Is trait mindfulness associated with lower pain reactivity and connectivity of the default mode network? A replication and extension study in healthy and episodic migraine participants

Carly Hunt¹, Janelle Letzen¹, Samuel R Krimmel³, Shana A.B. Burrowes²,⁴,⁵ Jennifer A. Haythornthwaite¹, Patrick Finan¹, Maria Vetter¹, David A. Seminowicz⁴,⁵

¹Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
²Boston University School of Medicine, Section of Infectious Diseases, Department of Medicine, Boston MA, USA, 02218
³Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
⁴ Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
⁵ Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201

Correspondence:

Carly Hunt
5510 Nathan Shock Drive Suite 100
Baltimore, MD 21224
Chunt8@jhmi.edu

Acknowledgments: This work was supported by National Institutes of Health awards T32NS070201 (CAH) and R01AT007176 (DAS).

Disclosures:

Research Funding: This work was supported by National Institutes of Health awards T32NS070201 (CAH) and R01AT007176 (DAS).

Conflicts of Interest: The authors have no conflicts of interest to declare.
Abstract

Formal training in mindfulness-based practices promotes reduced experimental and clinical pain, which may be driven by reduced emotional pain reactivity and undergirded by alterations in the default mode network (DMN), implicated in mind-wandering and self-referential processing. Recent results published in this journal suggest that trait mindfulness (TM), or the day-to-day tendency to maintain a non-reactive mental state in the absence of training, associates with reduced pain reactivity, pain sensitivity, and resting-state DMN functional connectivity (FC) in healthy adults in a similar manner to trained mindfulness. The extent to which these findings extend to chronic pain samples and replicate in healthy samples is unknown. Using data from healthy adults (n = 36) and episodic migraine patients (n = 98) and replicating previously published methods, we observed no significant association between TM and pain sensitivity ($r = -0.05, p = .80$), intensity ($r = .01, p = .94$) or unpleasantness ($r = .07, p = .67$), or pain catastrophizing (PC; $r = .30, p = .08$) in healthy controls, or between TM and headache frequency ($r = -.11, p = .26$), severity ($r = .03, p = .77$), impact ($r = -.17, p = .10$) or PC ($r = -0.09, p = .36$) in patients. There was no association between DMN connectivity and TM in either sample when probed via seed-based FC analyses. In post-hoc whole brain exploratory analyses, meta-analytically derived DMN nodes (i.e., PCC and vmPFC) showed connectivity with regions unassociated with pain processing as a function of TM, such that healthy adults higher in TM showed greater PCC-cerebellum and vmPFC-parietal FC. Collectively, these findings suggest that the relationship between TM and DMN-FC may be nuanced or lacking in robustness, and cast doubt on TM as a clinically meaningful protective factor in migraine.

Perspective: This study tested relationships between trait mindfulness and pain, pain reactivity and default mode connectivity in healthy adults and migraine patients. Findings cast doubt on trait mindfulness as an individual difference marker of the ability to cope with pain in healthy adults, and as a protective factor in episodic migraine.
1. Introduction

Emerging data suggest that mindfulness training (i.e., through formal mindfulness meditation practices and didactic instruction) reduces experimental (Zeidan et al., 2010) and clinical pain (Seminowicz et al., 2020), potentially via reduced cognitive and emotional reactivity to pain vis-à-vis enhanced non-judgmental, present moment awareness (Ludwig & Kabat-Zinn, 2008). Alterations in the default mode network (DMN), a functionally connected network of brain regions underlying self-referential processing (Kim, 2012) and mind-wandering (Kucyi & Davis, 2014), have been implicated in the attentional changes that occur in response to mindfulness training (Brewer et al., 2011; Dickenson et al., 2013; Farb et al., 2007). Highly trained mindfulness practitioners invoking a mindfulness state during experimental pain administration demonstrate increased activation in brain regions supporting sensory (Gard et al., 2012) and salience (Lutz et al., 2013) processing, along with decreased activity in evaluative, executive and emotion regions (Grant et al., 2011), relative to novice practitioners. These findings suggest that trained mindfulness may favorably impact pain through a unique mechanism involving augmented attention towards sensory information and reduced emotional reactivity to pain (Zeidan et al., 2012).

