Modeling the USA Winter 2021 CoVID-19 Resurgence

Genghmun Eng
PhD Physics 1978, University of Illinois at Urbana-Champaign
January 6, 2022

Abstract

The current USA 2021 CoVID-19 Winter Resurgence is modeled here with the same function used for analyzing prior USA CoVID-19 waves:

\[N(t) \approx \max \{ N_o \exp(\frac{t}{t_R(1+\alpha_S t)}) \exp[-\delta_o t] \} \]

Here, \(N(t) \) gives the total number of CoVID-19 cases above the previous baseline, and \(t_R \) sets the initial \(t_{dbl} = t_R (\ln 2) \) pandemic doubling time. Larger \(\alpha_S \) values indicate that uninfected people are improving their pandemic mitigation efforts, such as Social Distancing and vaccinations; while \(\delta_o > 0 \) accelerates the post-peak \(\frac{d}{dt} N(t) \) tail-off, and is empirically associated with mask-wearing. The pandemic wave end is when \(N(t) \) no longer increases.

The USA Summer 2021 resurgence results from our prior medrxiv.org preprints were used as a baseline. By 11/15/2021, an additional \(N_o^{2021} \approx 107,000 \) cases above baseline were found, signaling the USA Winter 2021 resurgence. This CoVID-19 wave is still in its initial stages. Presently, our analysis indicates that this CoVID-19 wave can infect virtually all susceptible persons; just like the initial stage of the USA Summer 2021 resurgence. Data up through 12/30/2021 gives these parameter values:

\[t_R \approx 8.05 \text{ days} \quad \alpha_S \approx 0.011 / \text{day} \]

These values are identical to the prior 2020 USA Winter Resurgence results. Also, the \(N_o^{2021}(11/15/2021) \) and the \(N_o^{2020}(9/25/2020) = 89,900 \) values are similar. However, while the Winter 2020 Resurgence showed a significant mask-wearing effect \(\delta_o^{2020} = 1.748 \times 10^{-3} / \text{day} \), this initial USA Winter 2021 Resurgence shows practically no mask-wearing effects \(\delta_o^{2021} \leq 0.001 \times 10^{-3} / \text{day} \). If mask-wearing were to quickly rise to the Winter 2020 levels, it would give these projected totals:

\[N(t = [1/1/2022]) \approx 54,705,400 \]
\[N(t = [3/21/2022]) \approx 83,371,000 \]
\[N(t = [3/21/2024]) \approx 92,399,000 \]

More robust mask-wearing and enhanced Social Distancing measures could further reduce these values (with 3 Figures).

* (10.1101_2021.08.16.21262150; 10.1101_2021.10.15.21265078)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
1 Introduction

Each new USA CoVID-19 wave usually starts with a sharp rise in the total number \(N(t) \) of new cases. The time evolution for each of these waves has been successfully modeled\(^1\) using this basic function for \(N(t) \):

\[
N(t) \approx \max\{N_0 \exp(+\frac{t}{\frac{1}{R_o}+\delta_o}), N(t) \exp(-\delta_o t)\}.
\]
[1.1]

Equation [1.1] represents the USA Winter 2021 CoVID-19 Resurgence cases above a baseline that is set by the USA Summer 2021 Resurgence from our prior medrxiv.org preprints\(^5\)–\(^6\). The standard SEIR (Susceptible, Exposed, Infected, and Recovered or Removed) epidemiology models all start with an exponential growth \((R_o > 1)\) or decay \((R_o < 1)\):

\[
\begin{align*}
\frac{dN(t)}{dt} &= +K_R (R_o - 1) N(t) = [1/t_R] N(t), \quad \text{[1.2a]} \\
N(t) &= N_o \exp[t/t_R], \quad \text{[1.2b]} \\
t_{dhl} &= t_R (\ln 2), \quad \text{[1.2c]}
\end{align*}
\]

where \(t_R > 0 \) sets the initial growth rate, and \(t_{dhl} \) sets the initial \(N(t) \) doubling-time. Virtually all SEIR models are local models, with \(R_o \) representing the average number of people who will become infected by an ailing person during the course of their illness.

