Investigation of air change rate and aerosol behavior during an outbreak of COVID-19 in a geriatric care facility

Running title: Outbreak in a geriatric care facility

Yo Ishigaki,1* Shinji Yokogawa,1,2 Akira Saito,3 Hiroko Kitamura,4, Yuto Kawauchi, 1
and Yuki Minamoto,5

Affiliations:

1) Graduate School of Informatics and Engineering, The University of Electro-communications, Chofu, Tokyo, Japan

2) Info-powered Energy System Research Center (iPERC), The University of Electro-communications, Chofu, Tokyo, Japan.

3) Miyagi Anti-Tuberculosis Association, Miyagi, Japan

4) Occupational Health Training Center, University of Occupational and Environmental Health, Fukuoka, Japan

5) School of Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

*Corresponding author:
Yo Ishigaki, University of Electro-Communications, 1-5-1, Chofu, Tokyo 182-8585, Japan; Email: ishigaki@uec.ac.jp; Tel: +81-424-43-5662; Fax: +81-225-75-2071

Data availability statement
The data that support the findings of this study are available from the corresponding author, Y.I., upon reasonable request.

Conflict of interest statement
The authors have no potential conflicts of interest to declare.

Ethics approval statement
This study was approved by the Ethics Committee on Experiments on Human Subjects in the Corresponding author’s institution. The approval number is 21005.

Author contributions
Y.I., Writing – Original Draft Preparation, Project Administration, Funding Acquisition
S.Y., Writing – Review & Editing, Methodology, Formal Analysis
A.S., Resources
H.K., Investigation
Acknowledgments

This work was supported by JSPS KAKENHI Grant No. 21K19820 and KDDI foundation.

Abstract

We investigated the air change rate (ACR) using the tracer gas method in five areas where the risk of aerosol infection was assumed to be high for an outbreak of an infection among 59 people in a nursing home in Miyagi Prefecture, Japan. The ACRs at the time of the outbreak were estimated to be 4.35, 2.42, 2.04, 4.96, and 6.26 per hour in the general bathroom, special bathroom, shared room, private room, and day room, respectively. In general bathrooms, special bathrooms, shared rooms, and private rooms, the ACR greatly increased by 1.48 \div 5.74 times by opening windows. Because the private rooms, where the initial infected patients were thought to have been, were spatially connected to the common recreational day room, the transfer of aerosols from private rooms to the day room may have been the origin of the mass infection. We reproduced the downwind contamination situation using thermo-fluid
simulations and found that infectious aerosols could reach the day room in approximately one minute through the corridor. In elderly care facilities, open architectural spaces are advocated to realize a Quality of Life (QoL) and monitor residents; however, management is required to reduce the downwind infection risk from aerosols and ACR.

Keywords: senior citizens' home, long-term care facilities, care home, air-borne transmission, shared space, ventilation frequency

Introduction

Ventilation is important in controlling aerosol transmission of coronavirus disease (COVID-19), and mass transmission of COVID-19 has been reported in poorly ventilated areas. Menzies et al. analyzed the determinants of the risk of secondary transmission of tuberculosis and measles in various hospital settings and reported that an average of <2 ventilation cycles per hour (air change rate per hour, ACR) in the examination room was significantly associated with Tuberculin conversion. Based on this study, the Centers for Disease Control and Prevention (CDC) set the standard for ventilation in negative pressure rooms for the isolation of patients with infectious diseases at 6 per hour (for existing buildings) to 12 per hour (for new buildings) with a
safety multiplier. The World Health Organization has set a standard for natural ventilation in health facilities dealing with infectious diseases of 576 m³ h⁻¹ per person, based on the CDC standard of 12 times per hour, assuming that one patient occupies a space of 4 × 2 × 3 m³, and doubled the safety factor. In Japan, the Ministry of Health, Labor and Welfare (MHLW) has set a standard value of 576 m³ h⁻¹ per person. Further, the MHLW, referring to the above-mentioned literature and guidelines from other countries, recommends ventilation of 30 m³ h⁻¹ per person in general commercial facilities to deter indoor aerosol transmission of COVID-19.