In comparison with mindfulness as a learned skill, less is known about mindfulness as a trait, or the dispositional tendency to maintain non-judgmental, present moment awareness of events as they unfold in daily life in the absence of formal training (Baer et al., 2004, 2008). Suggestive of possible DMN involvement consistent with mechanisms underlying trained mindfulness, greater trait mindfulness in healthy controls predicts lower resting-state default mode connectivity (Harrison et al., 2019; Parkinson et al., 2019), experimental pain sensitivity (Harrison et al., 2019; Zeidan et al., 2018), and pain catastrophizing, a marker of emotional...
reactivity to pain (Harrison et al., 2019). While promising, the extent to which these processes operate similarly in individuals living with chronic pain, particularly headache and migraine pain, remains unknown. Trait mindfulness inversely associates with pain severity in heterogeneous pain groups, including community-member undergraduates (Mun et al., 2014), adolescents (Petter et al., 2013), and adults presenting for chronic pain treatment (McCracken et al., 2007), although one study in adolescents reported no association between trait mindfulness and pain severity (Waldron et al., 2018). Whether trait mindfulness associates with reduced pain in episodic migraine, a common disorder involving multiple attacks per month of pain, light and sound sensitivity, nausea, and allodynia (Giffin et al., 2016; May, 2017; Schulte et al., 2015), and leading to substantial functional impairment (Leonardi et al., 2005), remains unclear.

Furthermore, whether such potential pain reductions are undergirded by similar mechanisms as those underlying formally trained mindfulness skills in healthy controls remains unknown.

Given the above considerations, the present study investigated the degree to which the inverse associations between trait mindfulness and resting-state default mode connectivity, pain catastrophizing and pain sensitivity in healthy controls (Harrison et al., 2019) extend to a chronic pain sample with episodic migraine. Secondly, we investigated the extent to which Harrison and colleagues’ (2019) findings replicate in a new sample of healthy controls. This was a secondary cross-sectional analysis of baseline data collected during a larger parent trial comparing an enhanced (i.e., 12-week) mindfulness-based stress reduction program (MBSR+) with an active control (i.e., headache education; HE) condition (Seminowicz et al., 2020). All participants were meditation naïve. We hypothesized that [1] higher trait mindfulness would predict lower clinical pain (i.e., reduced headache frequency and headache pain reported via headache diary, and reduced self-reported headache impact), lower trait-like pain catastrophizing, and reduced DMN.

2. Method

The full methodology of the parent project (R01AT007171) has been described elsewhere (Burrowes et al., 2021; Seminowicz et al., 2020). Participants were recruited from 2014 to 2017. Here we detail methods pertinent to this secondary analysis.

Participants.

Patient data were drawn from meditation naïve individuals (n = 98) who were randomized to either 12-week MBSR+ (n = 50) or HE (n = 48). Participants were included if they met criteria for the International Classification of Headache Disorders criteria for migraine with or without aura and had been living with migraine for at least 1 year. Participants were excluded if they reported severe psychiatric symptoms, opioid medication use, prior mindfulness experience, or engagement in any treatment anticipated to impact mindfulness training (see the parent project Protocol for full inclusion and exclusion criteria). Healthy controls (n = 36) were matched to the first 36 enrolled patients based on age, sex, body mass index, and education. Healthy controls were eligible if they were free of acute and chronic pain conditions and lacking in migraine history. Demographic characteristics for both samples are shown in Table 1.

Table 1. Sample demographic characteristics.

<table>
<thead>
<tr>
<th>Patients</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total n</td>
<td>98</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>38.2 (12.5)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>89 (91)</td>
</tr>
<tr>
<td>Headache Frequency, mean (SD)</td>
<td>8.4 (2.9)</td>
</tr>
<tr>
<td>Headache Impact, mean (SD)</td>
<td>60.5 (5.7)</td>
</tr>
<tr>
<td>Headache Pain Intensity, mean (SD)</td>
<td>4.5 (1.6)</td>
</tr>
<tr>
<td>Trait Mindfulness, mean (SD)</td>
<td>140.53 (19.28)</td>
</tr>
<tr>
<td>Pain Catastrophizing</td>
<td>11.9 (9.6)</td>
</tr>
<tr>
<td>Race, n(%)</td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td>n (%)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Asian</td>
<td>4 (4)</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>17 (17)</td>
</tr>
<tr>
<td>Multiracial</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Other</td>
<td>2 (2)</td>
</tr>
<tr>
<td>White or European American</td>
<td>71 (72)</td>
</tr>
<tr>
<td>Unknown or not reported</td>
<td>1 (1)</td>
</tr>
<tr>
<td>College graduate</td>
<td>78 (80)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Healthy controls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total n</td>
<td>36</td>
</tr>
<tr>
<td>Age, mean (SD)</td>
<td>37.5 (12.9)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>31 (86)</td>
</tr>
<tr>
<td>Trait Mindfulness, mean (SD)</td>
<td>145.0 (19.0)</td>
</tr>
<tr>
<td>Pain Catastrophizing</td>
<td>3.3 (5.8)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (6)</td>
</tr>
<tr>
<td>Black or African-American</td>
<td>8 (22)</td>
</tr>
<tr>
<td>White or European-American</td>
<td>25 (69)</td>
</tr>
<tr>
<td>College graduate, n(%)</td>
<td>32 (89)</td>
</tr>
<tr>
<td>Experimental Pain Severity, mean (SD)</td>
<td>4.7 (2.8)</td>
</tr>
<tr>
<td>Experimental Pain Unpleasantness, mean (SD)</td>
<td>4.8 (2.8)</td>
</tr>
<tr>
<td>Experimental Pain Sensitivity, mean (SD)</td>
<td>42.6 (3.13)</td>
</tr>
</tbody>
</table>

