Immunological Cross-Reactivity to Dengue Virus among Persons with Neuroinvasive West Nile Virus Infection

Authors: Vanessa Raabe¹*, Muktha S. Natrajan², Chris Huerta², Yongxian Xu², Lilin Lai², Mark J. Mulligan¹

Affiliations:

¹ Division of Infectious Diseases & Immunology, Department of Medicine, New York University Langone School of Medicine, New York, NY, USA
² Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Decatur, GA, USA

Running Title: WNV Antibodies Cross-React with Dengue

Word Count: 1411

* Corresponding author

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Antibody dependent enhancement has been well described between Zika and dengue viruses, but is poorly characterized between West Nile and dengue viruses. We demonstrate that neuroinvasive West Nile virus infection leads to the development of non-neutralizing, cross-reactive IgG antibodies to dengue and Zika viruses capable of causing antibody dependent enhancement in vitro of dengue virus and leads to the formation of flavivirus cross-reactive memory B cells in some patients.

Key Words: Dengue, West Nile virus, Flavivirus, Antibody-Dependent Enhancement

Introduction

West Nile virus (WNV) is a single-stranded RNA virus in the Japanese encephalitis virus serocomplex of the Flaviviriridae family. Human infection is frequently asymptomatic although severe neuroinvasive disease, such as myelitis, meningitis, acute flaccid paralysis, and encephalitis, occurs in a minority of infected individuals [1]. After introduction to North America in 1999, WNV quickly spread throughout the continental United States leading to 21,574 reported neuroinvasive WNV infections between 1999 and 2016 [2].

Similar to other flaviviruses, antibodies generated to WNV primarily target the envelope (E) protein [3]. Cross-reactivity among certain flavivirus anti-envelope antibodies is well established and antibodies generated following dengue virus (DENV) immunization or Zika virus (ZIKV) infection demonstrate capacity to cross-react with WNV [4-6]. WNV antibodies are capable of binding to and mediating antibody-dependent enhancement (ADE) of ZIKV both in vitro and in vivo, a phenomenon by which non-neutralizing, cross-reactive IgG antibodies...
facilitate viral entry into Fc receptor bearing cells resulting in enhanced infection [7]. ADE of
DENV following WNV infection has to our knowledge not been reported [7]. Here we report
the development of non-neutralizing, cross-reactive IgG antibodies to DENV and ZIKV
recombinant envelope proteins among three participants with neuroinvasive WNV infection and
demonstrate potential for ADE of DENV.

Methods

Patients with confirmed WNV neuroinvasive infection were identified and written
informed consent for study participation was obtained from all patients or their next of kin under
an Emory University Institutional Review Board-approved protocol for phlebotomy for diseases
of public health importance.

Levels of WNV, DENV, and ZIKV IgG antibodies were assessed by Enzyme-Linked
Immunosorbent Assay (ELISA) using described methods with WNV, DENV1-4, and ZIKV
recombinant envelope (rE) proteins (MyBioSource #MBS5304480; CTK Diagnostics #A201
DENV1 VN/BID-V949/2007, #A2302 DENV-2 GWL39 IND-01, #A2303 DENV-3 US/BID-
V/1090/1998 and #A2304 DENV4 321750; eEnzyme #ZV-E-005P) as target antigens [8]. Serum
neutralization antibody assays were conducted via focus reduction neutralization tests (FRNT) to
ZIKV (PRVABC59 strain, obtained from CDC), DENV1 (Hawaii strain, BEI resources NR-82),
DENV2 (New Guinea C strain, BEI resources NR-84), DENV3 (Slemen 78 strain, donated by
Jens Wrammert, Emory University), DENV4 (H241 strain, BEI resources NR-86), and Yellow
Fever 17D (YF-VAX, Sanofi) as previously described with modification of the concentration of
methylcellulose overlay to 1-2% wt/vol [9].
Antibody dependent enhancement was assessed with a protocol adapted from Bardina et al. by incubating K562 cells (ATCC, CCL 243) with 1 x 10^4 focus-forming units of DENV2 for 48 hours in the presence of serial dilutions of heat-inactivated plasma from participants [7]. All assays were performed in duplicate. Plasma from a dengue-experienced person (SeraCare, 0325-0014) and a known flavivirus-naïve healthy control were used as positive and negative controls respectively. Briefly, cells were fixed and permeabilized (BD, 554722), incubated for 10 minutes with 1:500 Fc blocking antibody (Fisher Scientific, BDB564219), followed by staining with 1:1000 4G2 antibody (Millipore, MAB10216) for 1 hour. After washing, cells were incubated with goat anti-mouse 1:150 PE-IgG antibody (Columbia Biosciences, D5-112-100) for 1 hour in the dark, washed, and resuspended in 1% bovine serum albumin in PBS. Data was collected on a Cytoflex flow cytometer (Beckman Coulter). The percentage of DENV2 infected cells was averaged between duplicate runs; one exception to this was made for participant A at 1 x 10^3 serum dilution in which one of the values was significantly elevated in a manner inconsistent with the duplicate result and other assays values and was subsequently excluded in final calculations. The average percentage of K562 cells infected for each participant was compared to the average percentage of infected cells across all negative control dilutions to calculate the fold increase of infection attributable to antibody dependent enhancement.

