Antibody and T cell responses to SARS-CoV-2 mRNA vaccines during maintenance therapy for immune-mediated inflammatory diseases

Roya M. Dayam, PhD*1, Jaclyn C. Law, BSc*2, Rogier L. Goetgebuer, MD3, Gary Y. C. Chao, PhD2, Kento T. Abe, BSc1,4, Mitchell Sutton, MSc3, Naomi Finkelstein, MD5, Joanne M. Stempak, MSc5, Daniel Pereira, BSc1, D. Croitoru, MD6, Lily Acheampong, MSc,7 Saima Rizwan, MSc1, Kladia Rymaszewski, BSc1, Raquel Milgrom, MD3, Darshini Ganatra, PhD5, Nathalia V. Batista, PhD2, Melanie Girard, MSc2, Irene Lau, MSc2, Ryan Law, MSc2, Michelle W. Cheung, BSc2, Bhavisha Rathod, BSc1, Julia Kitaygorodsky, BSc1,4, Reuben Samson, BSc1,4, Queenie Hu, PhD1, Nigil Haroon, MD5, Robert D. Inman, MD5, Vincent Piguet, MD6,7, Vinod Chandran, MD5,8, Mark S. Silverberg, MD1,3, Anne-Claude Gingras, PhD1,4, Tania H. Watts, PhD2

*These authors contributed equally
^Joint senior authorship

1. Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Ontario, Canada
2. Department of Immunology, University of Toronto, Toronto, Ontario, Canada
3. Zane Cohen Centre for Digestive Diseases, Division of Gastroenterology, Mount Sinai Hospital, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
4. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
5. Schroeder Arthritis Institute, Krembil Research Institute, University Health Network; Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
6. Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Canada
7. Division of Dermatology, Department of Medicine, Women’s College Hospital, Toronto, Canada
8. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada

Corresponding authors: Vincent Piguet, MD, PhD, Division of Dermatology, Department of Medicine; Women’s College Hospital; 76 Grenville St, Office 6425; Toronto, Ontario M5S 1B2; Canada, Email: vincent.piguet@utoronto.ca; Vinod Chandran, MD, PhD, Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON M5T 0S8; Email: vinod.chandran@uhnresearch.ca; Mark S. Silverberg, MD, PhD, Division of Gastroenterology, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Email: Mark.Silverberg@sinahealth.ca; Anne-Claude Gingras, PhD, Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, ON Canada M5G1X5, Email: gingras@sinahealth.ca; Tania H. Watts, PhD (primary corresponding author for submission) Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada, M5S 1A8; tel. 416-978-4551; Email:tania.watts@utoronto.ca.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background
Limited information is available on the impact of immunosuppressants on COVID-19 vaccination in patients with immune-mediated inflammatory diseases (IMID). This study investigated antibody and T cell responses to SARS-CoV-2 mRNA vaccines in IMID patients undergoing immunomodulatory maintenance therapy.

Methods
This observational cohort study examined the immunogenicity of SARS-CoV-2 mRNA vaccines in adult patients with inflammatory bowel disease, rheumatoid arthritis, ankylosing spondylitis or psoriatic disease, with or without maintenance immunosuppressive therapies. T cell and antibody responses to SARS-COV-2, including neutralization against SARS-CoV-2 variants were determined pre-vaccination and after 1 and 2 vaccine doses.

Findings
We prospectively followed 150 subjects, 26 healthy controls, 9 IMID patients on no treatment, 44 on anti-TNF, 16 on anti-TNF with methotrexate/azathioprine (MTX/AZA), 10 on anti-IL-23, 28 on anti-IL-12/23, 9 on anti-IL-17, and 8 on MTX/AZA. Most patients showed increased antibody responses from dose 1 to dose 2, with decreases apparent by 3 months post dose 2, albeit with considerable variability within groups. Overall, T cell responses were not consistently different between groups; however, antibody levels and neutralization efficacy in the anti-TNF treated group was lower than controls and waned substantially by 3 months post-dose 2.

Implications
These findings support the need for a third dose of mRNA vaccine and for continued monitoring of immunity over time.

Funding
Funded by a donation from Juan and Stefania Speck and by grants VR-1 172711, VS1-175545, FDN-143250, GA1-177703 and GA2- 177716, from Canadian Institutes of Health Research and COVID Immunity task force and by Sinai Health Foundation.
Research in Context

Evidence before this study

Based on the published literature, previous studies on immunity to SARS-CoV-2 mRNA vaccines in patients receiving glucocorticoids, methotrexate, anti-TNF, or B-cell depleting therapy have shown that these patient groups may have attenuated serological responses. A small study of 23 IMID patients showed that patients on anti-TNF agents have greater waning of humoral immunity compared to healthy controls. This was recently confirmed in a larger study still in preprint form. Data regarding the cellular immune responses to vaccination are still relatively scarce and conflicting. Several studies have shown unimpaired T cell responses to SARS-CoV-2 vaccines in immunocompromised patients compared to healthy individuals, however this has not been consistently observed.

Added value of the study

Although IMID patients treated with biologic or anti-metabolite therapies in our cohort are not considered to be significantly immunosuppressed, there has been concern as to whether they would mount full responses to SARS-CoV-2 vaccines. Our analyses show that all the participants in our study seroconverted for spike/RBD after 2 doses of vaccine and mounted T cell responses above the limit of detection. However, there was a wide range of responses within groups, and we observed significantly reduced antibody levels and neutralization capacity of wild type and variant-specific lentiviruses in the anti-TNF treatment group, with substantial waning of these antibody responses by 3 months after second vaccine dose. T cell cytokines were not consistently different between groups, although after the first dose of vaccine some groups showed reduced IFN-γ responses. T cell responses in general increased with each dose and decreased again by 3 months after the second dose, largely correlating with antibody responses. Although most studies follow T cell responses using IFN-γ or IL-2, our study monitored 9 secreted molecules and found that IL-4, an important cytokine for antibody responses and B cell memory, is substantially enhanced by two doses of vaccine. We observed higher levels of antibody and neutralizing titers as well as T cell IL-4 production in response to mRNA-1273 as compared to BTN162b vaccines in the study group overall. Our study is also of interest, as the median time interval between vaccine dose 1 and dose 2 in our cohort was 60.5 days, differing from the standard interval, consistent with Canadian vaccine policy at the time.

