Effect of vitamin D on infection and inflammation in patients with cystic fibrosis: a systematic review and meta-analysis

Nelufa Begum PhD¹
Abdullah Al Tarique PhD¹
Tamara Blake PhD¹
Dwan Vilcins PhD¹
Mohammad Zahirul Islam PhD¹
Nazrul Islam PhD²
Robert S Ware PhD³
Peter Sly MBBS, MD, DSc, FRACP, FAHMS, FERS, FThorSoc, FAPSR, ATSF¹

¹Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Qld 4101, Australia
²Faculty of Health, Queensland University of Technology, Qld 4000, Australia
³Menzies Health Institute Queensland, Griffith University, Nathan, Qld 4111, Australia

Corresponding Author:
Dr Nelufa Begum, Children’s Health and Environment Program, Child Health Research Centre, 62 Graham St, South Brisbane 4101, Qld, Australia
Ph: +61 7 30697382
Email: n.begum@uq.edu.au
ABSTRACT

Background

Cystic fibrosis (CF) is a genetic disorder in which the respiratory system gets clogged with mucus leads to progressive lung damage. There is no known cure for CF but several treatments to manage symptoms and reduce complications. Vitamin D deficiency is common in CF associated with increased infection and inflammation. This systematic review and meta-analysis will evaluate the effectiveness of vitamin D treatment in reducing respiratory tract infection and inflammation in patients with CF.

Methods

Randomized and quasi-randomised studies in CF patients with control groups will be identified. The antibacterial activity of vitamin D supplementation will help in reducing respiratory tract infection and inflammation in CF. Overall effects of vitamin D in terms of infection and inflammatory markers such as C-reactive protein, inflammatory cytokine interleukin (IL)-6, IL-8, IL-17, IL-23, antimicrobial peptide (LL-37), lung function defined by forced expiratory volume in 1 second (FEV₁) %, other assessed respiratory parameters will be calculated using random-effect models. Study quality will be assessed using RoB 2 – A revised Cochrane Risk of Bias tool for randomised trials. The overall quality of evidence for each outcome will be summarised according to the Grading of Recommendations Assessment, Development, and Evaluations (GRADE) framework.
BACKGROUND

Cystic fibrosis (CF) is a common inherited respiratory disease (1). There is great geographic and ethnic variation in the prevalence of this respiratory disease, but CF has the highest prevalence in Europe, North America, and Australia and remains mainly a disease in Caucasians (2). Patients with CF are more vulnerable to chronic respiratory infection and inflammation in the lower airways, which lead to progressive lung damage. Most patients with CF have reduced capacity to combat chronic respiratory infection, and inflammation leading to respiratory failure is the most common cause of morbidity and mortality in individuals with CF. Although CF cannot be cured, there are several treatment options available to manage symptoms and reduce complications.

Vitamin D deficiency is common in children and adults with CF. Vitamin D is associated with inflammatory response in respiratory tract infections (3-5). Some studies have reported that more than 90% of CF patients have vitamin D deficiency (6, 7), and the correction of vitamin D deficiency reduces inflammation and decreases infection in patients with CF. Vitamin D is a fat-soluble vitamin that is poorly absorbed by individuals with CF unless pancreatic enzyme therapy is adequate. Vitamin D levels are measured routinely at CF annual review, and vitamin supplementation is routine in CF management. To prevent pancreatic insufficiency and deficiency of fat-soluble vitamin D, patients with CF receive age-group-specific vitamin D supplementation according to international CF nutritional guidelines (8). It is well-known that with ongoing supplementation, vitamin D levels improve with pancreatic enzymes (9). A study demonstrated that vitamin D deficiency is associated with alterations in microbiota composition that promote inflammation and supplementation with vitamin D has the potential to impact microbiota composition. It reports that airway microbiota in CF is disrupted by chronic inflammation in the respiratory, and recurrent lung infection (2). Vitamin D deficiency increases susceptibility to infectious diseases and affects control of the inflammation process. Thus, vitamin D supplementation aims to increase vitamin D levels with potential long-term beneficial effects, including antibacterial activity on pulmonary function in patients with CF.