Memory B cell ELISpots were performed as previously described using WNV rE protein, DENV1-4 rE proteins, Yellow fever 17D virus, and ZIKV lysate [9].

Results
Blood samples were collected from three patients with neuroinvasive WNV infection during 2017. Participants A and B presented with WNV encephalitis only while participant C developed both WNV encephalitis and myelitis. Participants A and B received intravenous immunoglobulin (IVIG) treatment during the acute phase of illness; participant C received corticosteroids and 5 days of plasmapheresis but did not receive IVIG. None of the participants reported a history of travel to DENV or ZIKV endemic regions or previous receipt of yellow fever virus (YFV) vaccination. Whole blood, serum, plasma, and peripheral blood mononuclear samples were collected on day post-symptom onset (DPO) 31 from participant A, DPO 32 and 146 from participant B, and DPO 138 from participant C. Participant B had near complete neurological recovery while participants A and C suffered from significant persistent weakness during convalescence.

All sera samples contained detectable IgG antibodies to WNV, DENV1-4, and ZIKV rE protein by ELISA. Calculated WNV endpoint titers were higher than DENV1-3 and ZIKV titers at all time points except DOI 32 for participant B while titers to DENV4 were higher than to WNV at all time points except for DOI 146 for participant B. WNV endpoint titers ranged from 522 to 8632, titers to DENV1-4 ranged from 265-11354, and ZIKV titers ranged from 335 to 2706 (Table 1). Low levels of neutralizing antibodies against DENV4 (FRNT₅₀ 1:40) were detectable in participants A and C. Neutralizing antibodies were not detected (FRNT₅₀ <1:20) against DENV1-3, ZIKV, or YFV-17D in participants A and C or to DENV1-4, ZIKV, or YFV in participant B at either time point (data not shown).

Antibody dependent enhancement of DENV2 infection was detectable at 1:10 plasma dilution for all participants (fold increase of infection: 3.6 for participant A, 3.4 for participant B at DPO 146, and 4.2 for participant C) and at 1:100 dilution for participant A only (6.6-fold).
increase of infection) [Figure 1]. No ADE of DENV2 infection was observed at the remaining plasma dilutions or at the DPO 32 time point for participant B.

Memory B cell (MBC) recognition of WNV rE was present in participant A (0.1% of IgG secreting MBCs) and participant C (0.36% of IgG secreting MBCs) but was not detectable at either time point for participant B. Flavivirus cross-reactive MBCs were observed in participant C to DENV3 (0.56% of IgG secreting MBCs) and ZIKV (0.04% of IgG secreting MBCs) [Supplementary Figure 1]. No flavivirus cross-reactive IgG-secreting MBCs were detectable in participants A and B.

Discussion

Although WNV and DENV occupy separate antigenic complexes of the *Flaviviridae* family, cross-reactivity of WNV IgM and IgG antibodies with commercial assays for DENV antibodies has previously been demonstrated [5, 6]. Here we replicate the finding of cross-reactive IgG antibodies to recombinant envelope of all four DENV strains and ZIKV among three individuals with neuroinvasive WNV infection. Although two study participants received IVIG during the course of illness, the presence of cross-reactive IgG antibodies was detectable in the participant who did not receive IVIG treatment and persisted to DPO 146 in one of the IVIG treat participants, participant B. As DPO 146 occurred more than five times past the half-life of IVIG (25.8 days), the finding of cross-reactive IgG antibodies to DENV strains at this time point was unlikely to be solely secondary to IVIG administration [10]. One of the three participants demonstrated cross-reactive IgG-producing memory B cell responses to DENV3 and ZIKV,
consistent with WNV infection eliciting an immune response capable of generating cross-reactive antibodies to other flaviviruses.