Peng et al. attempted to explain the risk of COVID-19 aerosol infection from ACR and indoor carbon dioxide concentrations; however, further large-scale epidemiological validation is needed to quantify these relationships. Therefore, it is important to conduct field surveys on the number of ventilation and aerosol behaviors at sites where mass infections of COVID-19 have occurred.

In Japan, there has been a series of outbreaks of COVID-19 in elderly care facilities, but no case of on-site investigation from the viewpoint of indoor air has been reported. In this study, we visited an outbreak site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in an elderly nursing home in Miyagi Prefecture, measured the ACR and estimated the ventilation volume using the CO₂ tracer gas method while comparing it with the case where window opening was used.
as an intervention. In addition, the aerosol behavior was analyzed using thermo-fluid simulation. The purpose of this study is to discover the causative factors of an actual outbreak of mass infection in an elderly care facility from the perspective of ventilation and aerosols, and to discuss recommendations for preventing recurrence.

Methods

The elderly care facility that was the subject of the study was located in Miyagi Prefecture, Japan, where a total of 59 outbreaks occurred in the same building by April 2021. Of these, 30 were users of the facility. After the outbreak, the Disaster Medical Assistance Team (DMAT) was dispatched for zoning, and critically ill patients were hospitalized, after which the infection situation was controlled. Thereafter, in August 2021, the authors conducted this field survey.

The investigation was conducted under the guidance of an industrial physician to ensure safety, while confirming that the polymerase chain reaction (PCR) test results of all residents, staff, and researchers were negative, and safety measures such as wearing personal protective equipment and disinfection were taken. For safety reasons, all ventilation systems were turned on during the experiment. This study was approved by the Ethics Committee on Experiments on Human Subjects, the University of Electro Communications, Chofugaoka 1-5-1, Chofu, Tokyo, Japan.
Five locations that caused the large-scale secondary infection were selected based on interviews with staff: normal bathroom (a), special bathroom (b), shared room (c), private room (d), and day room (e), as shown in Figure 1. Both regular and special bathrooms are for the exclusive use of the residents, and staff members accompany them for assistance. In general, in bathrooms, the risk of aerosol infection increases because neither the residents nor the staff can wear masks because moisture makes the non-woven fabric wet and prevents breathing. In addition, special bathrooms have special bathing bed facilities for elderly people who require a high level of care or for dementia patients, and staff must talk with the bathers while contacting them, which is expected to increase the risk. A shared room is a room with a bed for residents to sleep, and the maximum number of residents is three. Although the residents were instructed to always wear masks, it was difficult to ensure that they did so in the presence of many elderly people requiring nursing care and patients with dementia; therefore, there was concern regarding aerosol infection in the shared room. A private room is a room for one resident with a capacity of one person and is separated from the corridor by a simple curtain. The room itself is used independently; therefore, the risk of aerosol infection is low. However, as the residents in the shared room were initially infected patients, a detailed investigation was required because
they may have been the origin of the mass infection. The day room is a place for relaxation and has free access for residents and temporary elderly residents visiting the day care from 6:00 a.m. (wake-up time) to 8:00 p.m. (lights-out time), and it is furnished with chairs, tables, and televisions. As the day room is frequented by multiple elderly people and staff members, the risk of infection was expected to be relatively high.

In this study, we used the tracer gas method to measure ACR in the five areas mentioned above. The tracer gas used in this study was CO₂, which was obtained by vaporizing dry ice in the field. Two types of Non-Dispersive Infrared (NDIR) type CO₂ sensors were used: the first was a pocket CO₂ sensor (Yaguchi Electric Corporation, Miyagi, Japan) equipped with an NDIR sensor SCD-30 (Sensirion AG, Stäfa, Switzerland, hereafter abbreviated as P. The second sensor was the TR-76Ui (T&D Corporation, Nagano, Japan), abbreviated as K. One P and four K sensors (K1–K4) were used. Figure 1 shows the arrangement of P and K1-K4 in each target area.