It is well-established that vitamin D deficiency is associated with increased inflammation. Vitamin D has been reported to have an antibacterial effect to reduces respiratory tract infection and inflammation in CF. A study has reported increased vitamin D suppresses the production of proinflammatory cytokines interleukin (IL)-6 and IL-8 and increase the production of the antimicrobial peptide (AMP) and LL-37 from CF respiratory epithelial cells. It indicated that vitamin D was evaluated for its potential to increase LL-37 and reduce inflammation (10).
Vitamin D treatment decreases plasma IL-8 concentration, decreases neutrophil count, reduces inflammation, and improves lung function defined by forced expiratory volume in 1 second (FEV₁) % predicted. The study indicated that a high dose of vitamin D improved vitamin D status, which leads a better respiratory function (11). A recent study demonstrated that the anti-inflammatory effect of vitamin D reduced the level of IL-17A and IL-23 in the airway of CF patients with chronic Pseudomonas aeruginosa infection and contributed to the exaggerated inflammatory response to pulmonary infection (12).

This review aims to explore whether, in patients with CF, supplementation with vitamin D compared with placebo, is effective in reducing respiratory tract infection and inflammation. Additionally, this review will help identify the relationship between vitamin D status in CF and lung function outcomes.

This review protocol will follow the guidelines for the Preferred Reporting Items for Systematic Reviews and Metanalysis (PRISMA) (13) and is reported here using the Guidance notes for registering a systematic review protocol with PROSPERO provided by the Centre for Reviews and Dissemination (14).

PROSPERO ITEMS
1. Review title
Effect of vitamin D on infection and inflammation in patients with cystic fibrosis: a systematic review and meta-analysis

2. Original language title
As above

3. Anticipated or actual start date
7 January 2022

4. Anticipated completion date
7 July 2022

5. Stage of review at time of this submission
Preliminary searches and piloting of the study selection process are underway. After submitting this protocol, the search will be re-run, and eligible journal articles will be identified for inclusion in meta-analyses.

6. Named contact
Dr Nelufa Begum

7. Named contact email
n.begum@uq.edu.au; Dr Nelufa Begum - Child Health Research Centre, The University of Queensland (uq.edu.au)

8. Named contact address
Child Health Research Centre, 62 Graham St, South Brisbane 4101, Qld, Australia

9. Named contact phone number
+61 7 3069 7382

10. Organisational affiliation of the review
Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland

11. Review team members and their organisational affiliations:
Nelufa Begum, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland
Abdullah Al Tarique, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland
Tamara Blake, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland
Dwan Vilcins, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland
Mohammad Zahirul Islam, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland
Nazrul Islam, Faculty of Health, Queensland University of Technology
Robert S Ware, Menzies Health Institute Queensland, Griffith University
Peter Sly, Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland

12. Funding sources
Nil

13. Conflicts of interest
All authors declare they have no known conflicts of interest.
14. Collaborators
Nil

15. Review question
This review aims to explore whether the supplementation of vitamin D is effective in reducing respiratory tract infection and inflammation in patients with cystic fibrosis. We hypothesized that in cystic fibrosis patients who are supplemented with vitamin D, compared with placebo, there will be reduced bacterial infection.
P: Patients with cystic fibrosis
I: Vitamin D treatment/supplementation (any form of doses)
C: Control (placebo) is either no treatment or placebo treatment,
O: infection, inflammation and bacterial killing in the airway.

16. Searches
Multiple strategies will be used to identify studies published in English as of December 2021. Sources are four databases - PubMed, EMBASE via Elsevier, CINAHL via EBSCOhost and Web of Science (advanced), from inception to search date. Search strategies for each database were prepared by NB in consultation with other team members and a university library Information specialist. Preliminary searches were conducted using the various suggested terms to guide the study selection process.

17. URL to search strategy
The final search strategies as used in this systematic review are detailed in Appendix I.

18. Condition or domain being studied
Cystic fibrosis

19. Participants/population
Children or adult patients with cystic fibrosis will be included in the review. Detailed eligibility criteria are as follows:
The cystic fibrosis patients and
- vitamin D treatment - vitamin D2 or calciferol, vitamin D3, serum25(OH)D, cholecalciferol supplements with any form of doses such as cholecalciferol 1000 IU, ergocalciferol, vitamin complex such as vitamin ABDEK or multivitamin;
- infection and inflammation (sputum or blood microorganisms/pathogens) – macrophage, neutrophil, Streptococci, Pseudomonas aeruginosa, interleukin-6 (IL-6), IL-8, IL-17, IL-23, LL-37, CRP, antimicrobial peptide, etc.
Exclusion criteria

