Thyroid hormone axis and anthropometric recovery of children/adolescents with overweight/obesity: a scoping review

Carlos Ramos Urrea1, Amanda Paula Pedroso1, Fernanda Thomazini1, Andreia Cristina Feitosa do Carmo2, Mônica Marques Telles1, Ana Lydia Sawaya1, Maria do Carmo Pinho Franco1, Eliane Beraldi Ribeiro1

1 Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Physiology, Rua Botucatu, 862, Biomedical Sciences Building, 2nd floor CEP 04023-060 São Paulo, SP, Brazil; carlosramos2690@gmail.com (C.R.U.); amandapedroso.bio@hotmail.com (A.P.P.); fernanda.thomazini@unifesp.br (F.T.); mmtelles@unifesp.br (M.M.T.); al.sawaya@yahoo.com.br (A.L.S.); mariadocarmo.franco@gmail.com (M.C.P.F.); eliane.beraldi@unifesp.br (E.B.R.)
2 Universidade Federal de São Paulo, Escola Paulista de Medicina, Campus São Paulo Library; carmo@unifesp.br (A.C.F.C.)

* Correspondence: carlosramos2690@gmail.com

Abstract: Thyroid hormones play multiple physiological effects essential for the maintenance of basal metabolic rate (BMR), adaptive thermogenesis, fat metabolism, and appetite. The links between obesity and the hormones of the thyroid axis, i.e., triiodothyronine (T3), thyroxine (T4), thyrotropin-releasing hormone (TRH), and thyrotropin (TSH), are still controversial, especially when considering children and adolescents. This population has high rates of overweight and obesity and several treatment approaches, including nutritional, psychological, and physical exercise interventions have been used. Understanding the importance of the hormones of the thyroid axis in the recovery from overweight and obesity may help directing measures to the maintenance of a healthy body composition. The present scoping review was carried out to analyze studies evaluating these hormonal levels throughout interventions directed at treating overweight and obesity in children and adolescents. The main purpose was to ascertain whether the hormones levels vary during weight loss. We selected for analysis 16 studies published between 1999 and 2019. Most of the studies showed that the changes in body composition parameters in response to the multidisciplinary interventions correlated positively with free T3 (fT3)/total T3 (TT3)/TSH. With respect to free T4 (fT4)/total T4 (TT4), the most common finding was of unchanged levels and hence, no significant association with weight loss. Importantly, the response to the intervention has even been found to not be affected by fT4 supplementation. Further studies are necessary to elucidate the relevance of the variations in hormone levels to the establishment of overweight/obesity and to the recovery from these conditions in children/adolescents.

Keywords: Thyroid hormones; multidisciplinary intervention; obesity

1. Introduction

Globally, obesity is a well-recognized public health problem affecting both adults and children(1). In children/adolescents, the prevalence of overweight/obesity is high (2) and associates with increased risk to develop diabetes and other co-morbidities (3).

The pathophysiology of overweight/obesity includes genetic, environmental, behavioral, metabolic, psychological factors, and hormonal factors. Thyroid hormones play multiple physiological effects essential for the maintenance of basal metabolic rate (BMR), adaptive thermogenesis, fat metabolism, and appetite (4). The participation of the levels of the hormones of the thyroid axis, i.e., triiodothyronine (T3), thyroxine (T4), thyrotropin-releasing hormone (TRH), and thyrotropin (TSH), has been studied with no conclusive results, especially when considering children and...
adolescents. They have indicated either that thyroid-hormones resistance is a causal factor of obesity or that elevated hormone levels may represent an adaptive response to obesity (5).

The treatment of children and adolescents with overweight or obesity is a very relevant issue, and several approaches, including nutritional, psychological, and physical exercise interventions have been used (6).

Understanding the importance of the hormones of the thyroid axis in the recovery from overweight and obesity may help directing measures to the maintenance of a healthy body composition.

The present scoping review was carried out to analyze studies evaluating these hormonal levels throughout interventions directed at treating overweight and obesity in children and adolescents.

