Estimating the Effects of Legalizing Recreational Cannabis on Newly Incident Cannabis Use

Barrett Wallace Montgomery, B.S.; Meaghan H. Roberts, MA; and James C. Anthony, Ph.D.

a Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, B601 West Fee Hall, 909 Wilson Road, East Lansing, MI 48824-1030, United States.
b Department of Economics, College of Social Science, Michigan State University, 486 W. Circle Drive, 110 Marshall-Adams Hall, East Lansing, MI 48824-1038.
Abstract

Liberalized state-level recreational cannabis policies in the United States (US) fostered important policy evaluations with a focus on epidemiological parameters such as proportions [e.g., active cannabis use prevalence proportions; cannabis use disorder (CUD) prevalence]. This cannabis policy evaluation project adds novel evidence on a neglected parameter – namely, estimated occurrence of newly incident cannabis use for underage (<21 years) versus older adults. The project’s study populations were specified to yield nationally representative samples for all 51 major US jurisdictions, with probability sample totals of 819,543 non-institutionalized US civilian residents between 2008 and 2019. Standardized items to measure cannabis onsets are from audio computer-assisted self-interviews. Policy effect estimates are from event study difference-in-difference (DiD) models that allow for causal inference when policy implementation is staggered. The evidence indicates no policy-associated changes in the occurrence of newly incident cannabis onsets for underage persons. For jurisdictions with liberalized cannabis policies, the evidence indicates an increased occurrence of newly onset cannabis use among older adults (i.e., >21 years). We offer a tentative conclusion of public health importance: Legalized cannabis retail sales might be followed by the increased occurrence of cannabis onsets for older adults, but not for underage persons who cannot buy cannabis products in a retail outlet. Cannabis policy research does not yet qualify as ‘mature’ science. DiD modeling of newly incident cannabis use might be more informative than the modeling of prevalence proportions.
Background

In drug dependence epidemiology, the estimated prevalence proportions for active drug use are population health statistics that hide important patterns of (a) incidence (occurrence of first onsets) and (b) duration (e.g., duration and frequency of use after it starts). Lapouse (1967), building upon prior work (e.g., Kramer, 1957), argued that incidence estimates tell us about causes. In contrast, prevalence estimates tell us about caseloads and health services burdens. In a more recent review of the substance use epidemiology literature, Wu and colleagues echo these sentiments and note an abundance of research on prevalence, but a lack of literature on incidence (2003).

Cheng and colleagues (2016; 2018) exploited this incidence-prevalence differentiating insight to disclose a large sub-population of young adults in the United States (US) who deliberately delayed their first drink until after the legal minimum drinking age. Prevalence proportions hid this pattern. Members of our research group offered a derivative hypothesis about whether estimation of cannabis use incidence might disclose similar epidemiological patterns (Montgomery, Vsevolozhskaya, & Anthony, 2021).

These initial observations motivated this research to estimate whether legalizing recreational cannabis might affect the occurrence of newly incident cannabis use (hereinafter referred to as incidence). Cannabis use incidence in the US has traditionally peaked between ages 15 and 17 with steady declines as the population ages (Montgomery, Vsevolozhskaya, & Anthony, 2021). Since all states that legalized recreational cannabis set 21 as the legal minimum age to purchase recreational cannabis, we analyze incidence before and after this legally important milestone is reached. We sought to understand how the new policies may be affecting incidence for different age groups, and what this tells us about the US population.
For reasons explained in this research report, inferences about cannabis policy effects on cannabis incidence rates continue to be somewhat constrained despite a growing number of US jurisdictions that no longer prohibit adult cannabis use and retail cannabis sales. Recent surveys document widespread beliefs, within the US, that incarceration for cannabis offenses is counter-productive and that cannabis use should not be criminalized (Gallup, 2016; Gallup, 2020; Pew, 2020). Nevertheless, only 18 states and two US non-state jurisdictions have legalized adult cannabis use and retail sales; the District of Columbia (DC) permits adult use, but not retail sales (ProCon.org, 2021).