Implications of the available evidence

This study highlights the need for third doses of mRNA vaccines in patients receiving anti-TNF treatment and for continued monitoring for waning immunity. The study also suggests that a mRNA-1273 booster may be more immunogenic in this patient cohort due to its induction of higher antibody levels, higher neutralization titers and increased T cell IL-4 after 2 doses of vaccine.
Introduction

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a serious health crisis.\(^1\)\(^2\) COVID-19 infections can vary from asymptomatic or mild through to severe disease, with lethal complications such as progressive pneumonia, acute respiratory distress syndrome and organ failure driven by hyperinflammation and a cytokine storm syndrome. Patients with immune-mediated inflammatory diseases (IMID), such as inflammatory bowel disease (IBD), psoriatic disease (PsD), rheumatoid arthritis (RA) and spondyloarthritis (SpA), are frequently treated with immunosuppressants and biologics and therefore may be at increased risk for COVID-19.\(^3\)\(^4\) Age and underlying comorbidities as well as the use of some immunosuppressants have been shown to be risk factors for developing COVID-19 among IMID patients.\(^3\)\(^5\) Glucocorticoids and combination therapy of immunomodulators and biologics have been shown to increase the risk of severe outcomes of COVID-19.\(^4\)\(^6\)

Although many IMID patients mount adequate serological responses to vaccination after two doses of an mRNA vaccine, a proportion of IMID patients show reduced responses compared to healthy controls,\(^7\)\(^-\)\(^13\) as confirmed in recent meta-analyses.\(^14\)\(^15\) In particular, patients receiving glucocorticoids, methotrexate, anti-TNF and B-cell depleting therapy may have attenuated serological responses to COVID-19 vaccines.\(^7\)\(^11\)\(^13\)\(^14\)\(^16\) A small study of 23 IMID patients showed that patients on anti-TNF therapy have greater waning of humoral immunity compared to healthy controls,\(^13\) as confirmed in a larger study still in preprint.\(^17\)

Data regarding the cellular immune responses to vaccination are still relatively scarce and conflicting. Several studies have shown unimpaired T cell responses to SARS-CoV-2 vaccines in immunocompromised patients compared to healthy individuals,\(^13\)\(^18\)\(^-\)\(^21\) though a follow-up study showed that a proportion of IMID patients on immunosuppression had reduced T cell responses to a second dose of vaccine.\(^22\) In another study, methotrexate limited CD8\(^+\) T cell responses to vaccination in a cohort of IMID patients.\(^23\) To gain further insight into immunity to mRNA vaccines in IMID patients on different maintenance therapies, we investigated serological and T cell responses against SARS-CoV-2 before and after one or two doses of mRNA vaccine. The results show substantial variation in responses within different treatment groups. Notably, we observed decreased serological responses in anti-TNF treated patients, including substantial waning by 3 months post second vaccine dose. While some T cell responses were near maximal by 1 dose of vaccine, T cell interleukin (IL)-4 increased substantially after 2 vaccine doses and correlated with humoral responses. These data highlight the need for third doses of SARS-CoV-2 mRNA vaccines and for continued monitoring of responses.
Methods

Study design and participants

Patient recruitment: In this observational multicenter cohort study, we investigated the IMMune resPonse After COVID-19 vaccination during maintenance Therapy in immune-mediated inflammatory diseases (IMPACT). IMID patients being treated at Mount Sinai Hospital, University Health Network/Toronto Western Hospital or Women’s College Hospital in Toronto, Canada who were receiving BNT162b (Pfizer-BioNTech) and/or mRNA-1273 (Moderna) SARS-CoV-2 vaccines were recruited between January 8 and October 4, 2021. It should be noted that in Canada the vaccine schedule between dose 1 and 2 was increased from the standard 21 or 28 days to allow faster roll out of dose 1 and as a result, in our cohort there was a median of 60.5 days, IQR [45.5-72] between the 2 doses.

Inclusion criteria for this study were adult IMID patients being treated with anti-TNF therapies (infliximab, adalimumab, golimumab, etanercept or certolizumab pegol), anti-IL-17 therapy (ixekizumab, secukinumab), methotrexate (MTX) or azathioprine (AZA) monotherapy, combination therapy of MTX/AZA plus anti-TNF therapies, anti-IL-12/23 (ustekinumab) therapy, anti-IL-23 therapy (guselkumab, risankizumab) or no immunosuppressants. A group of healthy volunteers, without an IMID and without immunosuppression were also recruited as a control cohort. Excluded were individuals younger than 18 years, those who had a past SARS-CoV-2 infection, patients on vedolizumab or oral steroids and those receiving COVID-19 vaccines other than mRNA.

This study was approved by the ethics boards of the University of Toronto (REB protocol #27673), Mount Sinai Hospital/Sinai Health System (MSH REB #21-0022-E), University Health Network-Toronto Western Hospital division (REB # 21-5096) and Women’s College Hospital (REB approval 2021-0023-E). Written informed consent was obtained from all participants prior to participation.

