Large household reduces dementia mortality.

Wenpeng You, PhD a, Maciej Henneberg, DSc a,b

a Adelaide Medical School, The University of Adelaide, Adelaide 5005, Australia
wenpeng.you@adelaide.edu.au

b Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland maciej.henneberg@iemuzh.ch

* Corresponding Author: Wenpeng You
 Address: Adelaide Medical School,
 The University of Adelaide,
 Adelaide, SA 5005
 Australia,
 Mobile phone: +6104289328
Abstract

Background
Large households/families create more positive psychological well-being which may offer a life course protection against dementia development and deliver more comprehensive healthcare to dementia patients.

Methods
Dementia specific mortality rates of the 183 member states of World Health Organization were calculated and matched with the respective country data on household size, Gross Domestic Product (GDP), urban and ageing. Scatter plots were produced to explore and visualize the correlations between household size and dementia mortality rates. Pearson’s and nonparametric correlations were used to evaluate the strength and direction of the associations between household size and all other variables. Partial correlation of Pearson’s moment-product approach was used to identify that household size protects against dementia regardless of the competing effects from ageing, GDP and urbanization. Multiple regression identified large household was a significant predictor of dementia mortality.

Results
Household size was in a negative and moderately strong correlation ($r = -0.6034, p < 0.001$) with dementia mortality. This relationship was confirmed in both Pearson r ($r= - 0.524, p<0.001$) and nonparametric ($\rho = -0.579, p < 0.001$) analyses. Regardless of the contribution of ageing, SES and urban lifestyle to dementia mortality, large household was an independent predictor of dementia mortality ($r = -0.331, p <0.001$) in partial correlation analysis. Stepwise multiple regression analysis selected large household as the variable having the greatest contribution to dementia mortality with $R^2 = 0.263$ while ageing was placed second increasing R^2 to 0.259. GDP and urbanization were removed as having no statistically significant influence on dementia mortality.

Conclusions
Independent of ageing, urbanization and GDP, large household protects against dementia mortality. As part of dementia prevention, healthcare practitioners should encourage people to increase their positive interactions with persons from their neighbourhood or other fields where large household/family size is hard to achieve.

Keywords: Alloparental care, Dementia mortality, Household/family size, Oxytocin, Mind-body psychological well-being, Oxytocin receptor

1. Introduction
Dementia is an umbrella neurological syndrome resulting from more than 100 brain disorders, most common of which include Alzheimer's disease, vascular diseases, Lewy bodies, frontotemporal disease etc. [1, 2]. Worldwide, it is estimated that 5-8% general population aged 60 and over have been diagnosed with dementia in past years [2]. Therefore, it has become one of the most common causes of dependency and disability among the old [2, 3].

Dementia produces an increasing societal burden resulting in a total economic costs of US 818 billion (1.1% of the world’s gross domestic product) in 2016 [2], which has been considered as the major challenging health issue in 21st century [4, 5]. Many health professionals do not follow the regulations or facility policies about human rights and freedom, and still consider physical or chemical restraints as the inevitable approach to control patients’ behavioural symptoms and prevent the disruption of life-sustaining therapies [2]. Furthermore, dementia patients and their families are subject to prejudice, and their life quality is affected [3].

Since Alzheimer’s disease has been associated with dementia in 1906, enormous investment has been allocated for studying dementia prevention and treatment [6, 7]. Ageing and family history are associated with genetic background which are easily recognized as the irreversible risk factors for dementia [2, 8, 9]. The environmental and behavioural risk factors, such as sedentary lifestyle, lower socioeconomic status (SES) and unhealthy diet have been circumstantially postulated as the risk factors for dementia [8, 10-13]. Studies have consistently revealed that negative psychological functioning, such as depressive symptoms [14] and neuroticism [15] are the risk factors for dementia. However, to date, the aetiology and pathology of dementia are still not well understood and there is still no treatment currently available to cure dementia or to reverse its progressive course [2].