The protocol for the measurement experiment conducted in each area was as follows.

1. Several CO₂ sensors were installed in typical places where people spend time (e.g., in the center of a room, on a table, and on a bed) in the area, and measurement was started.
2. The mechanical ventilation system in the area was turned off, and the windows and doors were closed, if there were any, to create a closed room.

3. Dry ice was evaporated to make the CO$_2$ concentration in the area sufficiently high compared to the background (400 ppm). The concentration should be at least 2000 ppm, which is five times higher than the background concentration, but should not exceed the permissible concentration of 5000 ppm (at 8 h of exposure) specified by the Japanese Industrial Safety and Health Law. In addition, because the gas generated from dry ice has a low temperature and tends to remain on the floor, it is important to sufficiently agitate the air in the room using a blower.

4. When the CO$_2$ concentration increased, the mechanical ventilation system and open/closed windows and doors were set according to the desired measurement conditions.

5. The area was immediately evacuated, and this point was defined as the start of ventilation time (s). The person conducting the experiment was also a source of CO$_2$ gas; therefore, it was ensured that no one was in the area.

6. The CO$_2$ concentration was remotely monitored from outside the area until the concentration decreased sufficiently. It was desirable to wait until the concentration reaches 36.8%, which is at least the time constant until the first ventilation is completed; however, when the experiment time permitted, it was acceptable to
wait until the concentration reaches the background.

7. Finish the measurement and set this point as time i. The recorded data from time s to i were saved for analysis and used to estimate the ACR.

8. If the CO₂ concentration was still sufficiently high, step 3 could be omitted, and we could proceed to step 4.

Based on the data measured by the CO₂ sensor, the Seidel equation (1) was used to estimate ACR.

\[
C_i = C_0 + (C_s - C_0)e^{-\frac{Q}{V}(i-s)} + \left(1 - e^{-\frac{Q}{V}(i-s)}\right)\frac{M}{Q}
\]

(1)

\(C_i\): indoor pollutant concentration (CO₂ concentration) [ppm]

\(C_0\): Steady-state value when there is no pollution, assumed to be 400 [ppm].

\(V\): Volume of the area [m³].

\(Q\): ventilation rate [m³ h⁻¹].

\(P\): Pollutant generation rate [m³ h⁻¹].

\(t\): time of day

(1) is unattended, i.e., when \(t = 0\), and can be transformed as follows:

\[
\ln\frac{C_i - C_0}{C_s - C_0} = -\frac{Q}{V}(i - s)
\]

(2)

The air change rate, \(\frac{M}{Q}\) [time/h], can be obtained from the decrease in CO₂ concentration from the start of ventilation (time, \(t\)). When the slope of the straight line
was not at a 5% significance level determined by a t-test, the data was excluded. Because the private and day rooms were spatially connected by a short 2 3 m corridor, and there was concern regarding the location of the leaked airflow from the private room, a further supplementary experiment was conducted. The sensors were placed as shown in Figure 2, the private room was filled with CO₂ gas, and protocols 1 6 were conducted.

Results

Table 1 summarizes the results of calculating the ACR based on Equation (2) from the actual measured CO₂ concentration in each area of Figure 1. Here, "window opening condition" refers to the state of window opening and closing that was set in protocol 4 during the experiment. The "#" symbol written in the "window opening condition" column indicates that the situation at the time of the outbreak of mass infection was reproduced. For example, in a general bathroom, both bathrooms and corridor windows were closed when a group outbreak occurred.

In Table 1, "Measured ACR," shows the number of ventilation counts measured in each area, as shown in Figure 1, for each sensor. Here, "Ave." is the arithmetic mean of the measurements taken by the four sensors. The "Ratio" is 1 when the window is closed and indicates the magnification of how much the
ventilation volume improved.