We can see no prior research on the occurrence of newly incident cannabis use, but we can summarize published evidence about three facets of cannabis epidemiology, all with a neglect of the distinction between policy effects on ‘being’ versus ‘becoming’ a cannabis user: (1) prevalence proportions for ‘being’ an active cannabis user without differentiation of long-standing persistent users from those who have just become newly incident users; (2) prevalence proportions for active cannabis use disorder (CUD) cases, also with no differentiation of newly incident from long-duration users; (3) frequency of use, again, without this distinction.

Concerning associations between cannabis liberalization and cannabis use prevalence among youth, most published evidence indicates that prevalence did not change after legalization, and even decreased for some sub-populations (Gruber et al., 2016; Dilley et al., 2019; Reed, 2021; Martins et al., 2021; Coley et al., 2021). However, a few studies and meta-analyses showed increases in cannabis use prevalence among adolescents (Cerdá et al., 2017; Melchior et al., 2019; Smart and Pacula, 2019; Paschall, García-Ramírez, & Grube, 2021). Regarding the prevalence of CUD, the published evidence indicates that the 12-17-year-old participants in the National Surveys on Drug Use and Health (NSDUH) in states with legalized recreational cannabis were at a slightly higher risk of developing CUD (Cerdá et al., 2020). As
for the frequency of cannabis use among adolescents, the published estimates show no change after recreational cannabis legalization (Pacula et al., 2014; Everson et al., 2019; Hall & Lynskey, 2020; Cerdá et al., 2020).

Among adults, or those of legal age to purchase cannabis in these states, the evidence looks quite different. Apart from a few early findings (Reed, 2016; Kerr, Lui, & Ye, 2018; Smart and Pacula, 2019) published estimates consistently show that the prevalence of cannabis use among adults increases after legalization (Cerdá et al., 2020; Reed, 2021; Martins et al., 2021). Increased odds of CUD were found among NSDUH respondents 26 and older (Cerdá et al., 2020), however, other studies found no significant changes and deem the evidence to be inconclusive (Hall & Luyenskey, 2020; Martins et al., 2021). The frequency of cannabis use among adults is equally uncertain with one study finding an increase in frequent use in the 26 and older age group, but in no other sub-groups (Cerdá et al., 2020) while another found no increases in frequent or daily use in any sub-group (Martins et al., 2021).

For this project’s estimation of cannabis policy effects on the occurrence of newly incident cannabis use, we turned to an extension of the differences-in-differences (DiD) model—the event study. The DiD model is popular when the research goal is to estimate causal policy effects in the context of policy interventions in which the exposure and control groups are likely to differ on many dimensions. Its popularity might be traced to its constraints on unobserved confounding variables with the framework of relatively loose assumptions that the contrasted observed trends are parallel (Angrist and Pischke, 2008). DiD models require panel data (repeated observations on the same individuals, or whatever the unit of observation is) and are especially valuable when the policy instrument effects to be modeled occur at an aggregate level, such as a state or a jurisdiction such as DC. DiD takes advantage of the trends, before and after the event, observed for populations that experienced the intervention or other event versus what is observed for populations that did not have that experience. If trends in the
outcome among both groups were parallel, then, logically, an argument would have to be made for why they would not be parallel after the event. Under this assumption of parallel trends, the average treatment effect of the policy intervention can be estimated as the difference in the change of the outcomes for each group.

However, recent explorations and analyses by economists have revealed that this estimate of the average treatment effect is a bit of an over-simplification, especially when more than two time periods can be defined for each of the contrasted populations (Goodman-Bacon, 2018; Callaway and Sant'Anna, 2020; Cunningham, 2020). With a policy intervention described as a ‘treatment,’ the average treatment effect on the treated (ATT) is a weighted average of all the possible two-period estimators. This estimate can be problematic if it averages out important treatment effect heterogeneity that can take place over time. If treatment effects can be shown to change over time, then the ATT estimate is biased (Goodman-Bacon, 2021). In the drug policy space, there is good evidence that policy intervention effects might change over time due to the policy lag effect (Cheng et al., 2019; Hall & Weier, 2015).

