Deep Sequence Learning for Assessing Hypertension in Pregnancy from Doppler Signals

Nasim Katebi1 and Gari D. Clifford1,2

1Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA
2Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA

Measuring blood pressure during pregnancy is an essential component of antenatal care, and is critical for detecting adverse conditions such as pre-eclampsia. The standard approach for measuring blood pressure is via manual auscultation by a trained expert or via an oscillometric self-inflating cuff. While both methods can provide reasonably accurate blood pressure measurements when used correctly, non-expert use can lead to significant error. Moreover, such techniques are uncomfortable and can cause bruising, pain and consequent resistance to use. In this work, we propose a low-cost one-dimensional Doppler-based method for the detection of hypertension in pregnancy.

Using a sample of 653 pregnant women of Mayan descent in highland Guatemala, we recorded up to 10 minutes of 1D Doppler data of the fetus, and blood pressure from both arms using an Omron M7 oscillometric cuff. A hierarchical LSTM network with attention mechanism was trained to classify hypertension in pregnancy, producing an area under the receiver-operator curve of 0.94. A projection of the data into lower dimensions indicates hypertensive cases are located at the periphery of the distribution of the output of the distribution.

This work presents the first demonstration that blood pressure can be measured using Doppler (without occlusion) and may lead to a novel class of blood pressure monitors which allow rapid blood pressure estimation from multiple body locations. Moreover, the association of the predictor with the fetal blood flow indicates that hypertension in the mother has a significant effect on the fetal blood flow.

Hypertension | pre-eclampsia | Fetal Cardiac Signal | Edge Computing | Doppler Ultrasound Signal | Sequence Learning | Contrastive Learning
Correspondence: gari@gatech.edu

Introduction

Hypertension is the most common medical complication encountered during pregnancy, where 10% of women experience blood pressure above normal during pregnancy. Pre-eclampsia is characterized by high blood pressure and is a major cause of maternal and perinatal morbidity and mortality that complicates 2% to 8% of pregnancies (1, 2). Pre-eclampsia is a pathological condition in pregnancy initiated by abnormal uteroplacental hemodynamics (3). Placental abnormalities lead to the symptomatic stage, wherein the pregnant woman develops hypertension, defined as at least two repeated blood pressure measurements greater than or equal to 140 mmHg systolic blood pressure (SBP) or 90 mmHg diastolic blood pressure (DBP) (4).

One important aspect of diagnosing and managing hypertension in pregnancy is early identification of pregnancies at high-risk of early-onset pre-eclampsia and undertaking the necessary measures to improve placentation and reduce the prevalence of the disease (5). Adverse outcomes related to hypertensive disorders of pregnancy can affect both mother and fetus in long- and short-term. The adverse effects are associated with placental abruption, preterm delivery, fetal growth restriction, stillbirth, maternal death secondary to stroke and eclampsia, as well as future risk of hypertension, diabetes mellitus, and cardiovascular disease in the mother (6, 7). This highlights the importance of accurate monitoring of blood pressure during antenatal care and motivates us to design the study on the detection of hypertension in pregnancy.

Both Fetal heart rate variability (FHRV) and fetal ECG morphology have been shown to be diagnostic biomarkers for mild and severe pre-eclampsia. Yun et al. (8) conducted the study on the instability and frequency-domain variability of fetal heart rate in three study groups of control, severe pre-eclampsia and severe pre-eclampsia affected by intrauterine growth restriction (IUGR) all underwent routine follow-ups at Samsung Medical Center. Results demonstrated that low- and high-frequency power were significantly higher in the group not affected by IUGR when compared to the control group. However, in the group affected by IUGR, low-frequency power was significantly lower and high-frequency power was not significantly different in comparison to the control group. Another study was presented by Lakhno on the effect of pre-eclampsia on FHRV (9). In this study, the modulated fetal CTG variables captured the suppression of fetal biophysical activity and the development of fetal distress in severe pre-eclampsia. In addition to the impact of pre-eclampsia on FHRV indices, Lakhno studied changes in fetal ECG morphology. The presented results revealed that FHRV metrics were directly related to the severity degree of pre-eclampsia. Also in pre-eclampsia cases shortening of PQ and QT and increased T/QRS ratio were observed (10).