In Table 1, the "Ventilation volume" column shows the ventilation volume per person calculated by multiplying the average ACR by the volume of the area and dividing it by the capacity. As indicated in the Introduction, the MHLW requires at least 30 m³ h⁻¹ per person in general commercial facilities, the CDC requires at least 6 ventilation cycles per hour in negative pressure rooms (existing buildings), and the WHO requires at least 576 m³ h⁻¹ per person in health facilities. The WHO recommends ventilation of at least 576 m³ h⁻¹ per person in health facilities. When the "Ventilation volume" complied with these MHLW, CDC, and WHO standards, it was marked as †, ‡, and §, respectively.

We confirmed the effect of improving ventilation by opening windows in general bathrooms, special bathrooms, and shared rooms. We conducted a factorial effect analysis using a linear regression model with the estimated ACR as the objective variable and the presence or absence of window opening, sensor location, and sensor model (P or K) as explanatory variables (Fig. 3A–C). The results showed that ventilation was significantly dependent on the experimental conditions in all areas (p = 0.0269 for the general bathroom, p = 0.00127 for the special bathroom, and p = 0.02838 for the shared room). In contrast, there was no significant dependence on the location of the sensor in any of the areas. Therefore, it is suggested that room
ventilation was uniformly improved by opening the window in the general bathroom,
special bathroom, and shared room. There was also no significant dependence on the
sensor model.

In the private rooms, the P and K2 sensors were installed in the same place
because of the limited size of the rooms. Thus, we used a generalized linear mixed
model to estimate and test the effects of ACR and window opening, with ventilation
time and window opening set as fixed effects, and the difference between sensor
models, with the sensor model as a variable effect. In the covariance parameter
estimate of the variable effect, the Wald p-value of the sensor’s measurement was not
significant (p = 0.9631); therefore, a difference in the sensor’s measurement cannot
be confirmed. However, for the parameter estimates of fixed effects, the effects of
ACR and window opening were both significant (p < 0.0001). Therefore, it can be
suggested that for private rooms, window opening uniformly improved room
ventilation.

The measurement results of the CO₂ concentration in the entire space (Fig. 2),
including the private and the day rooms, are shown in Figure 4. When the release of
CO₂ gas was stopped at t1, the concentration at sensor P steadily decreased. At time
t2, which is two minutes after time t1, the measured value of sensor K3 in the day
room increases and continues to increase steadily. However, the measured values of
K1 and K3 increased around time t3, seven minutes later than time t2. From the above, it was confirmed that CO2 gas leaked from the private room toward the corridor side, and the gas reached the day room side (K3) more rapidly.

To understand the airflow conditions in detail, the private room, corridor, and day room shown in Figure 2 were modeled as three-dimensional data, and the distribution of mass fractions of infectious aerosols was analyzed by a thermo-fluid simulation (Fig. 5). A Flowsquare+ simulator 2021R1.0 (Nora Scientific Co., Ltd., Kanagawa, Japan) was used. The simulation domain was 17.5 m × 3 m × 9 m (X× Y× Z, and was discretized onto 175 x 90 x 30 uniform meshes (X× Y× Z) respectively. The fluid viscosity, \(\mu \), was 20 x 10\(^{-6}\) kg m\(^{-1}\) s\(^{-1}\), the fluid density \(\rho \) was 1.2 kg m\(^{-3}\), the room temperature was 18 °C. The initially infected person on the bed emitted infectious aerosols continuously at a velocity of 1 m s\(^{-1}\) in the Y direction and 1 m s\(^{-1}\) in the Z direction, with a temperature of 36°C and a mass fraction of 1. The blowing velocity of the air conditioner installed in the private room was -1 m s\(^{-1}\) in the Y direction and 2 m s\(^{-1}\) in the Z direction, while that of the air conditioner installed in the day room was -1 m s\(^{-1}\) in the Y direction and 1 m s\(^{-1}\) in the Z direction. The temperature of the exhaled air from the air conditioner was set to 30 °C. The ventilation fan in the private room was turned off during mass infection outbreaks, and the ventilation fan in the day room was set to an air speed of 10 m s\(^{-1}\) based on actual measurements.
As a result of the simulation, a gentle 0.05 m s\(^{-1}\) airflow was observed flowing from the private room to the day room along the window side of the corridor. This indicated that the infectious aerosol from the private room could reach the day room in approximately one minute. Figure 6 shows a visualization of the transition of the stage production smoke that filled the private room to the day room side through the corridor, taken from the camera angle shown in Figure 2. The smoke leaking from the gap between the curtains and the floor gradually increased in height, and by the time it reached the day room, it was observed that it was near the head of a resident sitting in a wheelchair.