2. Materials and Methods

This scoping review was registered on the International Prospective Register of Systematic Reviews (PROSPERO, CRD42020203359) and performed with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR).

2.1. Eligibility criteria

Original articles published in peer-reviewed journals, written in English, Portuguese, or Spanish, that had children and/or adolescents with overweight or obesity as participants and that performed some intervention for weight management, including, nutritional and/or psychological, and/or medical, and/or exercise.

The exclusion criteria were systematic reviews, studies in animals or adults, use of growth hormone or steroid hormones, diagnostic of thyroid kidney, heart, or neurological illness.

2.2. Literature search

The electronic search in the databases was carried out based on a search strategy aiming at locating both published and unpublished studies. Data collection and analysis were performed in September and October 2020. Electronic searches were conducted using the following databases: MEDLINE way Pubmed, Latin American and Caribbean Literature in Health Sciences (LILACS), Scopus (Elsevier) and Cochrane Library.

The following descriptors were extracted from the Health Science Descriptors database: obesity, overweight, obese, excess weight, weight gain, malnutrition, thyroid hormones, thyroid concentrations, thyroid stimulating hormone,
triiodothyronine, thyroxine, thyroid gland, child, children, adolescents. The development of the search strategy followed the recommendations of the checklist Peer Review of Electronic Search Strategies (PRESS) (7).

2.3. Study selection and appraisal

The selection and analysis of the studies were carried out by two independent authors using the Rayyan tool. The first selection was based on the title and summary of the studies. Duplicates and articles whose full texts were not available were excluded. Conflicts were resolved by consensus. After selection according to the inclusion criteria, two reviewers independently analyzed the texts in full to identify the relevant outcomes.

Data extraction and synthesis of results

To characterize the findings, the following variables were considered: age, type of intervention, effect of the intervention on body composition, and hormone levels, both at baseline and after the intervention. The articles were grouped by type of comparisons (in-group or between obese and eutrophic). Two studies involving thyroxine supplementation were constituted a third category.

3. Results

A total of 1031 articles were screened, leading to 20 eligible articles, of which 4 were excluded due to absence of full text. Sixteen articles were thus included in the qualitative synthesis. Figure 1 describes the selection process and Table 1 shows the results of each selected article.

Figure 1. Flow diagram of the studies selection.
Table 1. Summary of the characteristics and results of the 16 studies included in the analysis.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sample (Age)</th>
<th>Intervention group (Gender)</th>
<th>Control group</th>
<th>Intervention type (Time)</th>
<th>Effect of Intervention*</th>
<th>Hormones</th>
<th>Authors' conclusion</th>
<th>Our observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiortsis et al. 1999 (8)</td>
<td>64 (10 – 14y)</td>
<td>64 OB (BW>120%) (22 M and 42 F)</td>
<td></td>
<td>Caloric restriction, including a 24h recall method (6 weeks)</td>
<td>BMI decreased *</td>
<td>TT3: decreased TT4: unchanged TSH: unchanged</td>
<td>The decline in TT3 levels seems to play an important role in the decrease of RMR in children</td>
<td>TT3 levels decreased along with weight loss</td>
</tr>
<tr>
<td>Rijks et al. 2017 (9)</td>
<td>330 (2.6 – 18.9y)</td>
<td>66 OW (BMI Z-score >75<90), 148 OB (BMI Z-score=90<97), 115 MO (≥97) (142 M; 188 F)</td>
<td>99 out of 330 children were evaluated 1-year post-intervention</td>
<td>Nutritional education and physical activity (8 weeks)</td>
<td>BMI Z-score decreased *</td>
<td>fT4: decreased in children with decreased BMI Z-score (n = 62), but unchanged in children with increased BMI Z-score (n = 37) TSH: no differences among the subgroups OW, OB and MO TSH: unchanged</td>
<td>In OW and OB, TSH is positively associated with CVD markers. Changes in TSH are also associated with changes in lipid concentrations in children showing weight loss</td>
<td>fT4 levels decreased along with weight loss</td>
</tr>
<tr>
<td>Aeberli et al. 2010 (10)</td>
<td>206 OB (BMI-SDS >98 percentile) (119 M; 87 F)</td>
<td>197 OB completed the intervention</td>
<td></td>
<td>Hypocaloric diet, physical activity, and psychological treatment. (8 weeks)</td>
<td>BMI- SDS decreased *</td>
<td>fT3: normal range fT4: normal range TSH: no change</td>
<td>TSH concentrations tend to be higher in OB</td>
<td>fT3 and TSH levels decreased along with weight loss</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>BMI-Z score</td>
<td>Intervention</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shalitin et al. 2009 (11)</td>
<td>207 OB</td>
<td>>95 percentile</td>
<td>Hypocaloric diet</td>
<td>BMI-SDS decreased *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5 – 18 y)</td>
<td>(97 M, 110 F)</td>
<td>(12 weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142 subjects</td>
<td>completed the intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>207 OB</td>
<td>>95 percentile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5 – 18 y)</td>
<td>(97 M, 110 F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142 subjects</td>
<td>completed the intervention</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bas et al. 2013 (12)</td>
<td>150 OB</td>
<td>>percentile 95</td>
<td>Nutritional education and physical activity (6 months)</td>
<td>BMI Z-score decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3 – 17 y)</td>
<td>(67 M; 83 F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hypocaloric diet