With this background in mind, for this project, we sought to estimate the causal effect of cannabis policy liberalization within the US on the occurrence of newly incident cannabis use. The event study model defines periods before and after legalization as intervention leads and lags. These lead and lag indicators allow for dynamic modeling of estimated changes in cannabis use incidence before and after the intervention was made. This model permits estimation of effects of time since or before cannabis policy implementation while accounting for the fixed effects of jurisdiction identity and the passage of time as sources of variation in cannabis incidence. This approach makes it possible to gauge when jurisdictions were comparable in their cannabis incidence dynamics and to estimate the degree to which the policy intervention effect might have varied over time. We produced age-stratified estimates for
underage population members (i.e., those not allowed to buy cannabis in retail outlets because they were not old enough), and for adults (allowed to buy).

Methods

Study population and sample

For this study, the population was specified to include non-institutionalized US civilian residents, sampled and assessed for successive NSDUH survey waves, 2008 through 2019. These NSDUH cross-sectional surveys were conducted with multistage area probability sampling to draw state-level representative samples and to over-sample 12-to-17 year-olds. The total sample size for surveys conducted in this period includes 819,543 respondents with an average overall interview participation level of 58% (Substance Abuse and Mental Health Services Administration, 2021).

Standardized audio computer-assisted self-interview modules assessed the month and year of first cannabis use, from which age-specific incidence rates can be estimated from the NSDUH Restricted Data Access portal (R-DAS). The R-DAS portal provides analysis weights and variance estimate capabilities for state-specific and national estimates and 95% confidence intervals (CI). The R-DAS portal also allows for state-specific analysis of data but can only be downloaded in year pairs and not individual years (e.g., 2018 – 2019 vs. 2018, 2019), therefore we use data from six year pairs in our analysis, not 12 individual years. We categorized states into different analysis groups according to each state’s year of recreational cannabis legalization (RCL) through 2018. Because the 2018-2019 year pair is the most recent available data in R-DAS at the time of analysis, states that legalized cannabis in 2019 or later were categorized into the illegal group. Washington and Colorado were included in the 2012 group, Oregon, Alaska, and Washington D.C. were in the 2014 group, California, Maine, Massachusetts, and Nevada
were included in the 2016 group, and Vermont and Michigan were included in the 2018 group. All other states were categorized into the same illegal cannabis group for this analysis.

Primary Outcome

To test our hypotheses, the primary estimate is newly incident cannabis use, calculated as $\psi = X_r / N_r$, where X_r is the number of individuals starting to use cannabis within the 1-12 month interval before assessment and N_r is all persons who had not started using cannabis before that interval. Estimates described in this report are not readily available in R-DAS. The estimated prevalence rates ($p_1 = X_r / N$, where N is the total projected population size) and the estimated proportion of the population at risk ($p_2 = N_r / N$), with the corresponding standard errors can be obtained. Incidence can then be calculated in terms of p_1 and p_2 as:

$$\psi = \frac{p_1}{p_2} = \frac{X_r / N}{N_r / N}$$

Study Design and Statistical Analysis

Our study design observes changes in proportions of newly incident cannabis use in the RCL states relative to non-RCL states before and after the legalization of cannabis at the state level. We estimate this using an event study that allows us to estimate incidence (or other outcomes) in each period relative to legalization while controlling for fixed differences across states and national trends over time. All analyses were performed in SAS version 9.04 and use NSDUH survey weights.

Our models can be expressed as:

$$Y_{st} = RCL_s \times \sum_{y=-5}^{4} \beta_y I(t - t_s^* = y) + \beta_t + \beta_s + \epsilon_{st}$$
As described earlier, our data is constructed at the state category \(s\) by year \(t\) level. In our primary analyses, \(Y_{st}\) measures past year cannabis incidence for each state grouping and pair of years. In this equation, \(\beta_s\) denotes state fixed effects and \(\beta_t\) denotes fixed effects of time in calendar years. These account for general trends in cannabis incidence for each group of states over time. The variable \(RCL_s\) is set equal to 1 if the observation is from a state that legalized cannabis and was measured after the date of legalization and is set equal to zero otherwise. The time-event dummy variables \(I(t - t_s^* = y)\) indicate the legality of cannabis in each state group by the first year of the R-DAS year pair relative to the year of legalization \(t_s^*\) and are set equal to zero for all observations from states that did not legalize recreational cannabis during the study period. These variables are referred to in this analysis as leads (indicators of time-event before legalization) and lags (indicators of time-event after legalization). The omitted category is \(y = -1\), the year pair before legalization. Therefore, each estimate of \(\beta_y\) is an estimate of the difference between proportions of newly incident cannabis use in the RCL states relative to the illegal states during year \(y\), as measured from the year pair that immediately preceded legalization. Where only one or two categories of states would be included at a specific time point because of the variation in legalization timing across states (\(\leq 6\) years before legalization and \(\geq 4\) years after legalization), the indicators are combined to balance the leads and lags and prevent modelling the outcome for only a small subset of the data. This is commonly referred to as balancing the leads and lags of the model.