Measures.

Trait mindfulness was measured with the Five Factor Mindfulness Questionnaire (FFMQ; Baer et al., 2006), which yields 5 subscale scores and a total score. Participants rate items on 5-point Likert scales (1 = never or very rarely true; 5 = very often or always true). Total scores were computed by taking the sum of each subscale score, and were used in analyses. Subscale scores were computed by taking the sum of subscale items. Total scores demonstrated good internal consistency reliability in patients (Chronbach’s alpha = .85) and in controls (.87).

Headache occurrence and severity were measured via 28-day electronic daily diary based on the National Institute of Neurological Disorders and Stroke preventive therapy headache diary. Headache frequency was prorated based on the number of completed diary days (i.e., to account
for participants who completed fewer than 28 days), the proportion of headache days was computed (number of headache days/total number of diary days) and then multiplied by 28, yielding a continuous variable quantifying headache days. Headache severity was assessed with a 0-10 scale and was quantified as the average of all headache intensity ratings from the diary. Headache impact was measured with the Headache Impact Test (HIT-6), which assesses the effects of headaches on lifestyle (Kosinski et al., 2003); it has been validated in chronic and episodic migraine (Yang et al., 2011) and showed acceptable internal consistency reliability in this sample (Chronbach’s alpha = .71). Pain catastrophizing was measured with the pain catastrophizing scale (Sullivan et al., 1995), a 13-item measure which asks participants to rate how often they experience particular feelings and thoughts when experiencing pain (0 = not at all, 4 = all the time. Total scores demonstrated good internal consistency reliability in patients (Chronbach’s alpha = .91) and in controls (.93).

Experimental pain severity, unpleasantness and sensitivity in healthy controls were quantified through a quantitative sensory testing (QST) protocol using a 30 x 30 mm ATS probe (Medoc Pathway model, ATS, Medoc Advanced Medical Systems Ltd., Ramat Yishai, Israel). A set of 19 pseudorandom thermal stimuli were presented using a single ramp up and hold design. Participants rated pain intensity and unpleasantness on 0 (no pain) to 10 (maximum pain imaginable) scales. Each simulation began with a baseline temperature of 32°C which then increased at a rate of 1.6°C per second until reaching the target temperature, and was then held constant for a duration of 6 seconds. There was a 6-second rest period between stimulations. The stimulus order was 40, 42, 44, 47, 41, 49, 41, 45, 48, 39, 49, 45, 48, 47, 45, 44, 43, 49, 47°C. All stimuli were administered on the left volar surface of the forearm. The QST protocol has also been described in previous work by our group (Krimmel et al., 2021). To maximize variance in
pain ratings and because some participants could not tolerate the highest temperatures, we averaged the pain intensity and unpleasantness ratings given in the temperature range of 45-47°C only. Pain sensitivity was quantified using the average of three heat pain threshold ratings, which were obtained by asking participants to signal via mouse-click the point at which they first felt pain sensation in response to rising temperatures, which began at a baseline temperature of 32°C and increased at a rate of 1.5°C/second.

Procedure.

Patients completed 28 days of headache diary to determine eligibility for the parent project (4 – 14 headache days out of 28). Eligible patient participants, as well as healthy control participants, attended a magnetic resonance imaging (MRI) session that included quantitative sensory testing (QST) and completion of questionnaires.