Given a total population of \(N_{ALL} \), the uninfected population \(U(t) \) is:

\[
U(t) = [N_{ALL} - N(t)]. \quad \text{[1.3]}
\]

Using Eq. [1.1] implicitly assumes that \(N(t) << N_{ALL} \) for all times of interest, so that pandemic saturation effects can be ignored. In general, SEIR models do not explicitly consider what the \(U(t) \) uninfected population may be doing in response to the pandemic, prior to becoming infected. In contrast, Eq. [1.1] was developed as a non-local extension of SEIR models, to explicitly take into account what the uninfected population, as a whole, is doing to mitigate pandemic spread.

Since Eq. [1.1] is empirically based, it does not predict when each new CoVID-19 wave will start, or what biological and social circumstances are causing the new wave. As a result, the \(t = 0 \) point for each wave is usually set by when the resurgence is first easily identified, with \(N(t = 0) = N_o \) being the number of cases above baseline at that time. But once the CoVID-19 wave becomes established, Eq. [1.1] appears to successfully predict its time evolution.

As given in our prior preprints\(^4\)–\(^6\), the parameter \(\alpha_S \) measures the combined effect of virtually all large-scale pandemic mitigation efforts. These include Social Distancing requirements, such as minimum separation distances and decreased allowable occupancy; along with lockdowns, "stay at home" orders, school closures, and restrictions on business operations; as well as the impact of large-scale vaccination efforts. The \(\delta_o > 0 \) parameter accelerates the post-peak \(\frac{d}{dt} N(t) \) tail-off, and our prior work\(^3\)–\(^6\) shows that it is empirically associated with mask-wearing.

The calculated end for each pandemic wave occurs when \(N(t) \) in Eq. [1.1] for the total number of cases first stops increasing, which makes the final stages of calculated post-peak \(\frac{d}{dt} N(t) \) tail-off inaccurate. However, the pandemic wave is substantially over by then, assuming that no follow-on resurgence occurs.
The USA Winter 2021 Resurgence

Our CoVID-19 modeling using the same few parameters has been successful at predicting the time evolution of each prior USA CoVID-19 wave1–6. This result shows that the response of the $U(t)$ uninfected population was similar for each wave, even if different dominating factors drove each new resurgence.

Deviations of $\sim 10^7$ extra cases above the USA Summer 2021 baseline were observed by 11/15/2021. Thus, the USA is now in the initial stages of a Winter 2021 resurgence, as shown in Figure 1. Our calculations indicate that this CoVID-19 wave presently can infect virtually all susceptible people; a result that is similar to the initial stage of the USA Summer 2021 wave5.

In addition, two of the three Eq. [1.1] parameter values, as determined using the data up through 12/30/2021, were found to be identical to the 2020 USA Winter Resurgence values as follows:

\[t_R \approx 8.05 \text{ days} ; \]
\[\alpha_S \approx 0.011 / \text{days} . \]

Both CoVID-19 Winter Resurgences also have similar N_o values:

\[N_o(\text{Winter 2020}, 9/25/2020) = 89,900 ; \]
\[N_o(\text{Winter 2021}, 11/15/2021) = 107,000 ; \]

indicating that both waves started similarly. However, the Winter 2020 Resurgence was associated with a non-negligible amount of mask-wearing, as measured by δ_o in Eq. [1.1]. In contrast, this initial stage of the USA Winter 2021 wave is associated with having virtually no mask-wearing effects:

\[\delta_o(\text{Winter 2020}) = 1.748 \times 10^{-3} / \text{day} ; \]
\[\delta_o(\text{Winter 2021}) \leq 0.001 \times 10^{-3} / \text{day} . \]

In Figure 2, the $\{N_o, t_R; \alpha_S; \delta_o\}$ parameter values for this Winter 2021 Resurgence are compared to each of the prior USA CoVID-19 waves. If mask-wearing were now to quickly rise to the Winter 2020 levels, without changing the other Winter 2021 Resurgence parameters, the total number of projected USA CoVID-19 cases would be:

\[N(t = [1/1/2022]) \approx 54,705,400 ; \]
\[N(t = [3/21/2022]) \approx 83,371,000 ; \]
\[N(t = [3/21/2024]) \approx 92,399,000 . \]

Without mask-wearing [$\delta_o \approx 0$], the 3/21/2022 projection would change to:

\[N(t = [1/1/2022]) \approx 54,705,400 ; \]
\[N(t = [3/21/2022]) \approx 126,463,000 ; \]

with the calculated $N(t)$ for [3/21/2024] substantially exceeding the N_{ALL} total US population. At that point the Eq. [1.1] assumption that N_{ALL} is large enough so that $N(t) \ll N_{ALL}$ for all times of interest, would no longer be valid. The USA would be in a pandemic saturation stage, where practically everybody is or was infected.