In addition, alterations in resistance and flow could lead to a chamber remodeling during early development. Aye et al. (11) performed a study on prenatal and postnatal cardiac development in fetuses born to either pre-eclampsia or gestational hypertension. This study demonstrated that term-born infants from hypertensive pregnancies had persistently
smaller right ventricular end-diastolic volumes. At 3 months of postnatal life, infants born to hypertensive pregnancies also showed subtle changes in left ventricular mass. These findings were similar to those presented by Timpka et al. (12) which showed that fetuses born to pre-eclamptic pregnancies and gestational hypertension had greater left ventricular relative wall thickness, with smaller left ventricular end-diastolic volumes.

One non-invasive method for capturing fetal cardiac activity is a one-dimensional Doppler ultrasound (1D-DUS) with the advantage of providing a low-cost and simple method for fetal heart rate monitoring. The Doppler transducer transmits and receives ultrasound waves, which reflect the fetal cardiac activity. Using the 1D-DUS signal, blood flow, cardiac wall and valve motions can be captured, and they are differentiable based on their different velocities. Figure 1 shows the simultaneous ECG and 1D-DUS signal. A review of using 1D-DUS to assess vascular changes in pre-eclampsia indicates the effectiveness of deriving discriminating parameters from this data to diagnose pregnancy complications (13). Also, there are multiple parameters derivable from the 1D-DUS signals which are related to placental perfusion, including resistance index, pulsatility index, or systolic/diastolic ratio from uterine artery (14, 15), fetal heart rate responses and uteroplacental flows (16). Due to the advantages of 1D-DUS in both the recording technique and assessment of fetal wellbeing, we designed a predictive model using fetal 1D-DUS recordings to detect hypertension.

Recent advances in deep learning, especially recurrent neural network (RNN) (17) and long short-term memory (LSTM) (18) models provide useful insights on how to tackle the problems relating to sequence modeling, time series classification and prediction. LSTM have been broadly applied to time series data analysis due to its capability in processing of long sequences of data. Given that we have a sequential data, it is natural to consider the use of a recurrent neural network to keep track of the variability and temporal dependency. Attention mechanisms have been shown to be effective in improving the performance of sequence learning models by attending to every hidden state and then making predictions after deciding which one is more informative (19, 20). Various studies showed the effect of using appropriate loss function in model performance. The contrastive loss has been shown to perform well in self-supervised algorithms. The supervised contrastive learning approach presented by Kholsa et al. (21) is based on pulling the normalized embeddings from the same class closer together than embeddings from different classes, which leads to achieving discriminative features with smaller inter-class variability (21, 22). Our intent in this study is to discover the relation between fetal cardiac activity and maternal blood pressure to detect hypertensive cases. The approach taken to the blood pressure estimation used in this work is based upon a hierarchical attention network (23), which is a stable and powerful method for extracting features from sequential data and learn short- and long-range dynamics. This approach is used to model time dependencies in fetal 1D-DUS signal and capture the variability of the cardiac activity. In addition, multiple steps were taken to deal with the non-uniform distribution of blood pressure levels and in particular, the under-representation of hypertensive subjects. The following sections detail the approach to dealing with these problems, with a focus on identifying hypertension in pregnancy.