- **TT3**: normal range
- **TT3**: not reported
- **fT4**: positive Δ (0.18 ± 1.9) in children showing decreased BMI-SDS;
- **fT4**: normal range
- **TSH**: 161 subject showed normal range levels; 46 subjects showed levels above the normal range levels
- **TSH**: not reported

No significant differences regarding fT4 and TSH between the children showing decreased BMI-SDS with those showing no BMI-SDS changes
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention Details</th>
<th>fT3: normal range</th>
<th>fT3: unchanged</th>
<th>fT4: normal range</th>
<th>fT4: unchanged</th>
<th>TSH: High range</th>
<th>TSH: decreased</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wolters et al. 2013</td>
<td>477 OB</td>
<td>Physical exercise, nutrition education, and psychological therapy (12 months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSH: High range</td>
<td>TSH: Decreased</td>
<td></td>
</tr>
<tr>
<td>(13)</td>
<td>(BMI-SDS >97 percentile) (219 M; 258 F)</td>
<td>BMI-SDS decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Licenziati et al. 2019</td>
<td>96 OB</td>
<td>Dietary recommendations, physical activity, and behavioral strategies (0.8 ± 0.3 year)</td>
<td>fT4: normal range</td>
<td>fT4: unchanged</td>
<td></td>
<td></td>
<td>TSH: High range</td>
<td>TSH: Decreased</td>
<td></td>
</tr>
<tr>
<td>(14)</td>
<td>(BMI-SDS >75 percentile) (49 M; 47 F)</td>
<td>BMI-SDS decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bouglé et al. 2014</td>
<td>528 OW + OB</td>
<td>Nutritional education and physical activity (52 ± 15 weeks)</td>
<td>fT3: normal range</td>
<td>fT3: unchanged</td>
<td></td>
<td></td>
<td>TSH: Normal range</td>
<td>TSH: Decreased</td>
<td>Increased TSH may be predictive of decreased insulin resistance; fT4 was associated with a low metabolic risk. Changes in thyroid function could protect against Non-significant decrease of fT3, fT4, TSH and BMI Z-score</td>
</tr>
<tr>
<td>(15)</td>
<td>(BMI Z-score >2 SDS) (238 M; 290 F)</td>
<td>BMI Z-score decreased</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Increased TSH levels, respectively. TSH decreased in the whole group of patients with initial values above the normal range.

A yet slightly reduced body fat can be followed by an improvement in biochemical parameters such as TSH and fT3.