Human species had lived in small hunter-gatherer groups for millions of years before they started to live in large scale societies some ten thousand years ago [16]. During the hunting and gathering period, humans have well adapted early to cooperative breeding [17, 18], and then evolved alloparental care [19]. Therefore, human’s millions of years of adaptation suggest that biological foundations of human love have genetically shaped humans for flourishing in in small communities [20, 21]. However, in the past hundreds of years, human sorceries were industrialized quickly. The rapid industrialization has made most people grow up in core families with few siblings, which is different from how humans had adapted for flourishing. Such discrepancies or mismatches have been associated with mental health in human population [22, 23].

It is well researched that positive psychological well-being has been implicated in health across adulthood [24]. Household creates a social environment which is salient to maintain health for the co-residential members. On a daily basis, the individual members encounter this environment, play their social role and enjoy the social relations [25]. Moreover, studies also showed that large household offers the residents the subjective happiness [26] leading to low risk for residents to develop various cancers [27]. Studies also suggested that subjective happiness was associated with mental health significantly stronger than with physical health in disability people [28] and hospital patients [29]. A
recent study revealed that greater household size has the protecting role against children developing mental health disorders [30]. This has directed us to identify possible contributing factors for dementia from the evolutionary perspective. Therefore, in this study, we assessed, from a global perspective, whether large household has the inhibitory role in lowering the risk for the residents to develop dementia using empirical population level data obtained from international organizations.

2. Materials and Methods

2.1 Data Sources
The population level data were collected for this ecological study.

1. Population specific dementia mortality rate (DMR, per 100,000) was calculated as the dependent variable.

The comprehensive and comparable assessment of country specific number of deaths due to “Alzheimer disease and other dementias” and the country specific total population were provided by the WHO Global Health Estimates [31]. Details regarding data, methods and cause categories are described in the WHO Technical Paper [32]. The formula for dementia mortality calculation is below:

\[
Dementia\ mortality\ rate = \frac{Total\ number\ of\ persons\ died\ of\ Alzheimer\ and\ other\ dementias}{Total\ population} \times 100,000
\]

2. The population specific household size was extracted from the United Nations Booklet as the predicting/independent variable [33].

The household is a fundamental socio-economic unit in human societies. It consists of one individual or a group of people, regardless of whether there are any kinship ties, living together for sharing food, shelter and other daily life essentials. Therefore, household refers to people living together in a housing unit who may or may not be family members.

Household relations are usually characterized with family relationships because they are invested with the powerful norms, histories, and emotions which originated from family [25, 34-36]. Therefore, in this study family and household are used interchangeably.

Considering the majority of dementia patients are cared for at home which is called “informal” care, household size may represent the level of care which the patients can receive.

3. The WHO published life expectancy at 60 (Life e(60)) was selected as a potential confounder [37].
Ageing has been a well-known significant risk predictor of dementia. Most of the studies include 65 years age as the start of ageing for reporting the prevalence and incidence of dementia. However, the United Nations generally use 60+ years to refer to the older population, and it takes years for dementia associated symptoms and signs to appear because development of most types of dementia is slow and progressive \[38, 39\]. Therefore, in this study, Life expectancy at age 60 years (e60) was considered as the indicator of ageing.

4. The World Bank published data on Gross Domestic Product (GDP) and urbanization were also included as the potential confounder \[40\].

GDP was expressed in per capita purchasing power parity (PPP in current international $) in 2010. SES has been associated with prevalence and mortality rates of dementia, and also with regional variation of dementia prevalence. GDP PPP was included as the confounding factor because it relates to the levels of healthcare service which affects the mortality rate.

Urbanization was measured with the percentage of total population living in urban communities in 2010. Urbanization represents the demographic trend in which more and more population has become concentrated in urban communities. It entails air pollution, consumption of food with few nutritional benefits, but energy dense, high levels of salt, fat, sugar and alcohol. Urbanization is also associated with less physical exercise, obesity and overweight. Therefore, urban living has been considered as a complex risk factor for chronic diseases \[41\].