If proportions of newly incident cannabis use were trending similarly in all the state groups before legalization, we expect that the estimated coefficients for the lead indicators will be small and not statistically significant. This is a test of the parallel trends assumption built into our regression models. Similarly, if the estimated coefficients for the lag indicators are positive and statistically significant, this indicates an increase in the incidence of past-year cannabis use.
in the RCL states relative to non-RCL states whereas negative coefficients would indicate a decreasing incidence.

In addition to the event study estimates of change at each time point, we also present a simple 2x2 DiD estimate of the ATT as a summary of the effect across all post-legalization years through 2019. This is estimated using the same equation except that the event study dummy variables are replaced with a single indicator denoting an RCL state post-legalization.

Dates of Legalization vs. Dates of Implementation

The best practice in the field has been to analyze the data using the date that cannabis sales began to divide the pre and post-periods. However, because of the nature of the data as reported in the R-DAS system, using the date of legalization made for a cleaner analysis. We note that the average number of days between the date of legalization and of sales in the states in our sample (except for Washington D.C. where sales have never been legal) is 497 days. Therefore, the T0 period in this analysis is a close approximation of the time between legalization and implementation of the RCLs. Our expectation of increased incidence would begin to show in the surveys after this roughly 500 day period when recreational cannabis sales began.

Alternative Specifications and Robustness Checks

To ensure the robustness of our analyses, we used two different alternate specifications. The first alternate specification uses the same method to estimate the effect of RCL on cannabis prevalence. The estimate for prevalence has been studied extensively in the literature and we compare our results to prior estimates as a check of face validity for our model. The second robustness check uses a time placebo as a check of robustness. In this model, a random year within the data was selected as the year that states legalized cannabis. The model is then run with the same specifications. If any of this model’s coefficients are significant, then
this indicates that there may be a problem in the model or that it is over-sensitive to spurious associations.

Results

Descriptive statistics

This study included 819,543 respondents from the NSDUH surveys between the years 2008 and 2019. The unweighted sample is 48% female, 60% White, 13% Black, 18% Hispanic, 2% Native American, 4% Asian, and 4% of more than one race or another race or ethnicity. 11% used cannabis in the past month, and 3% qualified for past year cannabis abuse or dependence. Table 1 provides the total unweighted sample characteristics as derived from the NSDUH Public Data Analysis System (P-DAS).

Supplemental figures S1-S5 show various combinations of newly incident cannabis use rates for those aged 21 and older by state legal category. Upon visual inspection, the parallel lines assumption and assumption of no anticipation look to have been met in every group by group comparison. Newly incident cannabis use ranges from as low as .25% for the illegal states in years 2008 and 2009 to over 2.5% in the states that legalized cannabis in 2014 (Oregon, Alaska, and the District of Columbia) in years 2018 and 2019.

Event study findings

Figures 1 and 2 show the primary findings for individuals aged 21 and older (Figure 1) and those between the ages of 12 and 20 (Figure 2). For those who were legally able to purchase cannabis (21 and older), the legalization of cannabis is estimated to have had no effect on past year incidence in the year of cannabis legalization. However, between two and four years after legalization, the effect of legalization is estimated to have increased past year
incidence by .6% [95% Confidence Interval (CI) = .001 - .01] and further by 1.3% [.008 - .018] in the period four to seven years after legalization (Figure 1). For adolescents who were ineligible to legally purchase cannabis, cannabis incidence is not estimated to have changed significantly in any period because of legalization (Figure 2).