Methods

Data Sources. In this work, we used 1D-DUS recordings from 653 pregnant women (736 visits) at 5 to 9 months of gestation plus contemporaneous blood pressure measurements from the Guatemala RCT Database, which were collected as part of a randomized control trial, conducted in rural highland Guatemala in the vicinity of Tecpan, Chimaltenango (24, 25). The study focused on the impact of a mHealth decision support system to improve the continuum of care for indigenous women of the target region. It was approved by the Institutional Review Boards of Emory University, the Wuqu’ Kawq’ Maya Health Alliance, and Agnes Scott College (Ref: IRB00076231 - ‘Mobile Health Intervention to Improve Perinatal Continuum of Care in Guatemala’) and registered as a clinical trial (ClinicalTrials.gov identifier NCT02348840). This data set includes 1D-DUS signals, recorded by traditional birth attendants (TBAs), who were trained to use the hand-held 1D-DUS device. Immediately before recording the 1D-DUS signals, the TBA also entered the gestational age in months and the maternal heart rate, and captured maternal blood pressure by photographing the screen of a self-inflating blood pressure device. The blood pressure monitor device used was an Omron M7 (Omron Co., Kyoto, Japan), which has been validated in a pre-eclamptic population (26). The blood pressure values were extracted from the images, and the transcription method was designed to automatically detect the LCD in the photo and extract the SBP and DBP values (27). The 1D-DUS device was an AngelSounds Fetal 1D-DUS JPD-100s (Jumper Medical Co., Ltd., Shenzhen, China) with an ultrasound transmission frequency of 3.3 MHz. Data were captured at 44.1 kHz, using a Samsung S2, S3 mini or S4 mini and stored as uncompressed WAV files at 7056 Kb/s (16 bits). All data were captured using the same mobile application designed to
record the 1D-DUS. Figure 3-a illustrates the devices used in this study.

Blood pressure was recorded in a supine position which is slightly lower than blood pressure in a sitting position. The BP difference by body position is estimated as mean SBP difference=4.02 mmHg and DBP=2.97 mmHg (28). Figure 2 shows the joint distribution of the average left-right arms SBP and DBP after adjustment for supine position. In this dataset, there are 3 severe hypertensive cases (SBP>160 or DBP>110 mmHg) and 7 mild/moderate hypertensive cases (SBP 140-160 or DBP 90-110 mmHg) recordings. And, table 1 shows the mean and standard deviation of recorded blood pressure based on gestational age.

![Figure 2](image)

*Fig. 2. Joint distribution of average left-right arm SBP and DBP of all patients after adjustment for supine position used in this work. Observations with SBP greater than or equal to 140 mmHg or DBP 90 mmHg were considered as hypertensive cases.**

Table 1. Mean and standard deviation of blood pressure (mmHg) in gestational ages 5 to 9 months in the dataset.

<table>
<thead>
<tr>
<th>Gestational age</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean$_{SBP}$</td>
<td>99.6</td>
<td>99.4</td>
<td>101.5</td>
<td>103.1</td>
<td>109.3</td>
</tr>
<tr>
<td>std$_{SBP}$</td>
<td>8.0</td>
<td>6.9</td>
<td>8.7</td>
<td>9.0</td>
<td>13.5</td>
</tr>
<tr>
<td>mean$_{DBP}$</td>
<td>60.1</td>
<td>60.1</td>
<td>62.9</td>
<td>62.4</td>
<td>69.5</td>
</tr>
<tr>
<td>std$_{DBP}$</td>
<td>7.6</td>
<td>6.5</td>
<td>5.9</td>
<td>7.3</td>
<td>9.7</td>
</tr>
</tbody>
</table>

Overview of algorithms. Our method for detecting hypertension in pregnancy from fetal 1D-DUS signals is structurally similar to that used in (23). In order to improve the representation learning, we used the training approach presented by Khosla et al. (21). Given the input signal, the sequence of scalogram images were generated, then the hierarchical attention network was used to encode the sequence and obtain the normalized embedding. The representation was further propagated through a projection network that is discarded in inference time. The encoder and projection networks were trained by using a contrastive loss function. The weights of the encoder network were then freezeed and used on top of the classification network to classify hypertension. Figure 3-(b,c) illustrates the overview of the model and the training process.

Supervised Contrastive learning. The idea of supervised contrastive learning is to teach the network to learn how to map the normalized encoding of samples belonging to the same category closer and the samples belonging to the other classes farther. In the deep sequence classification models, the network converts the signals into a representation and then uses these representations to classify the signals. So forming the representation using the contrastive learning approach leads to having better performance in the classification stage. The components of the approach used in this study are as follows:

- **Sequence Encoder, Enc(.).** The Enc(.) network consists of two levels of LSTM structure. Processing in LSTM is realized by three key gate units: input gate, output gate, and forget gate, which are used for implementing information protection and control. In order to process the 1D-DUS signal, two-step sequence modeling was leveraged. The attention network in both steps can assign larger weight to the most important sections of the input data regarding the objective of the problem. The Enc(.) network, maps input x to a representation vector $r \in \mathbb{R}^{D_E}$. r is normalized to the unit hypersphere in \mathbb{R}^{D_E}.