Studies conducted with comparisons between obese and eutrophic groups

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention</th>
<th>Results</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radetti et al. 2012</td>
<td>72 (8 – 14y)</td>
<td>72 OW and OB (BMI-SDS >85 percentile) (41 M; 31 F)</td>
<td>Meetings with instructions on nutrition and physical activity at 3-month intervals (1.8 ± 1.0 year)</td>
<td>BMI-SDS decreased</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fT3: normal range</td>
<td>fT3: decreased</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fT4: normal range</td>
<td>fT4: unchanged</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TSH: normal range (17.2% high range)</td>
<td>TSH: decreased. 6.2% of the children showed a TSH above the normal range</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fT3 and TSH levels decreased along with a non-significant weight loss</td>
</tr>
<tr>
<td>Marras et al. 2010</td>
<td>520 (3.7 – 17.9y)</td>
<td>468 OB (BMI-SDS >95 percentile) (213 M; 255 F) - 63 OB (43 M; 20 F) completed the intervention</td>
<td>Nutritional education and physical activity (6 months)</td>
<td>BMI-SDS decreased in the OB group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fT3: no difference (17.9% above the normal range)</td>
<td>fT3 and fT4 normalized in 63% of the patients who showed abnormal concentrations at baseline</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fT4: no differences (1.28% above normal range)</td>
<td>TSH: no differences</td>
</tr>
</tbody>
</table>

CC-BY 4.0 International license

This is the author/funder, who has granted medRxiv a license to display the preprint in which was not certified by peer review preprint (which was not certified by peer review) doi: medRxiv preprint
Between-groups comparison (n = 50)

fT3: no differences
fT4: no differences between the boy groups, but OB girls had higher levels than EUT girls

TSH: no differences

In-group comparison (n = 36)

fT3: unchanged
fT4: no changes among the boys. OB girls showed decreased levels (became like the EUT girls)

TSH: unchanged

Normal thyroid function in OB, not influenced by a prolonged period of calorie restriction

TSH: moderately increased in OB girls

fT4 levels were higher in OB girls than in EUT girls, reaching normal levels along with weight loss induced by caloric restriction

Substantial weight loss decreased fT3 and TSH

All patients received a diet list based on their BMIs; OW: 28 OB: 29 MO: 29

(43 M; 42 F)

24 age matched ideal body weight subgroups

24 age matched EUT (13 M; 11 F)

All patients received a diet list based on their ideal body weight. Subgroups of 30 min aerobic exercise per day (6 months)
<table>
<thead>
<tr>
<th>2006 (19)</th>
<th>behavior therapy (12 months)</th>
<th>substantial weight loss n=49</th>
<th>(normal range)</th>
<th>showed decreased levels (no differences between OB with substantial weight loss and OB without substantial weight loss)</th>
<th>and weight loss led to a reduction. The elevation of these hormones seems to be rather a consequence of obesity than a cause of obesity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>137 F</td>
<td>fT4: no differences (normal range)</td>
<td>fT4: unchanged. (No differences between OB with substantial weight loss and OB without substantial weight loss.)</td>
<td>TSH: OB had higher levels than EUT (17% above normal range)</td>
<td>TSH: OB with substantial weight loss showed decreased levels (no differences between OB with substantial weight loss and OB without substantial weight loss.)</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Size</td>
<td>Intervention Details</td>
<td>TT3</td>
<td>TT4</td>
<td>TSH</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Reinehr & Andler 2002 (20)</td>
<td>225 (4.5 – 16y)</td>
<td>Physical exercise, nutrition education, and psychological therapy (12 months)</td>
<td>decreased</td>
<td>decreased</td>
<td>unchanged</td>
</tr>
<tr>
<td>Butte et al. 2015 (21)</td>
<td>16 (12 – 17y)</td>
<td>Roux-en-Y gastric bypass surgery (RYGB), The subjects were reevaluated 12 months after surgery</td>
<td>decreased</td>
<td>unchanged</td>
<td>unchanged</td>
</tr>
<tr>
<td>Eliakim et al. 2006 (22)</td>
<td>196 (5 – 17y), - 41 OB showed HTTR and were</td>
<td>Dietary and exercise program for 12 months followed by thyroxine supplementation (1-2 μg/kg) for 6 months</td>
<td>decreased</td>
<td>no differences</td>
<td>normal range</td>
</tr>
</tbody>
</table>