Cystic fibrosis patients who underwent a lung transplant, UV light therapy for vitamin D will be excluded and no other restrictions will be applied based on comorbidities. Detailed exclusion criteria are as follows:

- No outcomes related to vitamin D treatment
- UV light therapy for vitamin D
- Not in a language that can be translated into English
- Full text not available/conference abstract/poster/meeting abstract/note
- Not original research/case study/review/book chapter/letter/review
- No comparator
- Conference proceedings/editorial/editorial material
- Duplicate study

20. Intervention(s), exposure(s)

Any form of vitamin D, say, vitamin D3 (known as cholecalciferol), vitamin D2 (ergocalciferol), etc. at any dose and any duration of intervention. Vitamin D treatment will help to inhibit inflammation and bacterial killing in the airway in cystic fibrosis.

21. Comparator(s)/control

Control (placebo) is either no treatment or placebo.

22. Types of study to be included

Randomised control trials (RCT) and quasi-randomised control trails such as single centre double-blinded cross-over RCT, multicentre double-blinded RCT, non-blinded RCT. All study designs other than randomized controlled trials (Cohort, Retrospective, case-control, case series, etc.) will be excluded in this review. Studies published as full-text articles that report original research will be eligible for inclusion.

23. Context

24. Main outcome(s)

The effectiveness of vitamin D helps in reducing respiratory tract infection and inflammation in cystic fibrosis patients. Vitamin D treatment will increase serum 25-hydroxyvitamin D (25OHD), decrease plasma IL-8 or IL-23 concentration, which decreases neutrophil count to reduce inflammation in respiratory tract infection. Results from individual studies will be synthesized using random effect models depending on data quality and heterogeneity. For
continuous outcomes mean differences (95% confidence intervals) will be calculated, and for
categorical outcomes odds ratios with 95% confidence intervals will be calculated to
investigate the standardised mean difference (that is, measure of effect size) between the two
groups.

*Measure of effect:
No restrictions on the outcome measure of vitamin D. Overall effects of vitamin D in terms of
infection and inflammatory on blood or sputum inflammatory biomarkers. All outcomes will
be collected at any time frame regardless study length and will analyse separately for short-
term (1-16 weeks) and medium term (16-52 weeks) outcomes to gather all possible evidence.

25. Additional outcome(s):
Identify the relationship between vitamin D status in CF and lung function outcomes defined
by forced expiratory volume in 1 second (FEV₁), i.e., respiratory status - FEV₁, other assessed
respiratory parameters.

26. Data extraction (selection and coding)
The bibliographic software, EndNote, will be employed to organize, store, and manage all the
references. References retrieved from all four databases will be imported into Endnote. After
removal of duplicate references, studies will be selected by three reviewers based on
predetermined study inclusion/exclusion criteria. The first selection will be based on title and
abstract screening, and the second selection will be based on a full-text screening. Any conflict
will be resolved by an independent reviewer. During the full-text screening, any exclusion
reasons will be noted to be published in the supplementary material. Data extraction template
will be created to gather study information. The template will contain information on author,
year of publication, reference, the country in which the study conducted, study type and study
design, no. of patients, patient’s allocation, study length, baseline information on (age,
s25OHD (ng/ml), other descriptions including lung function – mean (standard deviation)), dose
of vitamin D (IU) for intervention and comparator and list of outcomes. NB will extract data
from each selected study. The overall quality of evidence for each outcome will assess
according to the Grading of Recommendations Assessment, Development, and Evaluations
(GRADE) guideline, which classify evidence as either very low, low, moderate, or high.

27. Risk of bias (quality) assessment
Two reviewers will perform the study quality assessment independently, with disagreements
resolved by a third reviewer. Risk of bias will be assessed using RoB 2 – A revised Cochrane
risk-of-bias tool for randomised trials with adjustments made where necessary (15).
28. **Strategy for data synthesis**

Studies included in this review will be grouped according to the primary and secondary outcomes as appropriate. When studies report sufficient data, a meta-analysis will be performed. Results from individual studies will be synthesized using random effect models depending on data quality and heterogeneity. For continuous outcomes mean differences (95% confidence intervals) will be calculated, and for categorical outcomes odds ratios with 95% confidence intervals will be calculated to investigate the standardised mean difference (that is, measure of effect size) between the two groups. Heterogeneity will be measured using I-square statistic. A forest plot will be used to display the summary published findings/results for each study and the amount of study heterogeneity. Publication bias will be tested by generating funnel plots and applying Harbord’s test (16). Analyses will be performed using Stata v17.0 (StataCorp LLC, College Station, TX, USA). The data synthesis will be performed by one reviewer, and the results will be checked by two other reviewers.