The potential for ADE of WNV following DNA immunization with DENV envelope protein domains I and II has been demonstrated in mice but not vice versa [4]. We demonstrated that the antibody response in three participants with neuroinvasive WNV infection has the capacity to cause ADE of DENV2 in K562 cells and likely other DENV serotypes not tested given antibody cross-reactivity by ELISA was observed to all four DENV serotypes. The WNV envelope protein is a potential antigen of interest in the development of WNV vaccines, therefore, antibodies generated following WNV vaccination could potentially cause antibody-dependent enhancement of DENV virus [11, 12]. We recommend that assessments for the development of cross-reactive antibodies to other flaviviruses, including DENV, should be investigated as a safety measure during WNV vaccine development.

Acknowledgements

The authors would like to acknowledge the contributions of Joanne Altieri-Rivera, Alison Beck, Mary Bower, Tigist Girmay, Vinit Karmali, Pamela Lankford-Turner, Dongli Wang, and Yerun Zhu from Emory University and Kristy Murray from Baylor College of Medicine.
References

antibodies in patients with primary immunodeficiency who are receiving intravenously

Modified Vaccinia virus Ankara candidate vaccines delivering West Nile virus envelope

adjuvants increases antibody diversity and protective efficacy of a recombinant West Nile Virus
antigen. NPJ Vaccines 2018; 3:39.
Footnotes

This research was conducted at the Hope Clinic of the Emory Vaccine Center at Emory University. Partial results included in the paper have previously presented in poster format at the NFID Clinical Vaccinology Course in November, 2018.

Conflict of interest statement: The authors of this paper report no conflicts of interest.

Funding statement: The work was supported by the National Institute of Allergy and Infectious Diseases [grant number T32AI074492 to V.R. and M.J.M.]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.

*Corresponding author contact information:

Vanessa Raabe, New York University School of Medicine, Alexandria Center for Life Sciences West Tower, 430 East 29th Street, 3rd Floor Room 308, New York, NY 10016

Telephone: 646-754-2682 Email: vanessa.raabe@nyulangone.org
Table and Figure Legends

Table 1 Calculated ELISA Endpoint Titers to WNV and DENV serotypes in Three WNV-Infected Patients

Figure 1 Percentage of K562 Cells Infected with DENV2 by Log Dilution of Plasma

Supplementary Figure 1 Memory B Cell IgG ELISpot for Participants A-C to Various Flaviviruses
Table 1 Calculated ELISA Endpoint Titers to WNV and DENV serotypes in Three WNV-Infected Patients

<table>
<thead>
<tr>
<th></th>
<th>Participant A DPO 31</th>
<th>Participant B DPO 32</th>
<th>Participant B DPO 146</th>
<th>Participant C DPO 138</th>
</tr>
</thead>
<tbody>
<tr>
<td>WNV rE</td>
<td>5900</td>
<td>522</td>
<td>7632</td>
<td>5632</td>
</tr>
<tr>
<td>DENV1 rE</td>
<td>265</td>
<td>918</td>
<td>580</td>
<td>337</td>
</tr>
<tr>
<td>DENV2 rE</td>
<td>2351</td>
<td>731</td>
<td>1132</td>
<td>805</td>
</tr>
<tr>
<td>DENV3 rE</td>
<td>636</td>
<td>2919</td>
<td>1825</td>
<td>339</td>
</tr>
<tr>
<td>DENV4 rE</td>
<td>11354</td>
<td>3762</td>
<td>2897</td>
<td>9763</td>
</tr>
<tr>
<td>ZIKV rE</td>
<td>2706</td>
<td>1940</td>
<td>335</td>
<td>1949</td>
</tr>
</tbody>
</table>
Figure 1 Percentage of K562 Cells Infected with DENV2 by Log Dilution of Plasma

Percentage of K562 Cells Infected with DENV2 by Log Dilution of Plasma

- Participant A, DPO 31
- Participant B, DPO 32
- Participant B, DPO 146
- Participant C, DPO 138
- Positive Control
- Negative Control

% K562 Cells Infected with DENV2

Log Dilution of Plasma

0 1 2 3 4 5 6 7 8

0 2 4 6 8