Studies involving thyroxine supplementation

- TT3, TT4 and TSH levels were moderately increased in OB at baseline. A normal energy diet induces a long-term decrease in the peripheral thyroid hormones as opposed to TSH.
- TT3 and TT4 levels decreased along with intervention-induced weight loss.
- TT3 and TSH levels decreased along with BMI decrease induced by RYGB.
- Energy adaptations that occur in adolescents following RYGB possibly involves TT3 mediation.
| Kumar et al. 2019 (23) | 51 OB with HTTR (6 – 12y) | 26 OB (BMI >3 Z-score) with levothyroxine supplementation | 25 OB without levothyroxine supplementation | Behavioral modification and a diet and physical activity plan, with or without levothyroxine supplementation (0.5 μg/kg/day) (6 months) | BMI Z-score decreased in both supplemented and not supplemented groups | TSH: HTTR decreased in both supplemented and not supplemented groups | TSH: HTTR decreased in both groups. No differences between groups and versus baseline | TT3: no differences between groups and versus baseline | TT4: no differences between groups and versus baseline | Supplementation of levothyroxine during weight management interventions, and should not be prescribed to children with obesity associated thyroid dysfunction | Supplementation with levothyroxine has no effect on weight loss |

* p<0.05 versus baseline according to the effect of the intervention in relation to the body mass index. Results were reported for both genders unless specified.

M = male; F = female; BC = body composition; EUT = eutrophic; OW = children with overweight; OB: children with obesity; MO = children with morbid obesity; HTTR = hyperthyrotropinemia; RMR = resting metabolic rate.
Table 2. Correlations between anthropometric recovery and hormonal levels.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Baseline Correlation results</th>
<th>After intervention Correlation results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marras et al. 2010 (17)</td>
<td>TSH and fT3 correlated positively with BMI-SDS</td>
<td>Delta fT3 correlated positively with body weight, BMI-SDS, fat mass, and percentage body fat</td>
</tr>
<tr>
<td>Bouglé et al. 2014 (15)</td>
<td>TSH correlated positively with BMI Z-score</td>
<td>Delta fT4 correlated negatively with lean body mass.</td>
</tr>
<tr>
<td>Aeberli et al. 2010 (10)</td>
<td>Body weight correlated negatively with fT3</td>
<td>Delta fT3 correlated positively with body weight, BMI-SDS, fat mass, and percentage body fat</td>
</tr>
<tr>
<td></td>
<td>Percentage body fat correlated positively with fT4</td>
<td></td>
</tr>
<tr>
<td>Licenziati et al. 2019 (14)</td>
<td>TSH correlated positively with BMI-SDS</td>
<td>TSH correlated positively with BMI-SDS</td>
</tr>
<tr>
<td>Bas et al. 2013 (12)</td>
<td>TSH and fT3 correlated positively with BMI Z-score</td>
<td>TT3 and TT4 correlated positively with BMI Z-score</td>
</tr>
<tr>
<td>Reinehr & Andler 2002 (20)</td>
<td></td>
<td>TT3 and TSH correlated positively with BMI</td>
</tr>
<tr>
<td>Butte et al. 2015 (21)</td>
<td></td>
<td>TT3 and TSH correlated positively with BMI</td>
</tr>
</tbody>
</table>

3.1. Description of the included studies

The literature search identified 1049 references (Figure 1) and 16 articles met all the inclusion criteria.

Table 1 summarizes the characteristics of the studies included in the analysis. There are studies performed with subjects from Italy (14,16,17), France (8,15), Israel (11,22), Turkey (12,18), Germany (13,19,20), the Netherlands (9), Swiss (10), United States (21), and India (23).

Twelve studies analyzed only obese children and adolescents (8,10–14,17,19–23) while the other 4 studies targeted both overweight and obese children and/or adolescents (9,15,16,18).