29. **Analysis of subgroups or subsets**

Nil

30. **Type and method of review**

Review type - Systematic review, meta-analysis

Health area of the review: Public health on cystic fibrosis

31. **Language**

English

32. **Country**

Australia

33. **Other registration details**

Nil

34. **Reference and/or URL for published protocol**

Protocol will be published on PROSPERO or medRxiv.

35. **Dissemination plans**

It is intended to publish the review article in a peer-reviewed journal. Any modifications to this proposal will be documented in the final published manuscript.

36. **Keywords**

Cystic Fibrosis, Vitamin D, infection, inflammation, antibacterial function
37. Details of any existing review of the same topic by the same authors
Nil

38. Current review status
Ongoing

39. Any additional information
Nil

40. Details of final report/publication(s):

Subject index terms status
Subject indexing assigned by Centre for Reviews and Dissemination (CRD)

Subject index terms
Cystic Fibrosis, Antibacterial effects of vitamin D; Humans

Reference

Appendix I: Database Search Strategies

PubMed

Search was performed on November 29, 2021 and returning 620 articles.

Query

("cystic fibrosis"[tiab] OR CF[tiab] OR "Cystic Fibrosis"[Mesh])
AND
AND

EMBASE (via Elsevier)

Search was performed on November 29, 2021 and returning 2,010 articles.

Query

("cystic fibrosis":ti,ab OR CF:ti,ab OR "Cystic Fibrosis":/exp)
AND
("vitamin D":ti,ab OR D2:ti,ab OR D3:ti,ab OR "25-hydroxyvitamin D":ti,ab OR cholecalciferol*:ti,ab OR multivitamin*:ti,ab OR supplementation:ti,ab OR supplement*:ti,ab OR "Vitamin D":/exp)
AND
(Antibacterial:ti,ab OR Anti-bacterial:ti,ab OR antimicrobial:ti,ab OR anti-microbial:ti,ab OR infection*:ti,ab OR "respiratory infection*":ti,ab OR "respiratory bacteria":ti,ab OR inflammat*:ti,ab OR pro-inflammat*:ti,ab OR CRP:ti,ab OR "c-reactive protein":ti,ab OR phagocytosis:ti,ab OR macrophage*:ti,ab OR neutrophil*:ti,ab OR NE:ti,ab OR streptococc*:ti,ab OR "airway surface liquid":ti,ab OR ASL:ti,ab OR "Pseudomonas aeruginosa":ti,ab OR "antimicrobial peptide":ti,ab OR IL:ti,ab OR interleukin*:ti,ab OR IL-6:ti,ab OR IL-8:ti,ab OR IL-17:ti,ab OR IL-23:ti,ab OR IL-37:ti,ab OR cytokin*:ti,ab OR microbiota:ti,ab OR microbiome:ti,ab OR "Anti-Infective Agent":/exp OR "Inflammation":/exp OR "Infections":/exp)

CINAHL (via EBSCOhost)

Search was performed on November 29, 2021 and returning 121 articles.