Figure 3 shows our model predictions vs CoVID-19 data for the entire pandemic, from March 2020 through January 2022. Whenever the pandemic appeared to be beaten down, restrictions were relaxed, CoVID-19 cases increased, new CoVID-19 variants appeared, and the pandemic rose up again, almost with every season.
The daily number of new cases \(\frac{dN(t)}{dt} \) in Figure 3 has peaks for the initial Spring 2020 pandemic; a Summer 2020 resurgence; the long Winter 2020 Resurgence; a small uptick in Spring 2021; the USA Summer 2021 Resurgence; and now the USA Winter 2021 Resurgence.

In addition, Figure 3 shows Winter 2021 Resurgence projections for two different \(\delta_o \)-values. One projection is the best data fit to date (12/30/2021), and uses \(\delta_o \leq 0.001 \times 10^{-3} \) / day. The other projection is how the Winter 2021 Resurgence would progress, if \(\delta_o \) were to suddenly increase to the prior Winter 2020 Resurgence value of \(\delta_o = 1.748 \times 10^{-3} \) / day.

3 Summary

It is January 2022, and the USA is in the midst of the initial stages of a CoVID-19 Winter 2021 Resurgence. Using the USA CoVID-19 Summer 2021 Resurgence as a baseline, the latest CoVID-19 wave was modeled using:

\[
N(t) \approx \max\{N_o, \exp\left(\frac{\alpha}{tR(1+\alpha S)} \exp[-\delta_o t]\right)\},
\]

with those results shown in Figure 1. This function was used to analyze each previous USA CoVID-19 wave. Since the same few parameters successfully apply to all these USA CoVID-19 waves, with only different \(t = 0 \) starting points and \(\{N_o; tR; \alpha S; \delta_o\} \) parameter values allowed, it shows that the response of the \(U(t) \) uninfected population has been similar for each CoVID-19 wave, even if different factors were driving each new resurgence.

This effect is best seen by comparing the parameters derived for this initial stage of the USA CoVID-19 Winter 2021 Resurgence to the prior USA CoVID-19 Winter 2020 Resurgence, as shown in Figure 2. Both have similar \(\{N_o; tR; \alpha S\} \) parameter values, indicating the USA population is in a similar position with respect to CoVID-19 in both cases. No doubt, the large number of Winter 2021 CoVID-19 Resurgence cases is being driven by infections from the most recent Omicron CoVID-19 variant.

However, back on Jan. 7, 2021, during the Winter 2020 Resurgence, only about \(\sim 3\% \) of the USA population had received any vaccinations, with only \(\sim 0.3\% \) being fully vaccinated. At that time, the \(U(t) \) uninfected population was substantially unvaccinated. In contrast, by Jan. 2022, a substantial fraction of the \(U(t) \) uninfected population was considered fully vaccinated.

Given the known capacity for the Omicron CoVID-19 variant to infect fully vaccinated persons, the similarity in the \(\{N_o; tR; \alpha S\} \) parameters between these two USA Winter Resurgences, shows that the USA vaccinated population is in a similar position to the USA unvaccinated population a year ago. Such a result brings CoVID-19 infection closer to becoming endemic. The 'silver lining' to this dour cloud is that those who are vaccinated appear to have much less severe CoVID-19 infection impacts.

One significant difference between this initial stage of the USA CoVID-19 Winter 2021 Resurgence and the prior USA CoVID-19 Winter 2020 Resurgence is that the \(\delta_o \)-parameter associated with mask-wearing was significantly higher.
in 2020, compared to this initial stage of the USA CoVID-19 Winter 2021 Resurgence, which showed a $\delta_o \approx 0$ result.