Sample and data collection: Patient information and medical history were collected at each visit. Participation was terminated when all the blood samples were collected or when a patient opted out. Clinical data included basic demographics (age, sex, weight, height), relevant past medical and surgical history, and medication use at inclusion. Questions about prior COVID-19 diagnosis or exposure, vaccination history and side effects, changes in medical history or medication and disease activity were collected at each study visit. Blood samples were drawn from the participants at up to 4 time points: T1 = pre-vaccination, T2 = median 26 days after dose 1, T3 = median 16 days after dose 2 and T4 = median 106 days after dose 2. Peripheral blood samples were collected in BD Vacutainer® sodium heparin tubes for plasma antibody assessment and peripheral blood mononuclear cell (PBMC) separation. All samples were labelled with unique patient identifiers. Researchers were blinded to the identity and clinical details of the subjects. Plasma samples were stored at -80°C. PBMCs were isolated by density centrifugation using Ficoll-Paque PLUS (GE Healthcare). PBMCs were cryopreserved in 10% DMSO in FBS (Wisent Bioproducts) and stored in liquid nitrogen at a minimum of 2x10^6 mononuclear cells per vial.
Automated ELISAs
Frozen plasma was thawed and treated with 1% final Triton X-100 for one hour. Samples were analyzed by automated ELISA for IgGs to the spike trimer (spike), the spike receptor binding domain (RBD), and the nucleocapsid (NP; all antigens and secondary antibodies are produced in mammalian cells and were provided by Dr. Yves Durocher at the National Research Council of Canada, NRC) as previously reported.24 Luminescence values for each sample/assay were normalized to synthetic standards profiled in a 4-fold dilution series on each plate (Human anti-nucleocapsid IgG, #A02039, clone HC2003, GenScript, Piscataway, NJ, USA and humanized anti RBD/spike IgG: VHH72hFc1X7; NRC). The synthetic references, as well as a pool of positive samples from convalescent patients with high IgG level to all three antigens and negative controls (pre-COVID era samples, blank and IgG, 1 µg/ml; #I4506, Millipore-Sigma, Oakville, ON, Canada) were also added to each plate in a 4-fold dilutions series to enable quality controls across the plates and batches of samples. For each assay, log10 raw values and relative ratio of samples were compared to prior runs to confirm that the sample density distribution is within range; automated scripts, blinded to sample description and meta-data were used to extract relative ratios to the synthetic references. The assay was calibrated to the World Health Organization (WHO) reference (National Institute for Biological Standards and Control, NIBSC, Code 20/136); a table of conversion of relative ratios for each assay to Binding International Units/ml (BAU/ml) is provided (suppl. table S1). Seropositivity was defined based on both receiver operating characteristic (ROC) analysis of negative (pre-COVID era) and positive (PCR confirmed COVID-19 cases) samples (<1% false positive rate threshold) and on deviation from the log means of the negative controls (≥ 3 standard deviations). In some of the figures, the median convalescent values for serum samples from 340 PCR confirmed COVID-19 cases 21–115 days after symptom onset24 is displayed as a reference point. Since the assays saturate in healthy controls after two doses of vaccine, all samples were processed both at the dilution used for determination of seroconversion, and a 1/16 further dilution for evaluation of the quantitative differences in antibody responses.

Spike-pseudotyped lentivirus neutralization assays
The lentivirus neutralization assay and the generation of spike pseudotyped lentivirus particles were performed as described previously.25 Briefly, the lentivirus particles were generated by co-transfection in HEK293TN cells (System Biosciences, Palo Alto, CA, USA, LV900A-1) of the Wuhan Hu-1 sequence with a D614G mutation (wild-type SARS-CoV-2), or the variants B.1.617.2 (Delta), B.1.351 (Beta), and P.1 (Gamma) constructs with packaging (psPAX2, Addgene, Watertown, MA, USA, #12260) and reporter (luciferase expressing pHAGE-CMV-Luc2-lRES-ZsGreen-W, provided by Drs. Jesse Bloom and Katharine Crawford) constructs. Heat-inactivated (30 min at 56°C) plasma was serially diluted and incubated with the lentiviral particles (1h, 37°C) prior to addition to cells (HEK293T-ACE2/TMPRSS2) for 48h; luminescence signals were detected with the Bright-Glo Luciferase assay system (Promega, E2620) on an EnVision multimode plate reader (Perkin Elmer. GraphPad Prism 9 was used to calculate 50% neutralization titer (ID50) using non-linear regression. The WHO International Standard (20/136) was evaluated in this assay, and a mean ID50 value of 5744 corresponded with 1000 IU/ml.
T cell cytokine secretion assay

Cellular immune responses to COVID-19 vaccination were determined by measuring the release of cytokines and cytotoxic molecules in cell culture supernatants following stimulation with peptide arrays using the LEGENDplex multiplex bead assay as previously described. Briefly, 1x10^6 PBMCs were seeded per well in 96-well round bottom plates with 1 µg/ml each of SARS-CoV-2 spike or Nucleoprotein (NP) peptide pools (JPT peptide technologies, GMBH, Berlin, Germany). PBMCs were cultured with anti-CD28 (clone 9.3, Bio X Cell) and anti-CD3 (clone OKT3, Bio X Cell) as a positive control, or with equimolar DMSO as a negative control. Samples with no response to positive control were not included in the analysis. After 48h incubation at 37°C, cell culture supernatants were collected and stored at -80°C. Release of cytokines and cytotoxic molecules in the supernatants were analyzed using LEGENDplex multiplex cytokine bead assay (BioLegend) as per manufacturer’s instructions. Samples were acquired on the BD LSR Fortessa flow cytometer using BD FACSDiva software. Data are reported as square root (sqrt) transformed values in pg/ml after subtracting background signal from wells containing PBMCs cultured with DMSO containing media alone, as indicated by “Δ”.

Statistical analysis

T cell cytokine secretion data were analyzed using the LEGENDplex™ Data Analysis Software Suite and pandas data analysis library for Python and GraphPad Prism v9.3.1al. Antibody data were analyzed with R (version 4.1.1) using package ggplot2 and custom R scripts. GraphPad Prism v 9.2.0 was used to analyze the neutralization and antibody data. Longitudinal multivariate analysis on antibody data and T cell cytokine secretion was performed using linear mixed models. Models controlled for baseline T cell/antibody data and included an interaction term between time point and the variable of interest. All multivariate analysis performed using R (version 4.1.1) and SAS 9.4.
Results

Study population and design

Of 177 initially recruited subjects, 150 met the inclusion criteria for this study (see methods). PBMCs and plasma were collected for T cell and antibody responses at up to 4 time points, before and after vaccination with mRNA vaccines (figure 1A). In our cohort, the median time between dose 1 and dose 2 of the mRNA vaccines was 60.5 days, IQR [45.5-72]. Baseline characteristics of the study subjects are shown in Table 1. Of note, age and BMI, but not vaccine interval, were significantly different between groups and multivariate analysis of the data took these differences into account (suppl. table S2-S4). The patients ultimately analyzed included 26 healthy controls, 9 IMID patients not on treatment, 44 IMID patients on anti-TNF, 16 on anti-TNF with MTX/AZA, 10 on anti-IL-23, 28 on anti-IL-12/23, and 9 on anti-IL-17 and 8 on MTX/AZA.