2.2 Data Selection

In order to capture as many populations as we could to increase the sample size for this study, we kept the full list of 183 WHO member states (populations) which have the data available for dementia mortality rate calculations. Population specific household size, family size, urbanization life e(65) and GDP PPP were matched for those states with dementia mortality rate data. We obtained most recent population specific dementia mortality rates (N=183) through calculation, household size (N=170), GDP PPP (N=178), Urbanization (N=183) and ageing (N=183) through extraction. Each population was considered as an individual research subject in the analysis. Therefore, numbers of populations included in analyses of relationships between variables may differ somewhat because all information was not uniformly available for all states.

All the aforementioned data were freely available from the websites of the UN agencies.

2.3 Data analysis

Scatter plots were produced in Excel (Microsoft® 2016) to explore and visualize the correlations between household size and dementia mortality rates. Scatter plots also allowed us to assess data quality and distributions of the two variables.
Prior to correlation/regression analyses all data were log-transformed (ln) in order to reduce non-
homoscedasticity of their distributions and possible curvilinearity of regressions. To assess the
relationships between household size and dementia mortality rate in different data analysis
models, the analysis proceeded in four (4) steps.

1. Pearson’s and nonparametric correlations (Spearman’s rho) were used to evaluate the strength
and direction of the associations between household size and all other variables, including
independent variables and competing variables.

2. Partial correlation of Pearson’s moment-product approach was used to assess the relationship
between household size and dementia mortality rate while we controlled for ageing, GDP PPP and
urbanization which have been commonly considered as the contributing factors of dementia.

We alternated the four variables (DMR, ageing, GDP PPP and urbanization) as the independent
predictor to explore its relationship to DMR while keeping all the other three variables statistically
constant. This allowed us to analyse and compare the levels of correlations between DMR and four
potential risk factor while controlling for the other three variables [42, 43]. Subsequently, we
alternately controlled for each variable as the potential confounder for analysing if and how much it
could explain the correlation between DMR and each of the three variables.

Fisher’s r-to-z transformation was performed to test significance of differences between correlation
coefficients.

3. Standard multiple linear regression (enter and stepwise) was performed to visualize the
correlation between DMR and each predicting factor and identify the most significant predictor(s) of
DMR respectively. In order to explore if household size can partially explain why ageing, GDP PPP
and urbanization were correlated with DMR, the multiple linear regression analyses were
performed to determine the correlations between DMR incidence and the risk factors in two models,
i.e. with and without incorporating household size as one of the predicting variables.

4. In order to demonstrate that correlation universally exists between household size and DMR
regardless of these factors, populations were grouped for correlation analyses. The exploration into
different correlations between household size and DMR also allowed us to compare the different
levels of correlations in different country groupings. The criteria for grouping countries used the
World Bank income classifications [44], WHO regions [45], countries sharing specific
characteristics like geography, culture, development role or socio-economic status, like Asia
Cooperation Dialogue (ACD) [46], Asia-Pacific Economic Cooperation (APEC) [47], the Arab World
[47], Latin America and the Caribbean (LAC) [48], Southern African Development Community
(SADC) [49] and Organization for Economic Co-operation and Development (OECD) [47]. All the
population listings are sourced from their official websites for matching with the list of populations
with DMR.
Pearson’s, non-parametric Spearman’s rho correlations, partial correlation and multiple linear regression (enter and stepwise) were computed with SPSS v. 27 (SPSS Inc., Chicago IL USA). The significance was reported when p-value was <0.05, but the significance levels of p < 0.01 and p<0.001 were also reported. Regression analysis criteria were set at probability of F to enter ≤ 0.05 and probability of F to remove ≥ 0.10. The raw data were used for scatter plots in Excel® 2016.