Discussion

In the five areas considered to be at high risk of aerosol infection, we measured the actual number of ventilation times using the tracer gas method with dry ice under two experimental conditions: at the time of the outbreak of mass infection and after improving ventilation by opening windows. Table 1 shows that at the time of the outbreak, all areas met the MHLW’s standard for ventilation (>30 m\(^3\) h\(^{-1}\) per person), and did not meet the definition of a poorly ventilated enclosed space. Furthermore, from the "Ratio" in Table 1, it was found that in all areas, except the day room where the window-opening experiment was not conducted, the ACR substantially increased.
by 1.48–5.74 times by opening the window and could be improved to meet the CDC standard. In all areas where the window-opening experiments were conducted, there was no significant dependence on the location of the sensor or the model of the sensor, which suggests that the proposed method of estimating the ACR worked effectively. Even with the windows open, none of the areas met the WHO criteria for a negative pressure room; however, as this facility is not an infectious disease ward, this level of ventilation capacity is not generally required.

Notably, by opening windows to improve ventilation, which is a low-cost method, behavioral changes for aerosol infection control in elderly care facilities can be expected. Furthermore, in this facility, both the general and special bathrooms are equipped with jalousie windows to ensure the inside cannot be seen from the outside even if the windows are opened; therefore, it would be easy to open the windows. However, in facilities for the elderly, there are concerns regarding dangerous behaviors such as escaping or jumping from the second floor or higher due to Behavioral and Psychological Symptoms of Dementia (BPSD) in patients with dementia; therefore, on-site measures are required to prevent opening windows beyond a certain level. In the future, it will be necessary to verify the impact of window opening on the heating and cooling costs.

Moreover, the series of experimental results shown in Figures 4–6 suggest
that aerosols may have been advected by the difference in airflow of the ventilation fans, causing downwind contamination. Generally, the required ventilation volume is determined by the capacity of the room; therefore, the smaller the room, such as a private or shared room, the lower the ventilation volume, and the larger the common area, such as a day room, the higher the ventilation volume. Therefore, in open buildings where rooms and common areas are spatially connected, such as elderly care facilities, aerosol advection from private to common spaces may occur. This is a challenge posed by the unique design of nursing homes, where private spaces are connected to common spaces.

Anderson et al. that architectural designs specific to elderly care facilities may be vulnerable to combating COVID-19 infections because they are designed to promote social interaction and collaboration among the elderly. Many elderly facilities are designed according to guidelines so that when residents exit their rooms, they are spatially connected from hallways to common spaces (e.g., day rooms and areas for social activities) without partitions. This is believed to work well for resident interactions and for natural monitoring by staff. In addition, in Japan, the deregulation of the Law for Partial Revision of the Building Standards Law (enacted on September 25, 2018), which exempted the floor area of common corridors from the calculation of floor area ratio for nursing homes, may have provided an impetus for the active use of
corridors as common relaxation areas. However, from an infection control perspective, there is room for improvement in these open-plan architectural guidelines.

Downwind contamination in elderly care facilities can be easily prevented by discontinuing the use of rooms near common areas where large numbers of people gather. A more quantitative and in-depth measure would be to check the pressure difference between the room and hallway,\(^4,11\) as recommended in healthcare settings. If the risk of downwind contamination created by the pressure difference becomes apparent, taking measures (e.g., transparent partitions or air curtains) to appropriately block the airflow while maintaining accessibility and visibility would be desirable to ensure the QoL of residents and to test the effectiveness of High Efficiency Particulate Air Filter (HEPA) filters for air purification and interaction with the airflow passing through. Contrarily, reports have suggested excessive installation of vinyl partitions may contribute to mass infection.\(^2\) Therefore, care should be taken when designing partitions so that they do not interfere with ventilation. The Ministry of Health and Family Welfare in India has published guidelines on room layouts and desirable positions for medical personnel, including room airflow.\(^12\) While referring to such precedents, formulating new guidelines tailored to the operational patterns of elderly care facilities is desirable.
Conclusion