Antibody responses are reduced in anti-TNF treated subjects and wane over time

Antibody responses were measured by automated ELISA. For the entire cohort, antibody responses increased from T1 to T2 to T3, and decreased by T4 (suppl. fig. S1A). Responses to NP were used to rule out exposure to SARS-CoV-2 (suppl. fig. S1B). After the first dose, 97.8% and 80% of participants seroconverted to spike and RBD IgG, respectively, and the relative ratios were greater than the medians of the convalescents in 44.2% and 14.2% of the participants (figure 1B). Seroconversion increased to 100% for spike and 99.2% for RBD after the second dose and the anti-S and anti-RBD IgG levels were greater than the median levels of convalescent patients in 97% and 86.6% of participants, with a median relative ratio of 1.91 for spike and 1.55 for RBD. Analysis of antibody responses by vaccine type showed that two doses of the mRNA-1273 vaccine elicits a stronger humoral response than BNT162b, with mixed mRNA vaccines inducing significantly higher levels of anti-spike/RBD IgG than two doses of BNT162b (suppl. fig. S2A). Although all data were included in the figures, as the majority of the cohort was vaccinated twice with BNT162b2, univariate statistical analysis between treatment groups was performed only on samples from the BNT162b/BNT162b participants. Among the BNT162b/BNT162b cohort, males had a slightly lower response to RBD than females, whereas antibody response differences by age were not significant (suppl. fig. S2B, C). Participants undergoing anti-TNF, and anti-TNF+MTX/AZA therapies had significantly lower levels of antibodies than those in the healthy control, IMID-untreated, and anti-IL-12/23 groups after the first dose of vaccine (figure 1B and suppl. fig. S1B). Comparison between the groups after the second dose (T3) indicates that for the BNT162b/BNT162b group, participants taking anti-TNF had significantly lower levels of anti-spike IgG than those in the healthy control, IMID-untreated, and anti-IL-12/23 groups (figure 1B). Multivariate analysis of treatment groups controlling for age/sex/BMI confirmed the deficits in anti-RBD and anti-spike in the anti-TNF group after the second dose, whether the entire cohort or only the BNT162b/BNT162b participants were evaluated (suppl. table S2).

Spike and RBD antibody levels decreased by T4 (median 106 days post-dose 2), with a more rapid decline in anti-RBD levels (figure 1B). Only 66.3% and 49.4% of the participants show relative ratios greater than the medians of
the convalescents for spike and RBD, respectively. When data were ranked by study group, we observed that the anti-TNF, and anti-TNF+MTX/AZA therapy groups were associated with a statistically significant drop in anti-spike and anti-RBD IgG levels compared to the healthy control, IMID-untreated, and anti-IL-12/23 groups (figure 1B).

IMID patients undergoing anti-TNF therapy show significantly lower neutralization responses than other groups

We performed at T3 spike-pseudotyped lentiviral neutralization assays using the wild-type strain and B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) variants of concern (VOCs). Samples neutralized the wildtype more efficiently than the VOCs tested, but participants on anti-TNF and anti-TNF+MTX/AZA showed significantly lower neutralization response (figure 2A & suppl. fig. S3). Our data also indicate that a subset of participants with high levels of anti-spike/RBD IgG failed to neutralize viral entry. Spearman’s correlation coefficients indicated moderate correlations ($\rho = 0.59-0.67$) between anti-spike/RBD IgG levels and lentiviral neutralization (figure 2B and suppl. fig. S3B). Overall, these data agree with the ELISA data, demonstrating that anti-TNF treated groups have weaker neutralization responses to mRNA vaccines.

IMID patients show increased T responses to successive vaccine doses, with some waning after dose 2

To assess memory T cell responses to SARS-CoV-2, PBMCs were stimulated with spike or NP peptide pools for 48hrs. A quantitative multiplex bead-based immunoassay was used to measure the levels of 9 secreted cytokines and cytotoxic molecules in the supernatants in response to spike peptide stimulation and results are reported after subtracting the values from negative control wells. The response to NP was used as an additional control to detect memory responses to previous virus exposure. NP-specific responses pre-vaccination were minimal, consistent with study subjects being SARS-CoV-2 naïve and suggesting minimal impact of cross-reactive T cells from previous coronavirus infections (suppl. fig. S4). The cytokines IFN-γ, IL-2, IL-17A and IL-4 were increased over baseline (T1) after one or two doses of mRNA vaccine in all patient groups (T2 and T3), with the response predominantly of the Th1 phenotype as characterized by high levels of IFN-γ and IL-2 (figure 3, suppl. fig. S5). Molecules associated with cytotoxicity such as granzyme (Gzm) A, GzmB, perforin and sFasL were also increased over baseline following one dose of vaccine and did not consistently increase with the second dose (figure 4, suppl. fig. S5). TNF was not detected over baseline (data not shown). Most study groups showed a wide range of responses to spike peptide pools after first or second vaccine doses (figures 3, 4, suppl. fig.S5) When multivariate analysis was performed either on the entire cohort or the BNT162b/BNT162b group only, after controlling for age/sex/BMI, we observed deficits in IFN-γ production in IMID untreated, anti-TNF, MTX/AZA, anti- IL-12/23 and anti-IL-23 groups relative to healthy controls after dose one, which largely recovered by dose two (suppl. table S2). When results from all subjects were pooled, there was a trend towards increased responses from first to second dose, with IL-2 showing significant increases, and IL-4 decreased by T4 (suppl. fig. S6AB). We also noted higher IL-4
responses following vaccination with mRNA-1273 compared to BNT162b or mixed doses (suppl. fig. S7A). Although T cell responses overall were similar based on age or sex (suppl. fig. S7B,C), multivariate analysis revealed lower IL-4 and IFN-γ responses in the over 60 group (suppl. table S3).