- **Projection Network, Proj(.).** The projection network is a multi-layer perceptron and maps r to a vector $z = Proj(r) \in \mathbb{R}^{D_P}$. The output was again normalized to lie on the unit hypersphere, which enables using an inner product to measure distances in the projection space (stage 1 of training).

- **Classifier Network, Classifier(.).** The classifier network is also a multi-layer perceptron. In stage 2 of training process, the embeddings from the Enc(.) network is fed to the classifier network and cross-Entropy loss is used to optimize the parameters.

Experimental set-up

1D-DUS signal processing. Given the nature of the physiological time-series, 1D-DUS signals are likely to be corrupted with internal and external interference such as respiration, movement, and environmental noise. In this work, a second-order band-pass Butterworth filter was used to reduce the noise. By observing the frequency components of the 1D-DUS signals, the cut-off frequencies were set to 25 and 600 Hz, corresponding to cardiac oscillations. In addition, the signal quality assessment method presented in (29) was used before processing to exclude low quality recordings. After the quality assessment, each 5 minutes recording was divided into 3.75 seconds and the scalogram was generated using 50 ms Hanning window for better representation of the signal in time and frequency.

Network implementation. The sequence encoder network (Enc(.)) gets the scalogram of the signal and consists of three layers of 2-D convolutional neural network (kernel size=(3,3)). Each layer is followed by batch normalization,
rectified linear (ReLU) units, and max pooling units. Then the extracted feature was fed to the first step of sequence encoder networks which consist of LSTM networks with 50 units. The projection network \(\text{proj}(.) \) is one dense layer with 32 units and the classification layers includes dropout layer and dense layer with 32 units. For the representation learning step, the contrastive learning loss function and for the classification part, the cross-Entropy loss function was used. Mini batch stochastic gradient descent (SGD) was leveraged to optimize the parameters of the network. The proposed method is implemented in tensorflow 2.0 and Python3.

Evaluation metrics. The network was trained and tested using five minutes 1D-DUS recordings. To evaluate the model performance, confusion matrix, Receiver operating characteristic (ROC) and area under ROC curve (AUC) were provided. The mapping of data in two dimensional space is also provided to show the performance of encoder network.

Results

Classification results. Figure 4 shows the performance of the classification model on randomly sampled test data. This resulted to 180 true negative, 1 false positive, 2 true positive and 2 false negative.

Regression results. We also tested the performance of the model on blood pressure estimation. Therefore, after the representation learning the output of the encoder network was used to train the regression model. Figure 5 shows the result of SBP estimation from 5 minutes 1D-DUS signals.

Qualitative results. Figure 6 shows the sample test data in two-dimensional space. In order to visualize the data in lower space, t-Distributed Stochastic Neighbor Embedding (tSNE) method was applied on the output of \(\text{proj}(.) \) layer. The mapping presented in here indicates hypertensive cases are located at the periphery of the distribution. The data embedding is provided for the set of train and test data (figure 6).

Note that the small number of hypertensive examples...
leads to a slight overfitting, although clearly the hypertensive events are still located at one extreme of the projected distribution. We can therefore infer that the model can learn the discriminative features in the training phase, and the overfitting can likely be mitigated by adding more samples of high blood pressure cases.

Discussion

The results presented here demonstrate that the classification accuracy and representation learning respectively provide sufficiently accurate hypertension detection. We note several minor limitations of the current study. First, there were relatively few hypertensive subjects in our cohort (3 severe hypertension and 7 hypertension in total of 736 visits) and the subjects were all single race (Native Central American of Mayan origin from rural highland Guatemala). Although this is initially a strength, and helps reduce variables associated with race and environment, it prevents a definitive claim that this would extend to other races and settings. Never-the-less, we see no principled reason that the approach would not extend beyond the population studied (and indeed, the medical community has used blood pressure monitors largely developed on mostly Caucasian cohorts for decades without significant objections from the regulatory authorities or medical community.) As we continue to collect data, we will continue to expand the cohort for a range of diverse conditions, blood pressure ranges and populations.