MRI Acquisition.

Structural and functional MRI data were acquired at the University of Maryland, Baltimore Medical Imaging Facility with a Siemens 3T Tim Trio scanner. Either a 32-channel head coil (n = 22 healthy controls, 70 patients) or a Siemens 3T Prisma scanner with a 64 channel head coil (n = 14 healthy controls, 16 patients) were used; this change was made due to a scanner upgrade during data acquisition. We acquired a T1-weighted structural 3D MPRAGE scan, which was used in preprocessing steps (whole brain coverage, TR = 2300 ms, TE=2.98 ms, voxels = 1.00 mm isotropic). We also acquired an eyes-open, resting-state scan using EPI while participants fixated on a plus sign (whole brain coverage, TR = 2000 ms, TE = 28 ms, voxels 3.4 × 3.4 × 4.0 mm, slices = 40, duration = 300 TR).

MRI Analysis Overview.
The present study aimed to determine the reproducibility of results by Harrison and colleagues (2019) in a new sample of healthy controls and extend these results to a sample of adults with episodic migraine. We further conducted post-hoc exploratory analyses to examine the reproducibility of results by Parkinson and colleagues (2019) in healthy controls and their extension in adults with episodic migraine. For the exploratory analyses, we only aimed to examine the reproducibility of Parkinson et al.’s findings in the context of the DMN, which is consistent with our study aim. In the below sections, selection of the study’s regions of interest (ROIs) and masks, preprocessing, denoising, and first-level analyses were applied across the entire sample. Group-level analyses, however, were conducted separately for the sample of healthy controls and the sample of adults with episodic migraine.

Regions of Interest and Mask Selection.

Reproduction of Harrison et al. (2019). In the previous work by Harrison and colleagues, functional connectivity of the DMN was measured using seed-based functional connectivity analyses. Two regions of interest (ROIs) were selected based on those in their report. In the present study, we used the Wake Forest University Pickatlas toolbox (Maldjian et al., 2003, 2004) to construct lateralized precuneus seeds by projecting 2-mm spheres around the following coordinates in Montreal Neurological Institute space: X=-8 or 8, Y=-64, Z=18. These ROIs were used as the main seeds in seed-based functional connectivity analyses. Further, Harrison and colleagues applied a meta-analysis mask to second-level seed-based functional connectivity analyses to examine DMN functional connectivity with pain-related brain regions as it associated with trait mindfulness. To recreate this meta-analysis mask, we followed steps by Harrison and colleagues that included conducting a term-based meta-analysis from the
Neurosynth database (Yarkoni et al., 2011) for the keyword “pain” and downloading the resultant association test, binarized mask.

Additional Analyses. Based on the results of the main reproduction analyses, we conducted two sets of additional analyses to further test the reproducibility of trait mindfulness as a predictor of DMN FC with pain-related regions. These analyses required separate sets of ROIs than those noted above.

First, we conducted exploratory ROI-to-ROI FC analyses in our dataset between Harrison et al.’s (2019) precuneus seeds and areas that were identified as significantly associated with the precuneus seeds as a function of trait mindfulness by Harrison et al. ROIs were created using the Pickatlas toolbox by drawing 6mm spheres around the following peak coordinates reported in Harrison et al.: [1] right parietal/motor/somatosensory cortex (32, -18, 38), [2] left parietal/motor/somatosensory cortex (-10, -46, 52), [3] left parietal/somatosensory cortex (14, -32, 44), [4] medial prefrontal cortex/perigenual ACC (-2, 44, 6), [5] left superior frontal gyrus/premotor (-10, 36, 54), [6] right superior frontal gyrus/premotor (6, 22, 66), and [7] posterior cingulate cortex/precuneus (-10, -50, 26).

Second, we conducted exploratory seed-to-voxel FC analyses using two key DMN nodes [PCC and ventromedial prefrontal cortex (vmPFC)] derived from the Neurosynth database. To identify these nodes, “default mode” was used to conduct a term-based meta-analysis that included 777 studies with 26,256 activations. Using the Pickatlas toolbox, 10mm spheres were drawn around activation peaks at the following coordinates: PCC (0, -52, 26; z-score for “default mode”=15.92) and vmPFC (0, 50, 4, z-score for “default mode”=7.61).