If $\delta_o \approx 0$ persists, along with the present $\{N_0; t_R; \alpha_S\}$ values, this CoVID-19 Winter 2021 Resurgence will have the capacity to infect nearly everyone who is not practicing the strictest CoVID-19 prevention protocols, with the resulting $N(t)$ projections for $\delta_o \approx 0$ given in the prior section. Significantly increased mask-wearing and enhanced Social Distancing measures are needed to prevent these high levels of USA CoVID-19 projected cases from actually occurring.

4 List of Figures

Figure 1: The USA CoVID-19 Winter 2021 Resurgence, By Itself.
Figure 2: Summary of CoVID-19 Model and Parameter Values.
Figure 3: USA CoVID-19 Totals: 3/21/2020 through 12/30/2021.

5 References

1. https://medrxiv.org/cgi/content/short/2020.05.04.20091207v1
 “Initial Model for the Impact of Social Distancing on CoVID-19 Spread”
2. https://medrxiv.org/cgi/content/short/2020.06.30.20143149v1
 “Orthogonal Functions for Evaluating Social Distancing Impact on CoVID-19 Spread”
3. https://medrxiv.org/cgi/content/short/2020.08.07.20169904
 “Model to Describe Fast Shutoff of CoVID-19 Pandemic Spread”
4. https://medrxiv.org/cgi/content/short/2020.09.16.20196063
 “Initial Model for USA CoVID-19 Resurgence”
5. https://medrxiv.org/cgi/content/short/2021.08.16.21262150
 “The IHME vs Mc: Modeling USA CoVID-19 Spread, Early Data to the Fifth Wave”
6. https://medrxiv.org/cgi/content/short/2021.10.15.21265078
 “Updated Model for the USA Summer 2021 CoVID-19 Resurgence”
Fig. 1: The USA CoVID-19 Winter 2021 Resurgence, By Itself
<table>
<thead>
<tr>
<th>Index</th>
<th>U.S.A. CoVID-19 Stage</th>
<th>N_0, (Initial $t=0$ Value)</th>
<th>$t=0$ Date</th>
<th>$t/dblN$ days, at $t=0$</th>
<th>t_R value</th>
<th>α_S value</th>
<th>δ_0 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Init. Model 6/7/20 Update</td>
<td>23,710</td>
<td>03/21/2020</td>
<td>1.99657</td>
<td>2.88044</td>
<td>0.06618</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>1st Resurgence Summer 2020 =></td>
<td>15,650</td>
<td>06/07/2020</td>
<td>2.88000</td>
<td>4.15496</td>
<td>0.058___</td>
<td>0.0108___</td>
</tr>
<tr>
<td>3</td>
<td>Winter 2020 Resurgence =></td>
<td>88,900</td>
<td>09/25/2020</td>
<td>5.57983</td>
<td>8.05___</td>
<td>0.011___</td>
<td>0.001748</td>
</tr>
<tr>
<td>4</td>
<td>Small Spring 2021 Resurgence =></td>
<td>146,000</td>
<td>03/19/2021</td>
<td>5.57983</td>
<td>8.05___</td>
<td>0.00128</td>
<td>0.01365</td>
</tr>
<tr>
<td>5</td>
<td>Initial Portion, Summer 2021 Resurgence =></td>
<td>41,000</td>
<td>06/07/2021</td>
<td>9.08924</td>
<td>13.113___</td>
<td>0.0030___</td>
<td>0.00000</td>
</tr>
<tr>
<td>6</td>
<td>Latter Portion, Summer 2021 Resurgence =></td>
<td>3,200,000</td>
<td>08/13/2021</td>
<td>14.44339</td>
<td>20.83740</td>
<td>0.019999</td>
<td>0.000489</td>
</tr>
<tr>
<td>7</td>
<td>Initial Portion, Winter 2021 Resurgence =></td>
<td>107,000</td>
<td>11/15/2021</td>
<td>5.57983</td>
<td>8.05___</td>
<td>0.011___</td>
<td>0.000001</td>
</tr>
<tr>
<td>8</td>
<td>Winter 2021 Extrapolation using Winter 2020 δ_0 value =></td>
<td>107,000</td>
<td>11/15/2021</td>
<td>5.57983</td>
<td>8.05___</td>
<td>0.011___</td>
<td>0.001748</td>
</tr>
</tbody>
</table>
Fig. 3: USA CoVID-19 Totals: Data 3/21/2020 through 12/30/2021