It is important to note that blood pressure has been estimated from Doppler before. However, when measuring blood pressure with a Doppler, the principle is to occlude arterial blood flow by inflating a cuff and then deflating it until the flow goes back to normal. When the pressure in the cuff is just below the systolic blood pressure, blood flow can pass the cuff and is detected by the Doppler probe. This ‘sphygmomanometry’ approach requires significant additional equipment and is much less pleasant for the patient. Moreover, it cannot be easily integrated into the routine monitoring process for ultrasound screening of fetuses.

The presented model for hypertension detection is based on the processing of fetal cardiac activity, therefore, it is important to consider the effect of hypertension on fetus and possible cases of IUGR. In this study, clinical labels of pre-eclampsia and IUGR conditions were not available for use. As it has been shown in figure 7 high maternal blood pressure are associated with both low and normal birth weights.

Finally, it is important to note that all ultrasound data recorded in this study was not recorded at a specific site, but rather was placed such that a fetal heart beat could be heard. Therefore, the analysis presented here has uncovered changes in the fetal Doppler signal that are related to maternal blood flow. This may be due to the relationship between the fetal and maternal cardiovascular systems, or may be due to some other maternal blood flow component interposed between the sensor and the fetus.
Fig. 7. Association of maternal blood pressure and birth weight. Normal Birth Weight is defined by setting weight threshold to 2.64 kg for male newborns, and for females 2.57 kg (30). Different colors indicate gestational age at the time of visit based on last menstrual period (LMP) in month.

Conclusion

This work presents a novel approach to hypertension detection in pregnancy using a low-cost one-dimensional Doppler probe. To our knowledge, this is the first demonstration of blood pressure estimation from a 1D Doppler device without the need for arterial occlusion / sphygmomanometry. Moreover, since an end-to-end deep learning approach is used, no preprocessing is required to perform the analysis. We demonstrate the utility in a population of 653 pregnant women, with blood pressures in the range of 71 to 169 mmHg SBP and 41 to 110 mmHg DBP, indicating that hypertension is predictable. Interestingly, we noticed differences based on gestational age, which we have also shown can be evaluated from the Doppler device used in this study(31). A dual age-blood pressure prediction therefore can improve performance, and provide a more useful diagnostic.

Notably, we identified this Doppler-hypertension relationship from blood flow on the fetal side of the placenta, indicating that fetal blood flow is significantly affected by high maternal blood pressure. Earlier work on statistical and fluid dynamic models has indicated that there is likely to be a relationship (32–34), and in particular, pathological Doppler velocimetry of the uterine and uteroplacental circulation is a predictor of proteinuric pregnancy-induced hypertension, IUGR and other events in high-risk pregnancies (35–37). Nevertheless, no direct connection between fetal blood pressure and maternal hypertension has been reported in humans before.

The ability to detect hypertensive disorders in pregnancy is particularly important, with few validated devices on the market (26). We note that 1D Doppler recordings are routine in pregnancy, and can be performed at home by the mother or a community healthcare worker (as we demonstrated in (38) using a device that retails at USD$17). By adding this functionality to existing Doppler devices, it presents minimal additional burden and cost to screening and provides the opportunity to identify pre-eclampsia and other hypertension-related disorders during pregnancy and beyond. Only a few seconds of data are required to make an estimate, and estimates can be made on both the fetus and the mother, providing the opportunity to examine blood flow patterns around the body in a short period of time.

Moreover, the developed algorithm could run on relatively low cost hardware (such as the Coral TPU), the approach described in this work could be easily implemented in a large range of mHealth and portable devices, leading to rapid and low cost scaling of the technology.

ACKNOWLEDGEMENTS

The research presented here was funded by a Global Health Grant from Emory University. GC acknowledges the support of the National Institutes of Health, the Fogarty International Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, grant number 1R21HD084114-01 (Mobile Health Intervention to Improve Perinatal Continuum of Care in Guatemala), which enabled the collection of the data in this work. GC has financial interest in Alivecor Inc, and receives unrestricted funding from the company. GC also is the CTO of Mindchild Medical ad CSO of Lifeline AI, and has ownership interests in both companies.