MRI Data Processing and Denoising.
Preprocessing was completed in SPM12 and included slice timing correction, realignment (motion correction), coregistration of the T1 to the mean functional image, segmentation of the T1, normalization of functional images with interpolation to 2 × 2 × 2-mm voxels, and smoothing with a 6 mm full width at half maximum (FWHM) Gaussian kernel. Data were visually inspected at each preprocessing stage for quality control. Motion regression was based on framewise displacement using custom scripts so that participants with FrameWise Displacement Arithmetic Mean greater than 0.3 were removed (Power et al., 2012, 2014, 2015).

Preprocessed resting-state data were then entered in CONN toolbox (version 17f; http://www.nitrc.org/projects/conn) for additional processing. Global signal was not removed from our analyses based on ongoing controversy (Murphy and Fox, 2017). The aCompCor algorithm (Behzadi et al., 2007; Muschelli et al., 2014) was used to control for white matter (WM) and cerebral spinal fluid (CSF) confounds. Eroded WM and CSF masks that did not include external or extreme capsules were used since we did not remove global signal (Power et al., 2017). Denoising further included removal of realignment parameters along with first-order derivatives of these parameters, simultaneous bandpass filtering between 0.008 and 0.09 Hz, linear detrending, and despiking after these regression steps (Patel et al., 2014). Denoised data were visually inspected for quality control to ensure that processing resulted in a normalized distribution of connectivity values for each participant.

First-Level Analyses.

Reproduction of Harrison et al. (2019). Following denoising, participant-level data underwent first-level analysis in CONN. Averaged timeseries data from all voxels within each precuneus seed ROIs were extracted. Extracted values were entered as a regressor of interest in whole-brain FC analyses.
Additional Analyses. For the ROI-to-ROI FC exploratory analyses, individual-level averaged timeseries from all voxels inside of each 6mm ROI sphere were respectively extracted and entered as regressors of interest. For the seed-to-voxel FC exploratory analyses, individual-level averaged timeseries data from all voxels inside of each 10mm Neurosynth-based ROI sphere were respectively extracted and entered as regressors of interest in whole-brain FC analyses.

Self-reports.

Means and standard deviations were calculated for demographic variables, primary measures and covariates. Pearson’s correlations were used to test the associations between headache frequency, headache impact, and trait-like pain catastrophizing in patients, and between trait mindfulness, pain catastrophizing, and experimental pain (severity, unpleasantness and sensitivity) in healthy controls. Consistent with Harrison and colleagues (2019), we also entered pain catastrophizing and pain sensitivity (i.e., heat pain threshold) into a multiple linear regression model predicting trait mindfulness, in order to test their unique predictive associations with trait mindfulness. Missing data were handled using listwise deletion.

Group-Level Functional Connectivity Analyses.

Reproduction of Harrison et al. (2019). First-level contrast maps were entered into separate group-level analyses for the episodic migraine and healthy control samples. We initially examined the extent to which the precuneus seeds resulted in DMN FC in our sample by entering each seed into two separate, group-level models as regressors of interest. Then, participants’ FFMQ 5-factor total scores were added into each of these group-level model as a regressor of interest, so that significant positive clusters represented areas of greater FC with the precuneus seed as a function of greater trait mindfulness.
Additional Analyses. As previously noted, we conducted three follow-up sets of analyses based on the findings from the reproduction analyses described above: [1] ROI-to-ROI FC exploratory analyses using ROIs based on the seeds and identified clusters from Harrison et al. and FFMQ scores as a regressor of interest and [2] seed-to-voxel FC exploratory analyses using Neurosynth-based DMN nodes and FFMQ scores as a regressor of interest.

First, the ROI-to-ROI FC exploratory analyses were conducted to determine the extent to which significant associations that were identified by Harrison et al. were observable in our samples of healthy controls and individuals with episodic migraine. Individual-level Pearson’s r-to-z associations between each precuneus seed ROI and the seven ROIs based on Harrison et al.’s findings were entered in group-level models with FFMQ scores as a regressor of interest. Additionally, the same model was repeated substituting PCS total scores in place of FFMQ scores to determine whether the association between pain catastrophizing and trait mindfulness-associated DMN FC was observable in our samples of healthy controls or patients with episodic migraine.