Levels of secreted IL-2 were positively correlated with plasma IgG against RBD (r=0.50) and whole spike trimer (r=0.51). Similarly, there was a positive correlation between IL-4 and plasma IgG against RBD (r=0.58) and whole spike trimer (r=0.59), and between IFN-γ and RBD IgG (r=0.36) and whole spike trimer IgG (r=0.36) (figure 5).

Discussion

Here we studied a cohort of patients with inflammatory bowel disease, rheumatoid arthritis, ankylosing spondylitis or psoriatic disease, treated with biologics (anti-TNF, anti-IL-12/23, anti-IL-23, anti-IL-17) or antimetabolites to assess their response to COVID-19 mRNA vaccines. Although this group is not considered to be significantly immunosuppressed, there has been concern as to how their treatments could impact the response to the vaccines. Although there was considerable variability within groups, 100% of participants seroconverted for spike after 2 doses of vaccine. There was also a clear indication of higher responses to mRNA-1273 vaccine compared to BNT162b vaccine with respect to antibody levels and neutralization titers, as well as T cell IL-4 production. Of concern, antibody levels and neutralization activity were lower in the anti-TNF treated study subjects even after two doses of vaccine. Moreover, the response to two doses of mRNA vaccine in anti-TNF treated patients showed substantial waning by 3 months after dose two. These findings are in agreement with a recent small study from Geissen et al. who showed decreased responses and waning immunity with anti-TNF agents in 23 IMID patients at 6 months post dose 2, and also confirmed with a larger cohort in a recent pre-print. In our study, the vaccine dose interval was a median of 60.5 days rather than the standard 21 or 28 days used in the other studies, which could impact the results. Some limitations of our study are the small numbers of study subjects in some of the groups and grouping together of drugs by class.

T cell responses, including IL-4, IL-2 and IFN-γ production, showed a significant correlation with RBD and spike specific antibody responses. There was substantial induction of T cell cytokines and release of cytotoxic molecules following spike peptide pool stimulation of PBMCs collected following one dose of vaccine. Some subgroups and parameters showed increases in T cell cytokines with two doses. Multivariate analysis of the data showed that several groups had decreased IFN-γ after dose 1 of vaccine, but these deficits were largely corrected following the second vaccine dose. When data were pooled for all subjects, it was apparent that the IL-4 response was particularly dependent on 2 doses of vaccine and showed a waning trend 3 months later. As IL-4 is an important mediator of B cell proliferation, which in turn impacts antibody levels and B cell memory, the lower IL-4 response after 1 dose as compared to 2 doses of vaccine highlights the need for second doses to maximize B cell responses.

Taken together, our study shows generally robust T cell responses in most patient groups treated with immunosuppressants or biologics after 1 or 2 doses of mRNA vaccine, improving somewhat with a second dose but
with some attenuation by 3 months after the second dose. We observed some deficits in antibody responses even after two doses of vaccine, particularly in the anti-TNF treated groups, with waning immunity by three months after dose two. These findings highlight the need for a third vaccine dose, particularly in patients undergoing treatment with TNF inhibitors. As there is limited information available about the duration of immune memory induced by mRNA vaccines, it will also be important to follow these responses for longer time periods and to evaluate the impact of additional vaccine doses in this cohort as well as the possible contribution of natural infection to persistence of immune response.

Contributors

MSS and THW conceived the study and obtained funding.

ACG and THW supervised the laboratory assays, analyzed data, acquired funding, and wrote the manuscript.

RDI, NH, VP, VC and MSS contributed to study design, acquisition of funding, supervised clinical coordinators, contributed to data interpretation and manuscript editing.

RMD performed neutralization assays, analyzed all antibody data, conducted statistical analysis, prepared figures, and wrote the manuscript.

JCL designed and performed T cell assays, analyzed all T cell data, conducted statistical analysis, prepared figures, and wrote the manuscript.

RLG contributed to study conception and design, data analysis, literature review, and wrote manuscript.

GYCC provided overall project management including patient recruitment and validation of data records.

MS conducted statistical analysis.

NVB, MG, IL, RL, MWC assisted with PBMC preparation and/or T cell experiments.

BR was responsible for sample intake and ELISA assays.

RS and QH generated and titrated the lentiviral stocks and optimized the neutralization assays for VOCs.

KTA and JK wrote scripts for data analysis of the antibody data and generated figures.
NF contributed to patient recruitment, literature review and manuscript preparation.

DC contributed to patient recruitment.

JS, DP, LA, SR, RM, KR, DG contributed to study coordination, and patient recruitment.

Declaration of interests

Dr Inman has served as consultant for Abbvie, Janssen, Lilly, Novartis and has received research funding support from Abbvie and Novartis.

Dr. Piguet has no personal financial ties with any pharmaceutical company. He has received honoraria for speaker and/or advisory board member roles from AbbVie, Almirall, Celgene, Janssen, Kyowa Kirin Co. Ltd, LEO Pharma, Novartis, Pfizer, Sanofi, UCB, and Union Therapeutics. In his role as Department Division Director of Dermatology at the University of Toronto, Dr. Piguet has received departmental support in the form of unrestricted educational grants from AbbVie, Bausch Health, Celgene, Janssen, LEO Pharma, Lilly, L’Oréal, NAOS, Novartis, Pfizer, Pierre-Fabre, Sandoz, and Sanofi in the past 36 months.

Dr. Chandran has received research grants from AbbVie, Amgen and Eli-Lilly and has received honoraria for advisory board member roles from AbbVie, Amgen, BMS, Eli Lilly, Janssen, Novartis, Pfizer and UCB. His spouse is an employee of AstraZeneca.