When including the total time post-legalization, the simple ATT derived from the 2x2 DiD indicates that there were no appreciable differences in cannabis incidence before and after the laws were passed (p=0.12). However, since we expected no effect before cannabis sales became effective and our event study plots confirm this hypothesis, we estimated a separate ATT for two years of legalization (after date sales began) and later as .7% (p=0.003, [.003 - .011]).

Alternative Specifications and Robustness Checks

In our first alternate specification, we estimate that the effect of cannabis legalization increased the prevalence of past-month cannabis use of those aged 21 and older by 3.2% between two and four years after legalization, and by 4.3% in the period four to seven years after legalization (Figure S6). In the 12-to-20-year-old age group, there is no significant effect on past-month cannabis use prevalence in any period (Figure S7).

In the time placebo analysis using a randomized legalization date, the date of placebo legalization was set to the year 2011 for all the states that legalized cannabis through 2018. Figure S8 shows that while the coefficient does increase slightly over time, the placebo effect in all periods for the 21 and older age group is insignificant. For the 12-to-20-year-old age group, the coefficients seem to be randomly distributed about the zero value with no appreciable differences or patterns (Figure S9).

Discussion
These results show consistent evidence of an increase in the occurrence of newly incident cannabis use for adults aged 21 years and older, who are allowed to purchase cannabis products in retail shops. The corresponding estimate for the underage population (<21 years) is null, with no support for the idea that occurrence of newly incident cannabis use varied in conjunction with the policy change. In the simple 2x2 DiD model, we estimate an average increase in cannabis use incidence of 0.7 percentage points after recreational cannabis began being legally sold through the year 2019.

To understand the magnitude of these changes, we find it best to compare these changes in annual incidence to the raw incidence rates estimated by the NSDUH (figures S1-S5). Between 2008 and 2019, the overall estimate of newly incident cannabis use in the 21 and older age group, independent of the state, was estimated to be just 0.5%. Thus, an increase in the incidence of 0.7% is more than double the rate at which new users are trying cannabis in this age group.

We suggest that this policy evaluation study might represent an advance in our understanding of the potential results when jurisdictions liberalize their cannabis retail sales policies. First, we focus on occurrence of newly incident cannabis use, separating out potential effects on long-sustained users. The sustained use, which is potentially influenced by CUD, in this population might have been affected little or not at all by retail sale policies if they had created stable supplies via other means (e.g., ‘growing their own’). Our approach also allows for the possibility raised by Cheng and colleagues (2016; 2018) with respect to alcohol and by Montgomery, Vsevolozhskaya, & Anthony with respect to cannabis (2021). That is, there might exist a large pool of law-abiding individuals who would never have used cannabis if retail sales had not been allowed, but who try cannabis once it becomes legal for them to do so.

Prior studies on the associations between liberalizing cannabis policy and cannabis use epidemiology focused on past-month cannabis use prevalence (Gruber et al., 2016; Reed,
2016; Cerdá et al., 2017; Dilley et al., 2019; Kerr, Lui, & Ye, 2018; Everson et al., 2019; Martins et al., 2021; Reed, 2021; Paschall, García-Ramírez, & Grube, 2021), the prevalence of daily or frequent users (Everson et al., 2019; Coley et al., 2021; Martins et al., 2021), and prevalence of CUD (Cerdá et al., 2020; Martins et al., 2021). As such, the importance of understanding changes in cannabis use incidence in response to legalizing recreational cannabis cannot be overstated. Prevalence of use and dependence syndromes and frequency of use are of great public health importance, yet they tell us nothing about whether new users are entering into the population of cannabis users. This study provides an important initial thread of evidence about how liberalized cannabis policies might affect the numbers of newly incident cannabis users who otherwise might never enter the cannabis-using subgroup of a jurisdiction’s population.