Second, the Neurosynth-based seed-to-voxel FC exploratory analyses were conducted to determine the extent to which using robust DMN seeds elicited similar FC patterns – as a function of FFMQ scores – to those reported in Harrison et al. Averaged timeseries across all of the voxels within the PCC and vmPFC ROIs, respectively, were extracted and entered into group-level models as regressors of interest, both with and without FFMQ scores as an additional regressor of interest. Consistent with analyses in Harrison et al., averaged timeseries across voxels in significant clusters that were identified at the group-level were extracted for each individual, so that Pearson’s correlations could be conducted between these FC values and PCS total scores.
3. Results

Descriptive Data

Table 1 summarizes demographic characteristics, trait mindfulness, pain catastrophizing and pain variables for patients and healthy controls. All participants had complete data on pain, pain catastrophizing and trait mindfulness data, except one migraine patient who was missing on trait mindfulness.

Self-Reported Patient Data: Clinical Pain and Pain Catastrophizing

Headache frequency, severity and impact distributions approximated normality and contained no outliers (+/- 3 SD). One outlier in pain catastrophizing was detected using the +/- 3 SD criterion and was removed. Trait mindfulness was not associated with headache frequency ($r = -.11, p = .26$), headache pain severity ($r = .03, p = .77$), or impact ($r = -.17, p = .10$), or pain catastrophizing ($r = -0.09, p = .36$) as illustrated in Figure 1.
Figure 1. Pearson’s correlations between trait mindfulness and clinical pain outcomes and pain catastrophizing in migraine patients.

Self-Reported Healthy Control Data: Experimental Pain and Pain Catastrophizing

All experimental pain variable distributions approximated normality and contained no outliers (+/- 3 SD). One outlier in pain catastrophizing was detected using the +/- 3 SD criterion and was removed. Trait mindfulness was not associated with experimental pain intensity ($r = .01, p = .94$) or unpleasantness ($r = .07, p = .67$), heat pain threshold ($r = -0.05, p = .80$), or pain catastrophizing ($r = .30, p = .08$) as shown in Figure 2. When entered into a multiple linear regression model, neither pain catastrophizing ($b = -.13, t(33) = -.21, p = .83$) nor pain sensitivity ($b = -.36, t(33) = -.32, p = .75$) was associated with trait mindfulness.

Figure 2. Pearson’s correlations between trait mindfulness and heat pain threshold, pain intensity, pain unpleasantness and pain catastrophizing in healthy controls.

Primary Imaging Analyses: Reproduction of Harrison et al. (2019).
Figure 3 along with Tables S1 and S2 demonstrate seed-based functional connectivity analyses between the left and right precuneus seeds for healthy controls and adults with episodic migraine without examining FFMQ scores as a regressor of interest. Unlike findings from Harrison et al., the precuneus seed did not generate a hallmark pattern of DMN FC in our sample. When FFMQ scores were entered in the model, no clusters emerged as significantly associated with either precuneus seed in either participant set. Further, restricting the search space within the Neurosynth “pain” meta-analysis mask, as conducted in Harrison et al., did not yield significant clusters.

Figure 3. Seed-based functional connectivity analyses between the left and right precuneus seeds for healthy controls and adults with episodic migraine without examining FFMQ scores as a regressor of interest.

Secondary Imaging Analyses: ROI-to-ROI Exploratory Analyses

Without accounting for FFMQ scores, significant ROI-to-ROI associations in both patient and control samples were observed between the Harrison et al., precuneus seeds and the seven ROIs based on clusters identified in their main analysis (Table 2). In both the healthy
control and patient samples, however, these effects no longer reached statistical significance after entering FFMQ total scores or PCS total scores in the model.

Table 2. Beta values for ROI-to-ROI functional connectivity analyses among precuneus seeds derived from Harrison et al., 2019 and ROIs created around clusters identified in primary analyses by Harrison et al., 2019 without accounting for FFMQ or PCS total scores.

<table>
<thead>
<tr>
<th>Seed ROI</th>
<th>Left Precuneus</th>
<th>Right Precuneus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left precuneus</td>
<td></td>
<td>.23, .35</td>
</tr>
<tr>
<td>Right precuneus</td>
<td>.23, .35</td>
<td>.18, .22</td>
</tr>
<tr>
<td>PCC/precuneus</td>
<td>.16, .29</td>
<td>.16, .25</td>
</tr>
<tr>
<td>Left parietal/motor/somatosensory</td>
<td>.07, .14</td>
<td>.06, .13</td>
</tr>
<tr>
<td>Right parietal/motor/somatosensory</td>
<td></td>
<td>.16, .23</td>
</tr>
<tr>
<td>mPFC/perigenual ACC</td>
<td>.16, .09</td>
<td>.03, .08</td>
</tr>
<tr>
<td>Left SFG</td>
<td></td>
<td>.05, .10</td>
</tr>
<tr>
<td>Right SFG</td>
<td></td>
<td>.03, .11</td>
</tr>
</tbody>
</table>