3. Results

Figure 1 shows that the relationship between household size and DMR is logarithmic with a negative and moderately strong correlation (r = -0.6034, p < 0.001). The non-linear relationship between household size and DMR variables identified in the scatterplots was confirmed by the subsequent analyses of log-transformed data and in nonparametric analyses.

Figure 1: The relationship between household size and dementia mortality rate

Table 1 presents the relationships between all the variables (dependent and independent) in Pearson r (above the diagonal) and nonparametric (below the diagonal) analyses. Worldwide (n=169), Spearman’s rank correlation showed that household size was in significant negative correlation to DMR (r\textsubscript{Pearson} = -0.579, p\textsubscript{Pearson} < 0.001). This strength and direction of relationship were similar and observed in Pearson’s r household size and SMR variables (r\textsubscript{Pearson} = - 0.524, p<0.001). Worldwide, non-parametric analysis showed that DMR was associated with ageing (r\textsubscript{Spearman} = 0.533, p<0.001), GDP PPP (r = 0.497, p<0.001) and urbanization (r = 0.436, p<0.001). These strengths and directions of the relationship were observed in the Pearson analysis as well (Table 1).

Table 1: Pearson (above diagonal) & Non-parametric (below diagonal) correlation matrix for all variables

<table>
<thead>
<tr>
<th></th>
<th>Household size</th>
<th>Dementia Mortality</th>
<th>Ageing</th>
<th>GDP PPP</th>
<th>Urbanization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household size</td>
<td>1</td>
<td>-0.524***</td>
<td>-0.682***</td>
<td>-0.628***</td>
<td>-0.522***</td>
</tr>
<tr>
<td>N</td>
<td>169</td>
<td>169</td>
<td>169</td>
<td>165</td>
<td>169</td>
</tr>
<tr>
<td>Dementia Mortality</td>
<td>-0.579***</td>
<td>1</td>
<td>0.458***</td>
<td>0.375***</td>
<td>0.318***</td>
</tr>
<tr>
<td>N</td>
<td>169</td>
<td>183</td>
<td>183</td>
<td>177</td>
<td>183</td>
</tr>
<tr>
<td>Ageing</td>
<td>-0.689***</td>
<td>0.533***</td>
<td>1</td>
<td>0.760***</td>
<td>0.592***</td>
</tr>
<tr>
<td>N</td>
<td>169</td>
<td>183</td>
<td>183</td>
<td>177</td>
<td>183</td>
</tr>
<tr>
<td>GDP PPP</td>
<td>-0.648***</td>
<td>0.497***</td>
<td>0.760***</td>
<td>1</td>
<td>0.747***</td>
</tr>
<tr>
<td>N</td>
<td>165</td>
<td>177</td>
<td>177</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>Urbanization</td>
<td>-0.564***</td>
<td>0.436***</td>
<td>0.650***</td>
<td>0.791***</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td>169</td>
<td>183</td>
<td>183</td>
<td>177</td>
<td>183</td>
</tr>
</tbody>
</table>

Significance level: * p<0.05; ** p< 0.01; ***p< 0.001

Data source & definition: Household size (the United Nations): the number of persons who make common provision of food, shelter and other essentials for living. Dementia Mortality Rate (World Health Organization): Calculated from Global Health Estimates. Ageing (the United Nations) measured with the Life Expectancy at 60 years old. Per capita GDP PPP

All rights reserved. No reuse allowed without permission.
(the World Bank): the per capita purchasing power parity (PPP) value of all final goods and services produced within a country in a given year. Urbanization (the World Bank): the percentage of population living in urban area.