Second, this is the first study of which we are aware that has examined the heterogeneity of treatment effects in the years following recreational cannabis legalization. The event study design allows for the estimation of effects by years relative to the passage of the recreational cannabis legislation and the effective dates of implementation. A result has been three important pieces of evidence: 1) Estimated effects of cannabis legalization on incidence of use seems to be dynamic; 2) Estimated effect sizes vary across age strata defined by the legal minimum retail sales age; and 3) Estimated effect size might be zero in the adolescent and transitional adult population. This last piece of evidence might provide some reassurance to policy makers who worry about increased incidence among adolescent populations of the jurisdictions that permit cannabis purchases by adults. To be sure, there almost certainly is some adult-to-adolescent sharing of cannabis products, much as jurisdictions know to be true for alcoholic beverages, tobacco products, and other drugs for which there is a legal minimum purchase age. Nevertheless, the evidence from this study suggests constraints on this form of drug sharing and associated drug exposure opportunities from individuals above the legal minimum age to individuals below the legal minimum age (Wagner & Anthony, 2002). This
epidemiological parameter that, to some extent, seems to be under the control of families and parents of adolescents, and might be influenced by facets of the adolescent behavioral repertoire in each jurisdiction (Chen et al., 2004).

Third, the use of a quasi-experimental DiD design provides some allowance for a causal interpretation of estimated intervention effects. With some noteworthy exceptions (Cerdá et al., 2017; Coley et al., 2021), the evidence published on cannabis policy effects has relied mostly on controlling for observed variables between the populations. The differences between populations among states that have legalized cannabis and those that have not are so vast that it is reasonable to ask whether controlling for any number of observed variables is likely to produce valid estimates. The DiD design constrains unobserved variables within a limited framework of model-based assumptions. Our project included evaluation of some of these often-untested assumptions (e.g., no anticipation; parallel trends).

Lastly, although our estimates of incidence cannot be compared to the findings of other studies, we used the same method to estimate the effect of legalizing recreational cannabis on prevalence. The two studies that used quasi-experimental methods to estimate changes in cannabis use prevalence after recreational cannabis legalization also reported insignificant changes among adolescents (Cerdá et al., 2017; Coley et al., 2021). Our findings on prevalence among adults are in line with those reported by Cerdá et al., Martins et al., and Reed’s more recent findings (2020; 2021; 2021). Perhaps most importantly, our findings also support the seemingly conflicting earlier null findings in this age group (Reed, 2016; Kerr, Lui, & Ye, 2018; Smart and Pacula, 2019). Synthesizing the above findings, we suggest that the increases in the use of cannabis (among both new users and existing) in the adult age group only began increasing after a few years when recreational cannabis shops began sales.

Strengths and limitations
The strengths of this work are the robustness of the estimates, the novelty of the design in this space, and the interpretations that it allows for. Our estimates of the effects of recreational cannabis liberalization on cannabis use incidence by age group were robust to both the check of face validity using the same method to estimate past-month prevalence and the alternate specification using a time-placebo analysis. The use of a DiD event study design moves this field forward by allowing for a dynamic estimate of the causal effect of recreational cannabis legalization on the outcome of choice. As we have demonstrated, it is not reasonable to assume that the effect of cannabis legalization is homogenous over time, especially not if the period includes the time before cannabis sales began. Therefore, future research on the effects of RCL should allow for effect heterogeneity. Although this is only one study, from which conclusions should not be drawn, this design allows for a visualization of the policy lag effect, about which much has been written (Cheng et al., 2019; Hall & Weier, 2015). We see that the effect is not linear and is begging to take a sigmoid shape with the increases in incidence and prevalence beginning to plateau, although more data is needed to confirm the trend.

Some limitations of this work include the self-report nature of the data, differing legal statuses of the drug under study, the sensitivity of the findings to different definitions of the study period, and an inability to control for sub-state level recreational cannabis legality. First-time cannabis use between 1 and 12 months ago was self-reported, leading to potential recall bias. However, the data collection method has been validated in previous methodological studies. The legality of cannabis use is, of course, different between the states in this sample. This raises the concern of some differential response bias in responding to questions about cannabis use, however, the assessment was conducted using confidential standardized audio computer-assisted self-interview modules which have been shown to reduce this bias.

The limitation regarding the definition of the study period is important, specifically to our estimate of the ATT. When including the two-year period immediately after legalization (before
sales began) in the treatment period, the effect is insignificant. However, using a study design that allows for dynamic treatment effects and having estimates that are robust to alternate specifications may make this more of a feature of the study than a limitation. Given that the time-specific estimate of the causal effect in this two-year window is also insignificant, these two data points combine to form a strong argument that the effect of cannabis legalization is driven by the opening of outlets where recreational cannabis is sold.