Table 2 describes the correlations between the thyroid hormonal axis and body composition parameters in the 9 studies that performed this calculation. At baseline, body weight was negatively correlated with fT3 (10), the percentage of fat mass was positively correlated with fT4 (10), and BMI was positively correlated with TSH (14,15,17) and fT3 (17). After intervention, BMI correlated positively with TSH, TT3, and TT4 (14,20,21). When considering the baseline-after intervention changes, the authors reported positive correlations of BMI and TT3 (8), and fT3 (10,12), and TSH (12). fT3 also correlated positively with body weight, fat mass, and percentage body fat. Negative correlations were seen between lean body mass and fT3 and percentage body fat.

3.2. Interventions
The duration of the interventions varied from 6 weeks to 18 months. One study utilized only a nutritional intervention [8], 6 studies performed nutritional intervention plus exercise intervention (11,12,15–18). One study allied nutritional and exercise interventions to administration of thyroxine (22).

In 5 studies, a psychological intervention was added to the nutritional plus exercise intervention (10,13,14,19,20). One study performed the 3 interventions plus levothyroxine supplementation (23).

One study performed psychological and exercise interventions (9) and 1 study used only a surgical intervention (21).

3.3. Nutritional Interventions

Fourteen studies used nutritional interventions. Eight studies used a nutritional education (12–16,19,20,23), 5 studies used a calorie restriction approach, with energy levels ranging from 900 to 2000 kcal/d and with varied macronutrient combinations and 1 study used the Mediterranean diet (17).

3.4. Exercise Interventions

Thirteen studies utilized physical exercise interventions. Nine studies conducted supervised training sessions with no specific routine or duration, with varying types and intensities (9,12–16,19,20,23), 1 involved two daily group endurance exercise sessions to improve aerobic performance, with a typical session lasting 60–90 min (10), and 3 performed aerobic exercise 3–5 times/week for at least 45–60 min (17), 30 minutes per day (18), or 90 minutes per day (11).

3.5. Psychological intervention

This type of intervention was used in 6 studies, including individual psychological care of the child/adolescent (10,14) or of the child/adolescent and their family (9,13,19,20). In the 2 studies detailing the psychological intervention, it consisted of techniques focusing on increasing self-esteem, responsibilities, and problem-solving strategies (9) and relaxation techniques and breathing therapy (10).

4. Discussion
All the 16 studies included in this analysis, published between 1999 and 2019, reported anthropometric recovery of the overweight/obese children/adolescents in response to the interventions, which, as depicted in table 1, varied largely with respect to the type and duration.

Concerning the baseline levels of the thyroid hormones (fT3, fT4, TT3 or TT4), 6 studies did not report these data (8,9,12,20,21,23). Among the 10 studies in which this information was available, the majority (9 studies) reported no significant alterations, either in relation to the normality ranges (10,11,13–16,19,22) or in comparison to eutrophic individuals (17,18), although one of these latter studies reported higher levels of fT4 in obese than in eutrophic girls (18) and one study reported small percentages of subjects with levels of fT3 (17.9%) or fT4 (1.28%) above normal range. Only one study reported higher mean fT3 values in the obese than in the eutrophic subjects, although still in the normal range (19). These results show that the most common status of thyroid hormones falls into normal levels.

TSH levels at baseline were not reported in 5 studies (8,9,12,20,21) while 2 studies selected only individuals with hyperthyrotropinemia (22,23). Among the remaining 9 studies, the mean levels were normal in 6 studies (10,11,15–19), although some of these studies found mean values in the high normal range and highlighted the presence of elevated levels in variable percentages of their cohorts, namely 1.9% (10), 28.6% (11), 13.1% (15), 17.2% (16), and 3.2% (17). Elevated baseline levels of TSH were reported in 3 studies (14,19,17). These data demonstrate that the most common status of TSH among the studies analyzed fell into normal levels, although the finding of values in the high normal range was frequent.

Four studies reported correlations between body measures and hormone levels at baseline. One study reported a positive association of fT3 with BMI-SDS (17) while another study found a positive association of fT3 and body weight and a negative association of fT4 and percentage body fat (10). In 3 studies, TSH correlated positively with BMI-SDS (14,17) and BMI Z-score (15).