All beta values were significant at \(p \text{FDR}<.05 \). Abbreviations: region of interest (ROI), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), superior frontal gyrus (SFG)

Secondary Imaging Analyses: Neurosynth-Based DMN Seed-to-Voxel Exploratory Analyses

Tables S3 and S4 along with Figure 4 detail the voxel clusters with significant functional connectivity to NeuroSynth-derived PCC and vmPFC seeds in healthy controls and patients without accounting for FFMQ total scores. When FFMQ scores were added as a regressor of interest, Neurosynth-derived PCC and vmPFC nodes of the DMN were each associated with one cluster at the whole-brain level in the healthy control sample only. Specifically, the PCC node was positively associated with a left lateralized cluster in the cerebellum and the vmPFC node was positively associated with a left lateralized cluster that spanned the superior division of the lateral occipital cortex, angular gyrus, and superior parietal lobule (Table 3, Figure 5). PCS total scores were neither associated with PCC-cerebellum FC values \((r=.06, \ p=.74) \) nor vmPFC-
parietal FC values \((r=-.14, p=.43)\), which might be attributable to the floor effect of PCS total scores among healthy controls in this study.

Table 3. Regions showing significant functional connectivity with NeuroSynth-derived PCC and vmPFC seeds as a function of trait mindfulness (FFMQ total scores) in healthy controls

<table>
<thead>
<tr>
<th>Seed</th>
<th>Cluster Coordinates</th>
<th>Cluster Size</th>
<th>Cluster Size pFDR</th>
<th>Cluster Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>-42 -64 -42</td>
<td>148</td>
<td>.02</td>
<td>Left cerebellum crus II</td>
</tr>
<tr>
<td>vmPFC</td>
<td>-42 -60 42</td>
<td>261</td>
<td>.001</td>
<td>Left lateral occipital cortex, superior division Left angular gyrus Left superior parietal lobule</td>
</tr>
</tbody>
</table>

Figure 4. Voxel clusters with significant functional connectivity to NeuroSynth-derived PCC and vmPFC seeds in healthy controls and patients without accounting for FFMQ total scores.
Figure 5. Significant associations emerging from Neurosynth-based DMN seed-to-voxel exploratory analyses in healthy controls.

In the patient sample, Neurosynth-derived PCC and vmPFC nodes of the DMN were not significantly associated with any clusters at the whole-brain level as a function of FFMQ sum scores.

Sensitivity analyses.

Some psychometric work suggests that a 4-factor model, without the Observing FFMQ facet, provides the best fit for meditation naïve respondents (Baer et al., 2006). We thus tested associations between 4-factor FFMQ scores and connectivity in the aforementioned networks, as well as with clinical pain outcomes. In these analyses, trait mindfulness was not associated with headache frequency, severity, impact or pain catastrophizing in patients, and was unassociated with experimental pain and pain catastrophizing in healthy controls (p’s > .05). Substitution of the 4-factor sum score in place of the 5-factor sum score in the neuroimaging models did not change primary analysis results.
Discussion

The principal finding of this study is that the inverse association between trait mindfulness and DMN connectivity observed in a healthy sample of 40 healthy participants (Harrison et al., 2019) did not replicate in our sample of 36 healthy adults, or extend to a much larger (n = 93) chronic pain sample. Specifically, in contrast to hypotheses, we did not observe any significant association between DMN connectivity and trait mindfulness in healthy controls or in patients when probed via seed-based functional connectivity analyses. In addition, pain catastrophizing did not predict significant patterns of seed-based functional connectivity. In a consistent manner, trait mindfulness was not associated with experimental pain in healthy controls, clinical pain in patients, or pain catastrophizing in either group. Although, in post-hoc exploratory analyses, we did observe that meta-analytically derived PCC and vmPFC nodes of the DMN were each associated with one cluster at the whole brain level as a function of trait mindfulness in healthy controls. Specifically, healthy individuals higher in trait mindfulness evidenced 1) greater connectivity between the PCC and a left lateralized cluster in the cerebellum, and 2) greater connectivity between the vmPFC and a left lateralized cluster spanning the superior division of the lateral occipital cortex, angular gyrus, and superior parietal lobule relative to those lower in trait mindfulness. Pain catastrophizing was not associated with these patterns of connectivity. These findings suggest that aspects of DMN FC may be related to trait mindfulness in healthy subjects, and that there could be variability in which DMN nodes demonstrate this association. However, given that (1) we did not observe FC patterns involving regions relevant to pain processing in relation to trait mindfulness, (2) pain catastrophizing did not associate with DMN FC, and (3) trait mindfulness was unassociated with experimental pain, these findings additionally challenge the notion that dispositional mindfulness might serve as an
individual difference marker of the ability to cope with pain in healthy subjects, and that there is a shared neurobiological mechanism between trait and state mindfulness. Further, our null findings in patients challenge the robustness of trait mindfulness as a protective factor in the context of chronic pain, and episodic migraine in particular.