In this study, we discussed the visualization of aerosol infection risk and countermeasures for mass infection in elderly care facilities. With the CO2 tracer gas method, we have found that a low-cost intervention of opening windows in the field can improve ventilation frequency by a factor of 1.48-5.74. However, in this case, it cannot be determined that aerosol infection is the only dominant factor; therefore, in the future, measures against contact and droplet infections will also be required in the field.

The results suggest that secondary infections may occur due to aerosol advection even if the ventilation is sufficient. Furthermore, this phenomenon may be influenced by the unique architectural design of elderly care facilities. In order to deter the outbreaks of mass infections that have been occurring in elderly care facilities, policy discussions such as guidelines for architectural design and review of related laws will be necessary in the future. In addition, quantitative studies and interventions are required to avoid downwind contamination in existing buildings.

References

1. Ishigaki Y, Kawauchi Y, Yokogawa S, Saito A, Kitamura H, Moritake T. Experimental investigation to verify if excessive plastic sheeting shielding

10. Wrublowsky R. Design Guide for Long Term Care Homes, Document version:

Table 1. Estimates of the actual number of ventilations and per capita ventilation volumes measured in each area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Window</th>
<th>Measured ACR</th>
<th>Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>General bathroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE #</td>
<td>5.13</td>
<td>3.56</td>
<td>2.56</td>
</tr>
<tr>
<td>OPEN -</td>
<td>-</td>
<td>5.38</td>
<td>7.5</td>
</tr>
<tr>
<td>Special bathroom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE #</td>
<td>2.38</td>
<td>1.56</td>
<td>3.17</td>
</tr>
<tr>
<td>OPEN</td>
<td>16.6</td>
<td>11.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Shared room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE #</td>
<td>3.67</td>
<td>1.05</td>
<td>2.34</td>
</tr>
<tr>
<td>OPEN</td>
<td>4.74</td>
<td>10.4</td>
<td>7.40</td>
</tr>
<tr>
<td>Private room</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE #</td>
<td>3.74</td>
<td>-</td>
<td>6.17</td>
</tr>
<tr>
<td>OPEN</td>
<td>16.2</td>
<td>8.66</td>
<td>6.81</td>
</tr>
<tr>
<td>Day service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLOSE #</td>
<td>7.79</td>
<td>-</td>
<td>4.26</td>
</tr>
</tbody>
</table>

1. # Simulated conditions during mass infection outbreaks
2. + Hallway window was additionally opened
3. No data procured

4. † Compliant with the guidelines of the Ministry of Health, Labor and Welfare (MHLW, 2020).

5. ‡ Compliant with CDC guidelines (2003).

6. § Compliant with WHO guidelines (2009).

Figure legends

Fig. 1. Floor plan of the survey area and sensor placement.

Fig. 2 Overall view of the private room, corridor, and day room.

Fig. 3 Factor effect analysis using the linear regression model.

The estimated ACR was used as the objective variable, and the presence/absence of
window opening/closing, sensor location, and sensor model were used as explanatory
variables.

Fig. 4 CO2 concentration in private rooms, corridor, and day room

Fig. 5 Simulation results of the advection of infectious aerosols

Distribution of mass fractions of infectious aerosols, height = 1.2 m, elapsed time = 225 s. Areas with a mass fraction of 5% or more are shown in red.
Fig. 6 Smoke filled in a private room flows into the day room at the back through the corridor (taken from the camera angle shown in Fig. 2).
a. General bathroom

b. Special bathroom
c. Shared room

d. Private room

e. Day room

Figure 1
Figure 2
A. General bathroom

B. Special bathroom

C. Shared room

Figure 3
Figure 4
Figure 5
Figure 6