Query
((TI "cystic fibrosis" OR AB "cystic fibrosis") OR (TI "CF" OR AB "CF") OR (MH "Cystic Fibrosis"))
AND
((TI "vitamin D" OR AB "vitamin D") OR (TI D2 OR AB D2) OR (TI D3 OR AB D3) OR (TI "25-hydroxyvitamin D" OR AB "25-hydroxyvitamin D") OR (TI cholecalciferol* OR AB cholecalciferol*) OR (TI multivitamin* OR AB multivitamin*) OR (TI supplementation OR AB supplementation) OR (TI supplement* OR AB supplementation*) OR (MH "Vitamin D"))
AND
((TI Antibacterial OR AB Antibacterial) OR (TI Anti-bacterial OR AB Anti-bacterial) OR (TI antimicrobial OR AB antimicrobial) OR (TI anti-microbial OR AB anti-microbial) OR (TI infection* OR AB infection*) OR (TI "respiratory infection" OR AB "respiratory infection") OR (TI "respiratory bacteria" OR AB "respiratory bacteria") OR (TI inflammat* OR AB inflammat*) OR (TI pro-inflammatory OR AB pro-inflammatory) OR (TI CRP OR AB CRP) OR (TI "c-reactive protein" OR AB "c-reactive protein") OR (TI phagocytosis OR AB phagocytosis) OR (TI macrophage* OR AB macrophage*) OR (TI neutrophil* OR AB neutrophil*) OR (TI NE OR AB NE) OR (TI streptococcus* OR AB streptococcus*) OR (TI "airway surface liquid" OR AB "airway surface liquid") OR (TI ASL OR AB ASL) OR (TI "Pseudomonas aeruginosa" OR AB "Pseudomonas aeruginosa") OR (TI "antimicrobial peptide" OR AB "antimicrobial peptide") OR (TI IL-* OR AB IL-* OR (TI interleukin* OR AB interleukin*) OR (TI IL-6 OR AB IL-6) OR (TI IL-8 OR AB IL-8) OR (TI IL-17 OR AB IL-17) OR (TI IL-23 OR AB IL-23) OR (TI LL-37 OR AB LL-37) OR (TI cytokin* OR AB cytokin*) OR (TI microbiota OR AB microbiota) OR (TI microbiome OR AB microbiome) OR (MH "Antiinfective Agent"+) OR (MH Inflammation+) OR (MH Infection+)

Web of Science (advanced)

Search was performed on November 29, 2021 and returning 751 articles.

Query

((TI="cystic fibrosis" OR AB="cystic fibrosis") OR (TI=CF OR AB=CF) OR ALL="Cystic Fibrosis")
AND
((TI="vitamin D" OR AB="vitamin D") OR (TI=D2 OR AB=D2) OR (TI=D3 OR AB=D3) OR (TI="25-hydroxyvitamin D" OR AB="25-hydroxyvitamin D") OR (TI=cholecalciferol* OR AB=cholecalciferol*) OR (TI=multivitamin* OR AB=multivitamin*) OR (TI=supplementation OR AB=supplementation) OR (TI=supplement* OR AB=supplement*) OR ALL="Vitamin D")
AND
((TI=Antibacterial OR AB=Antibacterial) OR (TI=Anti-bacterial OR AB=Anti-bacterial) OR (TI=antimicrobial OR AB=antimicrobial) OR (TI=anti-microbial OR AB=anti-microbial) OR (TI=infection* OR AB=infection*) OR (TI="respiratory infection" OR AB="respiratory infection") OR (TI="respiratory bacteria" OR AB="respiratory bacteria") OR (TI=inflammation* OR AB=inflammation*) OR (TI=pro-inflammation* OR AB=pro-inflammation* OR (TI=pro-infection* OR AB=pro-infection*))

13
inflammat* OR (TI=CRP OR AB=CRP) OR (TI="c-reactive protein" OR AB="c-reactive protein") OR (TI=phagocytosis OR AB=phagocytosis) OR (TI=macrophage* OR AB=macrophage*) OR (TI=neutrophil* OR AB=neutrophil*) OR (TI=NE OR AB=NE) OR (TI=streptococc* OR AB=streptococc*) OR (TI="airway surface liquid" OR AB="airway surface liquid") OR (TI=ASL OR AB=ASL) OR (TI="Pseudomonas aeruginosa" OR AB="Pseudomonas aeruginosa") OR (TI="antimicrobial peptide" OR AB="antimicrobial peptide") OR (TI=IL OR AB=IL) OR (TI=interleukin* OR AB=interleukin*) OR (TI=IL-6 OR AB=IL-6) OR (TI=IL-8 OR AB=IL-8) OR (TI=IL-17 OR AB=IL-17) OR (TI=IL-23 OR AB=IL-23) OR (TI=LL-37 OR AB=LL-37) OR (TI=cytokin* OR AB=cytokin*) OR (TI=microbiota OR AB=microbiota) OR (TI=microbiome OR AB=microbiome) OR ALL="Anti-Infective Agents" OR ALL=Inflammation OR ALL=Infections)