Relatively little prior work is available to contextualize the present findings. One recent study in migraine reported that trait mindfulness buffered negative affective reactivity to pain on a day-to-day basis, but did not report on direct relations between mindfulness and pain (Ciere et al., 2019). Trait mindfulness has been inversely associated with pain intensity in heterogeneous pain groups, including undergraduate students (Mun et al., 2014), adolescents (Petter et al., 2013) and adults presenting for chronic pain treatment (McCracken et al., 2007); although, consistent with our results, null associations between mindfulness and pain severity have been reported (Waldron et al., 2018). Although training in mindfulness-based stress reduction has been shown to reduce headache frequency and impact in migraine (Seminowicz et al., 2020), trait mindfulness as a dispositional characteristic appears less meaningful in this context. Perhaps the active and volitional use of mindfulness strategies as acquired through systematic training is of greater clinical importance and neurobiologically significant (Zeidan et al., 2010, 2012) (Brewer et al., 2011; Garrison et al., 2015; Hölzel et al., 2007; Zeidan et al., 2015) than the presence of a mindfulness-like trait occurring the absence of training.

Although prior findings in a similarly sized healthy sample led us to hypothesize that DMN connectivity would be associated with trait mindfulness, some methodological details, including differences in scanning parameters, study contexts, toolboxes and processing pipelines distinguish the present study from prior work (Harrison et al., 2019). However, we did replicate the individual and group-level analyses used in Harrison et al (2019), and we were able to
robustly identify the DMN despite these differences in methods. The relationship between trait mindfulness and DMN connectivity may be nuanced, perhaps emerging only in certain individuals or circumstances. Less than half of the European sample in Harrison and colleagues (2019) was female, whereas the majority (86%) of healthy control participants in the present study were female, and living in the United States. Further research might explore whether gender plays a moderating role on the associations between DMN connectivity, pain catastrophizing and trait mindfulness. Other demographic characteristics like age, racialized identity, and education level were not reported in Harrison et al (2019), making it difficult to understand additional individual difference factors. More broadly, it is likely that there were unmeasured characteristics that differed systematically between the two samples, contributing to non-replication. As with all new areas of research, a certain amount of non-replication is expectable, and our findings encourage further investigations of these questions in new samples, including in other pain populations and sociodemographically diverse groups.

Much remains to be learned about the relationship between mindfulness training programs for pain, trait mindfulness, and outcomes. One unanswered question is the extent to which increased trait mindfulness mechanistically drives the observed improvements in symptoms following mindfulness-based interventions in the context of chronic pain. Moreover, the specificity of self-report measures like the FFMQ used here to prevailing mindfulness-based interventions like mindfulness-based stress reduction (Kabat-Zinn, 1982) remains unknown (Guendelman et al., 2017), such that interventions without explicit mindfulness instruction might enhance it (Pinniger et al., 2012). Another intriguing question is whether trait mindfulness measures tap the same psychological construct prior to and following formal exposure to mindfulness-based concepts, as formal training might change how individuals understand and
reflect on the items. Lastly, whether trait mindfulness moderates response to mindfulness-based treatment as suggested by one study in a non-pain sample (Shapiro et al., 2011) remains unclear. Future research should investigate these questions to clarify the role and importance of trait mindfulness in chronic pain and its treatment.
References

Ciere, Y., Snippe, E., Padberg, M., Jacobs, B., Visser, A., Sanderman, R., & Fleer, J. (2019). The role of state and trait positive affect and mindfulness in affective reactivity to pain in

McCracken, L. M., Gauntlett-Gilbert, J., & Vowles, K. E. (2007). The role of mindfulness in a
contextual cognitive-behavioral analysis of chronic pain-related suffering and disability.

