<th>Lineage tested in FRNT assay</th>
<th>B.6</th>
<th>B.1.1.7</th>
<th>B.1.617.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior SARS-CoV-2 infection</td>
<td>+*</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Geometric mean</td>
<td>1873</td>
<td>110.2</td>
<td>1056</td>
</tr>
<tr>
<td>Lower 95% CI</td>
<td>366.4</td>
<td>70.40</td>
<td>133.1</td>
</tr>
<tr>
<td>Upper 95% CI</td>
<td>9574</td>
<td>172.5</td>
<td>8382</td>
</tr>
<tr>
<td>P value*</td>
<td>0.0097</td>
<td>0.0188</td>
<td>0.0094</td>
</tr>
</tbody>
</table>

* N = 6 for prior infection (+) and N=12 for no prior infection (-)

P value determined by Mann-Whitney test
Figure 1

A
ELISA titers post-first-dose

B
Pre-infection titers

C

D

ELU/ml

COVID-19 : (2020)

ELU/ml

COVID-19 : (2021)

ELU/ml

Bleed 1

Bleed 2

ELU/ml

Bleed 1

Bleed 2