Dr Silverberg has received research support, consulting fees and speaker honoraria from Abbvie, Janssen, Takeda, Pfizer, Gilead and Amgen.

All other authors have no conflicts to declare.

Data sharing

De-identified data will be made available by the authors upon request.

Acknowledgements

We thank Juan and Stefania Speck for their generous donation to the University of Toronto for this study. We thank Drs. Jesse Bloom and Katharine Crawford for the initial spike lentiviral construct, and Dr. W Rod Hardy from CoVaR-Net for the variant lentiviral constructs. All antigens and protein reagents for the automated ELISAs were a kind gift from Dr. Yves Durocher at the National Research Council of Canada (NRC) generated within the NRC’s Pandemic Response Challenge Program. We thank all members of the serology team at the Network Biology Collaborative Centre for help with ELISA assay development and automated ELISA processing, and in particular
Drs. Karen Colwill and Adrian Pasculescu for providing the BAU/ml conversion table. We thank Birinder Ghumman for technical assistance and Nathalie Simard and Janine Charron for flow cytometry support.

Additional funding for this study was provided by Canadian Institutes of Health (CIHR) grants VR-1 172711 and VS1-175545 (T.H.W. and A.C.G), FDN-143250 (T.H.W.), GA2- 177716 (V.C., A.C.G., T.W.), GA1-177703 (A.C.G.) and the CIHR rapid response network to SARS-CoV-2 variants, CoVaRR-Net (to A.C.G.). Funding for initial assay development in the Gingras lab was provided through generous donations from the Royal Bank of Canada and the Krembil Foundation to the Sinai Health System Foundation. The calibration of the automated assays was supported notably through the COVID-19 Immunity Task Force (CITF). The robotics equipment used is housed in the Network Biology Collaborative Centre at the LTRI, a facility supported by the Canada Foundation for Innovation, the Ontario Government, and Genome Canada and Ontario Genomics (OGI-139). Anne-Claude Gingras is the Canada Research Chair in Functional Proteomics and the lead of the functional genomics and structure-function pillar of CoVaRR-Net. Tania Watts holds the Canada Research Chair in anti-viral immunity at the University of Toronto. Vinod Chandran is supported by a supported by a Pfizer Chair Research Award, Rheumatology, University of Toronto, Canada. Jaclyn C. Law was supported by an Ontario Graduate Scholarship. Kento T. Abe and Melanie Girard were supported by CIHR CGS-D studentships and Julia Kitaygorodsky is supported by a National Science and Engineering Research of Canada studentship.
References

medRxiv preprint doi: https://doi.org/10.1101/2021.01.26.22269856; this version posted January 28, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Table 1. Characteristics of study participants at baseline and vaccination interval between two doses of an mRNA vaccine

<table>
<thead>
<tr>
<th></th>
<th>control</th>
<th>untreated</th>
<th>Anti-TNF agents</th>
<th>MTX/AZA + Anti-TNF agents</th>
<th>anti-IL-23 agents</th>
<th>Anti-IL-12/23 agents</th>
<th>Anti-IL-17 agents</th>
<th>MTX/AZA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=26</td>
<td>n=9</td>
<td>n=44</td>
<td>n=16</td>
<td>n=10</td>
<td>n=28</td>
<td>n=9</td>
<td>n=8</td>
</tr>
<tr>
<td>IMID*</td>
<td>N/A</td>
<td>9</td>
<td>30</td>
<td>10</td>
<td>0</td>
<td>27</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>IBD</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PsA</td>
<td>0</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>RA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[median years [IQR]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>16 (62)</td>
<td>5 (56)</td>
<td>18 (41)</td>
<td>8 (50)</td>
<td>5 (50)</td>
<td>13 (46)</td>
<td>6 (67)</td>
<td>4 (50)</td>
</tr>
<tr>
<td>[male (%)]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[median kg/m2 [IQR]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[median days [IQR]]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^ indicates significant differences (p < 0.05)
*multiple IMIDs per patient possible.
*Kruskal Wallis test.
**1 patient in this study group was also on methotrexate.
IMID; immune mediated inflammatory disease,
TNF; tumor necrosis factor alpha,
MTX, methotrexate;
AZA, thiopurine,
IL; interleukin,
n; number,
N/A; not applicable,
IQR; interquartile range,
BMI; body mass index,
sig; significance,
IBD; inflammatory bowel disease,
PsA; psoriatic arthritis,
RA; rheumatoid arthritis,
AS; ankylosing spondylarthritis,
kg/m2; kilogram per square meter.
Figures

Figure 1. Antibody responses after 1 or 2 doses of mRNA vaccine. (A) Schematic diagram of the sampling schedule. (B) IgG responses before, and after the first and second doses of mRNA vaccine in IMID patients. Violin plots show the relative ratio of RBD and spike that were determined at the indicated time points in IMID patients under mono- and combination therapy (0.0039 µl sample used, see suppl. fig. 2B for the second dilution and suppl. table S1 for conversion to BAU/ml). T1, n=111; T2 n= 131, T3, n=131, T4, n= 88. The dot colors indicate the type of vaccine, Pfizer refers to BNT162b; Moderna to mRNA-1273; mRNA mix = first dose BNT162b, second dose mRNA-1273. MTX = methotrexate, AZA = azathioprine. Black and gray lines indicate median and mean ratio values for each violin, respectively. Plots are faceted based on the groups/treatments. Comparisons were made by Dunn’s multiple comparisons test based only on the BNT162b/BNT162b group. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001
Figure 2. Variant neutralization after two doses of vaccine. (A) Violin plots of log₁₀ ID₅₀ (serum dilution that inhibits 50% of the infectivity) values of samples at time point 3 (see figure 1A), n=129. The distribution is stratified by study groups/treatments. The dots colors indicate the type of vaccine (see figure 1b). Black lines indicate the median and gray lines the mean ratio value for each violin. Comparisons were made by Dunn’s multiple comparisons test for the entire cohort. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001. (B) Correlation between the neutralization responses and IgG levels using the log₁₀ ID₅₀ values of neutralization and the relative ratio of the spike and RBD IgG levels at T3.
Figure 3. Cytokine responses in IMID patients prior to vaccination and after first and second doses of mRNA vaccine. Cytokine release in cell culture supernatants was analyzed by multiplex bead array following 48h stimulation with SARS-CoV-2 spike peptide pools. Violin plots show IFN-γ, IL-2, IL-17A and IL-4 release at T1 (pre-vaccination); n=102, T2; n=117, T3; n=126, and T4; n= 88, with timepoints defined in figure 1A. Colored dots represent the type of vaccine (defined in figure 1B). The gray line indicates the median. Values are reported in pg/ml after subtracting background signal from wells containing PBMCs cultured with DMSO alone, as indicated by “Δ”.