Another limitation of this work at the state level is that many counties and municipalities within states that have legalized recreational cannabis have chosen to ban the sale or cultivation of cannabis within that sub-state area. For example, in Washington State, 15% of counties and 55% of municipalities have prohibited the sale of cannabis (MRSC, 2019) while in California, 69% of counties and 70% of cities prohibit the sale (Staggs et al., 2019). Like the null finding between the date of legalization and effective dates of cannabis sales, we expect that estimates of the effects of legalizing recreational cannabis at the state level are diminished by incorporating incidence for many individuals who reside in areas where recreational cannabis is effectively in this pre-implementation state. This sub-group heterogeneity is averaged out in our state-level estimates, and while a county-specific analysis is beyond the scope of this study, future research should seek to replicate this analysis at the county level.

Conclusion

This study contributes novel estimates of how liberalized cannabis policies within US jurisdictions might have influenced occurrence of newly incident cannabis use in the underage (<21 years) populations and in the adult population, now allowed to purchase cannabis products in retail outlets. Cannabis policy liberalization continues to be a contentious issue in the national political landscape with different risks and benefits described for all potential paths forward into the future. Policy-makers and the voters who elect these policy-makers cannot make the best judgments in the absence of evidence, unless their decisions are to be based on
potentially erroneous prejudices or beliefs. The evidence from this study is not perfect, but the estimates provide an evidence base that can be judged in relation to an important question – namely, should we worry about underage cannabis use when adults are allowed to buy cannabis products in retail shops? And might the occurrence of adult-onset newly incident cannabis use increase if this policy change is made? The answer to the first question, at this point, seems to be that, to date, there has been no policy influence on cannabis incidence in the underage adolescent population after adults have been allowed to buy cannabis in retail shops. The answer to the second question, at this point, seems to be that, to date, there might be a tangible uptick in the occurrence of newly incident cannabis use among adults who otherwise might never have tried cannabis. We are hopeful that voters, policymakers, and public health officials can use this evidence as they forecast what might change if cannabis policies are liberalized to permit adult purchases from retail cannabis shops in their jurisdictions.
References

Table 1. Characteristics of the U.S. Population Under Study from the U.S. National Surveys on Drug Use and Health.

<table>
<thead>
<tr>
<th>Gender</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>47.8%</td>
<td>322636</td>
</tr>
<tr>
<td>Male</td>
<td>52.2%</td>
<td>351885</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>59.9%</td>
<td>404314</td>
</tr>
<tr>
<td>Black</td>
<td>12.8%</td>
<td>86272</td>
</tr>
<tr>
<td>Native American</td>
<td>1.5%</td>
<td>10095</td>
</tr>
<tr>
<td>Native Hawaiian / Other Pacific Islander</td>
<td>0.5%</td>
<td>3380</td>
</tr>
<tr>
<td>Asian</td>
<td>4.1%</td>
<td>27907</td>
</tr>
<tr>
<td>More than one race</td>
<td>3.6%</td>
<td>24301</td>
</tr>
<tr>
<td>Hispanic</td>
<td>17.5%</td>
<td>118252</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-17 Years Old</td>
<td>28.1%</td>
<td>189789</td>
</tr>
<tr>
<td>18-25 Years Old</td>
<td>29.0%</td>
<td>195650</td>
</tr>
<tr>
<td>26-34 Years Old</td>
<td>12.7%</td>
<td>86000</td>
</tr>
<tr>
<td>35 or Older</td>
<td>30.1%</td>
<td>203082</td>
</tr>
</tbody>
</table>

Past month cannabis use prevalence

| Did not use in the past month | 88.7% | 597984 |
| Used within the past month | 11.3% | 76537 |

Past year cannabis abuse or dependence

| No/Unknown | 97.1% | 654930 |
| Yes | 2.9% | 19591 |

Unweighted Sample Total 100.0% 674521
Figure 1. Effect of time since cannabis legalization on cannabis incidence in the 21 and older age group with 95% confidence intervals.
Figure 2. Effect of time since legalization on incidence in 12-to-20-age-group with 95% confidence intervals.