Table 2 shows that the relationship between dependent variable (DMR) and each independent variable (household size, ageing, GDP PPP and urbanization) was examined by controlling for the other three variables in a partial correlation analysis. Household size and ageing were the only independent variables to have significant correlations ($r = -0.331, p < 0.001$ and $0.173, p<0.05$) with DMR independent of the other three variables (Table 2). Neither the other two predicting variables (GDP or urbanization) showed a correlation with DMR incidence independent of the other three variables despite the fact that each of them (GDP and urbanization) had a significant correlation to DMR in Pearson r and non-parametric correlation analyses respectively. This suggested that household size was the independent risk factor for DMR. This determining role was proved in the subsequent Stepwise linear regression analyses (Table 3).

Table 2 Comparison of partial correlation coefficients between dementia mortality rate and each variable when the other three variables are controlled for.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dementia Mortality</th>
<th>Dementia Mortality</th>
<th>Dementia Mortality</th>
<th>Dementia Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>P</td>
<td>df</td>
<td>r</td>
</tr>
<tr>
<td>Household size</td>
<td>-0.322</td>
<td><0.001</td>
<td>159</td>
<td>-</td>
</tr>
<tr>
<td>Ageing</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.154</td>
</tr>
<tr>
<td>GDP PPP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Urbanization</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Significance level: * $p<0.05$; ** $p<0.01$; *** $p<0.001$

Data source & definition: Household size (the United Nations): the number of persons who make common provision of food, shelter and other essentials for living. Dementia Mortality Rate (World Health Organization): Calculated from Global Health Estimates. Ageing (the United Nations), measured with the Life Expectancy at 60 years old. Per capita GDP PPP (the World Bank): the per capita purchasing power parity (PPP) value of all final goods and services produced within a country in a given year. Urbanization (the World Bank): the percentage of population living in urban area.
Table 3 showed if and how much household size explained the correlations of the other three variables to DMR respectively. In the enter model, when household size was not considered as one of the independent variables, ageing was the only significant predictor of DMR ($\beta = 0.357, p < 0.001$). However, when household size was incorporated as an independent variable, it ranked as the strongest predictor of DMR ($\beta = -0.362, p < 0.001$). Ageing was still a significant predictor of DMR ($\beta = 0.226, p < 0.05$), but the correlation strength has significantly decreased ($z=1.67, p<0.05$). Both GDP and urbanization showed bare correlations to DMR regardless of household size inclusion.

Table 3 also shows that when household size was not included as one of the independent variables, ageing ($R^2 = 0.203$) was the only variable included as the significant predictor of DMR. However, when household size was included as an independent variable, household was selected as the variable having the greatest influence on DMR with $R^2 = 0.263$, while ageing was placed second increasing R^2 to 0.289. The other variables (GDP PPP and urbanization) were removed by the analysis as having no statistically significant influence on DMR.

Table 3 Multiple linear regression showing predicting effects of independent variables and identify the significant predictors of dementia mortality

<table>
<thead>
<tr>
<th>Variable</th>
<th>Beta</th>
<th>Sig.</th>
<th>Beta</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Size</td>
<td>-</td>
<td>-</td>
<td>-0.357</td>
<td>0.000</td>
</tr>
<tr>
<td>Ageing</td>
<td>0.400</td>
<td>0.000</td>
<td>0.236</td>
<td>0.036</td>
</tr>
<tr>
<td>GDP PPP</td>
<td>0.043</td>
<td>0.735</td>
<td>0.063</td>
<td>0.624</td>
</tr>
<tr>
<td>Urbanization</td>
<td>0.039</td>
<td>0.704</td>
<td>-0.076</td>
<td>0.474</td>
</tr>
</tbody>
</table>

Significance level: * $p<0.05$; ** $p<0.01$; *** $p<0.001$

Data source & definition: Household size (the United Nations): the number of persons who make common provision of food, shelter and other essentials for living. Dementia Mortality Rate (World Health Organization): Calculated from Global Health Estimates. Ageing (the United Nations) measured with the Life Expectancy at 60 years old. Per capita GDP PPP (the World Bank): the per capita purchasing power parity (PPP) value of all final goods and services produced within a country in a given year. Urbanization (the World Bank): the percentage of population living in urban area.
Table 4 presents that, in general, household size is negatively associated with DMR in different country groupings. However, the highlight of these relationships was that household size was constantly in negative correlation to DMR in economically developed country groupings, such as in the World Bank High income economics, WHO European Region and OECD.