CC-BY-NC-ND 4.0 International license
It is made available under a CC-BY-NC-ND 4.0 International license.
Ctrl = Healthy controls, inh = inhibitor, MTX = methotrexate, AZA = thiopurines. Comparisons between groups in entire cohort were made by Dunn’s multiple comparisons test. *p≤0.05, **p≤0.01.
Cytotoxic responses in IMID patients before or after first and second doses of mRNA vaccine. The release of cytotoxic molecules in cell culture supernatants was analyzed by multiplex bead array following 48h stimulation with SARS-CoV-2 spike peptide pools. Violin plots show release of Granzyme (Gzm) A, B, perforin or sFASL release at T1, n=102; T2, n=117; T3, n=126, and T4, n= 88 (with T1-T4 defined in figure 1A). The dot colors indicate the type of vaccine (see figure 1B). The gray line indicates the median. Values are reported in pg/ml after subtracting background signal from wells containing PBMCs cultured with DMSO alone, as indicated by “Δ”. Ctrl =
Healthy controls, inh = inhibitor, MTX = methotrexate, AZA = thiopurines. Comparisons on entire cohort were made by Dunn’s multiple comparisons test. *p≤0.05.
Figure 5. Correlation between IgG levels and T cell cytokine responses at all sampled time points. The solid black line is the linear regression, and the gray shading indicates the 95% confidence interval. p-values and Spearman’s rho coefficients are indicated in each graph.
Supplementary materials

Supplementary Table 1 BAU/mL conversions

Nucleocapsid - Plasma

<table>
<thead>
<tr>
<th>Dilution (d)</th>
<th>160</th>
<th>2,560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume equivalent (µl)</td>
<td>0.0625</td>
<td>0.00391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Ratio (RR)</th>
<th>log₂(RR)</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.0</td>
<td>8.38</td>
<td>333.98</td>
<td>12.38</td>
<td>5,343.76</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>6.98</td>
<td>126.34</td>
<td>10.98</td>
<td>2,021.37</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.0</td>
<td>5.58</td>
<td>47.79</td>
<td>9.58</td>
<td>764.62</td>
</tr>
<tr>
<td>0.396</td>
<td>-1.3</td>
<td>5.16</td>
<td>34.46</td>
<td>9.16</td>
<td>571.19</td>
</tr>
<tr>
<td>0.25</td>
<td>-2.0</td>
<td>4.18</td>
<td>18.08</td>
<td>8.17</td>
<td>289.23</td>
</tr>
<tr>
<td>0.125</td>
<td>-3.0</td>
<td>2.77</td>
<td>6.84</td>
<td>6.77</td>
<td>109.41</td>
</tr>
<tr>
<td>0.0625</td>
<td>-4.0</td>
<td>1.37</td>
<td>2.59</td>
<td>5.37</td>
<td>41.38</td>
</tr>
</tbody>
</table>

\[
\log₂(BAU/\text{mL @ sample dilution } d) = \frac{(\log₂(\text{RR}) - 0.243)}{0.713} + \log₂(d)
\]

With standard volume equivalents of .0625 µl and .00391 µl, range is 3 to 5344 BAU/mL, with positivity threshold of 34 BAU/mL

RBD - Plasma

<table>
<thead>
<tr>
<th>Dilution (d)</th>
<th>160</th>
<th>2,560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume equivalent (µl)</td>
<td>0.0625</td>
<td>0.00391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Ratio (RR)</th>
<th>log₂(RR)</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>8.12</td>
<td>278.37</td>
<td>12.12</td>
<td>4,453.99</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.0</td>
<td>6.82</td>
<td>112.63</td>
<td>10.82</td>
<td>1,802.02</td>
</tr>
<tr>
<td>0.25</td>
<td>-2.0</td>
<td>5.51</td>
<td>45.57</td>
<td>9.51</td>
<td>729.07</td>
</tr>
<tr>
<td>0.186</td>
<td>-2.4</td>
<td>4.95</td>
<td>30.97</td>
<td>8.95</td>
<td>495.58</td>
</tr>
</tbody>
</table>
Lower limit of linear range

\[\log_2(\text{BAU/ml @ sample dilution } d) = \left(\log_2(\text{RR}) + 0.612 \right) / 0.766 + \log_2(d). \]

With standard volume equivalents of .0625 µl and .00391 µl, range is 2 to 4,454 BAU/ml, with positivity threshold of 31 BAU/ml