We searched other studies reporting levels of the hormones of the thyroid axis in children/adolescents with overweight/obesity. In one study, no differences were found in the levels of fT4 and TSH between children/adolescents with excess weight and the eutrophic ones (13). Many studies showed that these levels felt into the normal range, although a common finding was that they were higher than those of eutrophic children/adolescents, concerning TT3 (24), TT4 (25), and TSH (24–28), fT3 and fT4 (5).
Similar findings have been found in adults, with respect to fT3 (29) and TT4 (29,30), i.e., levels in the normal range but higher than the eutrophic levels. There are also reports that the hormone levels were in the normal range but lower in obese than in eutrophic adults, concerning TSH (29–31), fT3 and fT4 (31).

Examining studies performing correlation analysis of hormone levels and body parameters in overweight/obese children/adolescents, we observed one study reporting no significant associations of fT3, fT4, and TSH levels with body composition parameters (32). In contrast, we found reports of a positive correlation between fT3 and BMI (5) and of a negative correlation of fT4 and BMI (25). There are also studies showing a positive correlation of TSH and body measures (5,33). These latter results agree with the findings of the studies analyzed in this scoping review.

These findings are like some reports in adults, finding positive associations between BMI and TT3 (34) and fT3 (29,31,34–38), and a negative correlation with fT4 (38). With respect to TSH, the studies found achieved a negative (30) or positive (38–41) association of BMI and TSH.

Concerning the response to the interventions, 10 of the studies included in this scoping review reported a decrease in at least one thyroid hormone measured (TT3, TT4, fT3, fT4) in relation to the respective baseline values (8–12,16,17,19–21). Five studies did not find any type of significant change between the baseline and the post-intervention values (13–15,18,23). One study did not report these data (22).

In relation to TSH, 9 studies reported a decrease after the intervention (10,12,14–16,19,21–23) and 5 studies showed no changes (8,9,13,18,20). It is important to point out that 2 of these studies included only subjects with hyperthyrotropinemia. In 2 studies, this information was not reported (11,17).

The relation of hormonal levels on anthropometric recovery was evaluated in 5 studies by a correlation analysis. Positive associations were found between delta of fT3 and body weight, BMI-SDS, fat mass, and percentage of fat mass (10), fT3 and BMI Z-score (12) and TT3 and BMI (21). TT4 correlated positively with BMI Z-score (20) but delta fT4 correlated negatively with percentage of fat mass (10). TSH correlated positively with BMI-SDS (14), BMI Z-score (12) and BMI (21). Studies performed in adults submitted to multidisciplinary interventions to treat obesity corroborate the above results, as they have found positive associations of fT3/TT3 with BMI and body weight (34,42,43) and of TSH with body weight (43–46). However, we found one study in which body and fat mass losses were not accompanied by in TSH levels (47).
The main purpose of this scoping review was to ascertain whether the hormones of the thyroid axis vary during weight loss in overweight/obese children/adolescents. The examination of the 16 selected studies allowed us to conclude that most of the results pointed to the absence of elevated levels at baseline, in agreement with a previous review (5). Also, most of the studies showed that the changes in body composition parameters in response to the multidisciplinary interventions correlated positively with fT3/TT3/TSH. Further studies are necessary to elucidate the relevance of the variations in hormone levels to the establishment of overweight/obesity and to the recovery from these conditions in children/adolescents. With respect to fT4/TT4, the most common finding was of unchanged levels and hence, no significant association with weight loss. Importantly, the response to the intervention has even been found to not be affected by fT4 supplementation.

Funding: This research was funded by Coordenação de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), this study was approved by the Research Ethics Committee of the Federal University of São Paulo, (CAAE = 17459618.0.0000.5505). CAPES has no role in the design, analysis or writing of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight,

47. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex,. Am J Clin Nutr. 2005;82(March):941–8.
Figure 1. Flow diagram of the studies selection.