<table>
<thead>
<tr>
<th>Household Size</th>
<th>Pearson</th>
<th>Non-parametric</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worldwide</td>
<td>-0.524***</td>
<td>-0.579***</td>
<td>169</td>
</tr>
<tr>
<td>World Bank income classifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low income</td>
<td>-0.287</td>
<td>-0.274</td>
<td>32</td>
</tr>
<tr>
<td>Low middle income</td>
<td>-0.271</td>
<td>-0.221</td>
<td>44</td>
</tr>
<tr>
<td>Upper middle income</td>
<td>-0.091</td>
<td>-0.127</td>
<td>48</td>
</tr>
<tr>
<td>High income</td>
<td>-0.623***</td>
<td>-0.651***</td>
<td>48</td>
</tr>
<tr>
<td>WHO Regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFRO</td>
<td>-0.351**</td>
<td>-0.437**</td>
<td>42</td>
</tr>
<tr>
<td>EMRO</td>
<td>-0.414</td>
<td>-0.681**</td>
<td>17</td>
</tr>
<tr>
<td>EURO</td>
<td>-0.519***</td>
<td>-0.548***</td>
<td>52</td>
</tr>
<tr>
<td>PARO</td>
<td>-0.436**</td>
<td>-0.340</td>
<td>29</td>
</tr>
<tr>
<td>SEARO</td>
<td>-0.589*</td>
<td>-0.823***</td>
<td>12</td>
</tr>
<tr>
<td>WPRO</td>
<td>-0.300</td>
<td>-0.472</td>
<td>19</td>
</tr>
<tr>
<td>Countries grouped based on various factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACD</td>
<td>-0.322</td>
<td>-0.600***</td>
<td>30</td>
</tr>
<tr>
<td>APEC</td>
<td>-0.511*</td>
<td>-0.663**</td>
<td>18</td>
</tr>
<tr>
<td>Arab World</td>
<td>-0.372</td>
<td>-0.544</td>
<td>18</td>
</tr>
<tr>
<td>LAC</td>
<td>-0.206</td>
<td>-0.182</td>
<td>27</td>
</tr>
<tr>
<td>SADC</td>
<td>-0.563*</td>
<td>-0.652*</td>
<td>14</td>
</tr>
</tbody>
</table>
4. Discussion

The worldwide trend of increased DMR may have multiple aetiologies, which may act through multiple mechanisms. This study not only suggested that household size may be a major factor for dementia mortality at the population level, but also showed that household size was a determining risk factor overriding risk factors, such as ageing, SES and urbanization. This study also revealed that the predicting effect of household size on dementia mortality was independent of the effects of other common risk factors, such as ageing, socio-economic status and urbanization.

Household relations are usually invested with the powerful norms, histories, and emotions that characterize family relationships [25]. From a life course perspective, they are related to the dementia risks in the essential pathways which are grounded on biological, psychological and social contributions [50]. With living in the industrialized societies, especially in the developed countries, most people grew up in core families with very limited number of playmates and little interaction with neighbours. This is different from how humans had adapted for flourishing through early cooperative breeding [17, 18], and then evolved alloparental care [19], both of which laid the biological foundations of human love which may be heritable generation by generation [20]. The mismatch between the way we live and how our ancestors did has been postulated as the risk factor for mental disorder in young generation [22, 23].

Due to lack of cure for dementia, and accurate diagnoses of specific causal factors, this has made it difficult for targeting the preventative interventions [51]. It is well established that appropriate psychological, social support and physical care have been the key strategies for the healthcare for dementia patients [52]. Studies have revealed that, psychologically, family life increases levels of purpose in life [53, 54], which may reduce by 30% risk of dementia [55, 56]. Large household may offer the residents more social engagement in life which is protective against dementia [57, 58].