Spike - Plasma

<table>
<thead>
<tr>
<th>Dilution (fold)</th>
<th>160</th>
<th>2,560</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume equivalent (µl added per well)</td>
<td>0.0625</td>
<td>0.00391</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative Ratio (RR)</th>
<th>log₂(RR)</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
<th>log₂(BAU/ml)</th>
<th>BAU/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>6.55</td>
<td>93.80</td>
<td>10.55</td>
<td>1,500.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Upper limit of linear range</td>
</tr>
<tr>
<td>0.5</td>
<td>-1.0</td>
<td>5.28</td>
<td>38.75</td>
<td>9.28</td>
<td>619.95</td>
</tr>
<tr>
<td>0.25</td>
<td>-2.0</td>
<td>4.00</td>
<td>16.01</td>
<td>8.00</td>
<td>256.09</td>
</tr>
<tr>
<td>0.19</td>
<td>-2.4</td>
<td>3.50</td>
<td>11.28</td>
<td>7.50</td>
<td>180.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Positivity threshold at 160-fold dilution (0.0625 µl/well)</td>
</tr>
<tr>
<td>0.125</td>
<td>-3.0</td>
<td>2.72</td>
<td>6.61</td>
<td>6.72</td>
<td>105.78</td>
</tr>
<tr>
<td>0.0625</td>
<td>-4.0</td>
<td>1.45</td>
<td>2.73</td>
<td>5.45</td>
<td>43.70</td>
</tr>
<tr>
<td>0.03125</td>
<td>-5.0</td>
<td>0.17</td>
<td>1.13</td>
<td>4.17</td>
<td>18.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower limit of linear range</td>
</tr>
</tbody>
</table>

\[\log_2(\text{BAU/ml @ dilution } d) = \left(\log_2(\text{RR}) - 0.604 \right) / 0.784 + \log_2(d) \]

With standard volume equivalents of .0625 µl and .00391 µl, range is 1 to 1,501 BAU/ml, with positivity threshold of 11 BAU/ml
Figure S1. Antibody responses. (A) IgG response to one or two doses of vaccine across all participants. Anti-spike and anti-RBD IgG levels at indicated time points (defined in figure 1A). The blue line is the median ratio in convalescent patients (340 samples collected 21 to 115 days post symptom onset), 1.38 and 1.25 for spike and RBD respectively. The red line is the seropositivity threshold: the median antibody level of those that pass both a 1% false positive rate (FPR) and show ≥3 standard deviations from the log means of the negative controls. (B) Relative ratio of RBD, spike and nucleocapsid (NP) across time points in IMID patients on mono and combination therapy (0.0625 µl sample used). Dot colors represent the type of vaccine, Pfizer (BNT162b2), Moderna (mRNA-1273) and mRNA mix (first dose BNT162b, second dose mRNA-1273), respectively. Black and gray lines indicate median and mean ratio values, respectively. Statistical assessment by Dunn’s multiple comparisons test was restricted to the BNT162b/BNT162b cohort. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001
Figure S2. Effect of variables on antibody responses. Levels of anti-RBD and anti-spike IgG stratified by (A) vaccine type, (B) sex and (C) age using 0.0039 µl of sample at T3 (see figure 1A). Black lines indicate the median and gray lines signify the mean ratio value for each violin. Statistical analysis for A was for the entire cohort, B and C for BNT162b/BNT162b group only. Unpaired comparisons were made by nonparametric Mann-Whitney test or Dunn’s multiple comparisons test. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001
Figure S3. Dynamics of neutralization response of the study groups across variants after second vaccine dose, at T3, n=135 (figure 1A). Lentiviral particles used: wildtype, B.1.617.2 (Delta), B.1.351 (Beta), and P.1 (Gamma). (A) The vaccine type is shown as colored dots (see suppl. fig. S1). Black lines indicate median and gray lines denote mean ratio value for each violin. Pairwise comparisons were made by mixed-effects ANOVA with the Geisser-Greenhouse correction, ****p≤0.0001. (B) Correlation between the VOCs neutralization responses and IgG levels using the log₁₀ ID₅₀ values of the VOCs and the relative ratio values of the spike and RBD IgG levels at T3. Solid
black line is the linear regression and gray shading indicates the 95% confidence interval. P-values and Spearman’s rho coefficients are indicated in each graph for the entire cohort.
Figure S4. Cellular immune responses in IMID patients to NP before or after first and second doses of mRNA vaccine. The release of cytokines and cytotoxic molecules in cell culture supernatants were analyzed by multiplex bead array following 48h stimulation with SARS-CoV-2 NP peptide pools. Violin plots show (A) release of cytokines IFN-γ, IL-2, IL-17A and IL-4 and (B) release of cytotoxic molecules GzmA, GzmB, perforin and sFasL at T1, n=102; T2, n=117; T3, n=126; and T4, n= 88, with T1 to T4 defined in figure 1A. The grey line indicates the median. Values are reported in pg/ml after subtracting background signal from wells containing PBMCs cultured with DMSO alone, as indicated by “Δ”. Ctrl = Healthy controls, inh = inhibitor, MTX = methotrexate, AZA = azathioprine.
Figure S5. Cytokine and cytotoxic responses in IMID patients to spike peptide pools over time. The release of cytokines and cytotoxic molecules in cell culture supernatants was analyzed by multiplex bead array following 48h stimulation with SARS-CoV-2 S peptide pools. Violin plots show release of (A) cytokines IFN-γ, IL-2, IL-17A and IL-4 and (B) cytotoxic molecules GzmA, GzmB, Perforin and sFasL at timepoints T1-T4 (see figure 1A) within each study group. The median value is indicated by the black line. Pairwise comparisons were made by mixed-effects ANOVA with the Geisser-Greenhouse correction. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001
Figure S6. Cytokine and cytotoxic responses in IMID patients to spike peptide pools over time. The release of cytokines in cell culture supernatants were analyzed by multiplex bead array following 48h stimulation with SARS-CoV-2 S peptide pools. (A) IL-2 and IL-4 responses across all participants at timepoints T1 -T4 as defined in figure 1A. (B) Violin plots show release of cytokines and cytotoxic molecules in all study subjects pooled. The median is indicated by the grey line. Pairwise comparisons were made by mixed-effects ANOVA. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.
Figure S7. Effect of mRNA vaccine types on T cell cytokine responses to spike peptide pools in IMID patients after two doses of the indicated vaccine type. Cytokine responses in the BNT162b (Pfizer) vaccinated population were further stratified by (A) vaccine type (B) sex and (C) age at time point 3. Median value is indicated by the grey line in T cell cytokine violin plots. Unpaired comparisons were made by nonparametric Mann-Whitney test or Dunn’s multiple comparisons test. *p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001.