Compiled 2,200 years ago, *Huangdi Neijing* has been the fundamental doctrinal source of Asian medicine. It illustrates how emotions are associated with the visceral organs which are in charge of five qi’s (translation: gas; meaning: emotions): happiness, anger, sadness, worry and fear. Among these five qi (emotions), only happiness makes the gas smooth [64], which keeps people healthy. In Western medicine, hundreds of years’ exploration of the manifestation of emotions through
physiological responses (mind-body interaction) [59-61] has suggested that the formation of mental experiences (emotions) is closely associated with bodily responses [62, 63].

4.1 The therapeutic effects of oxytocin in dementia prevention and treatment.
Oxytocin is a hormone and a neurotransmitter that is associated with social bonding, such as empathy, trust, sexual activity, group bonding and relationship-building [65]. A stream of studies in the last decade reported that oxytocin release is not only associated with giving birth [66] and lactation [67], but also with daily interactions between non-kin household residents and/or family members, such as spouses [68-70], mother and children [71], father and children [72] and co-residential household members [73-75]. Oxytocin can keep family members and household residents happy and loyal to each other [76, 77], which may bring more positive psychological well-being to the family members. Regardless of cultural backgrounds [26], people from large household, especially from the same family have more life satisfaction [26, 78] which may lead to more oxytocin production within the hypothalamo-pituitary magnocellular systems. A self-reinforcing cycle is formed between more household interactions and more oxytocin production [65].

A systematic review conducted by the researchers from the University of California concluded that the beneficial effects of oxytocin on neurological disorders may be general rather than specific through mediating their behaviours [79]. In the past decades, oxytocin has been considered a neurohypophyseal hormone which acts in social bonding, mediating stress reproduction, brain neuromodulation and central regulation of cardiovascular functioning. It has been considered a candidate for developing a new therapeutic intervention in aging and in related neuropsychiatric disorders, in particular dementia [80, 81]. Alzheimer's disease is the most common cause of dementia. The most prevalent hypothesis about the pathology is that it occurs when the beta-amyloid (toxic protein) begins to clump around neurons in the brain. The neurons degenerate, which leads to a decrease in synaptic plasticity and ultimately to cognitive decline. Oxytocin has been considered chemical responsible for targeting the removal or reduction of beta-amyloid or improve the cognitive ability of patients. An animal model study showed that toxic beta-amyloid damaged synaptic plasticity in mice's brains, but this beta-amyloid-induced impairment of hippocampal synaptic plasticity in mice was reversed by oxytocin in mice [82]. Interestingly, this study also revealed that oxytocin did not improve brain's synaptic plasticity in mice's brains if oxytocin was the only treatment [82]. This may imply that oxytocin was produced as an auto-immune response to the neuron blockage by toxic beta-amyloid in mice's brains. Similarly, another animal model study found that oxytocin strengthened social memory [83] and improved spatial memory [84] when mice were in their motherhood. In human studies, it has been reported that oxytocin selectively strengthened participants' memory for social stimuli depending on the participants' social contexts and individual attachment styles [84, 85].
A post-mortem study conducted on Alzheimer disease patients' showed that they had elevated levels of oxytocin in memory-related areas of their brains [86]. However, it was not clear if the elevated levels of oxytocin were caused by more oxytocin receptor expression. Complementary to this study, Takahashi and co-workers found that oxytocin had no influence on synaptic plasticity on its own, but, mixed with beta-amyloid, it did stop the toxic beta-amyloid from negatively affecting synaptic plasticity [82]. Therefore, higher levels of oxytocin in memory-related areas of Alzheimer's bodies' brains may be suggesting that, from human auto-immunity perspective, oxytocin was the chemical response to the neuron blockage by the toxic beta-amyloid [86].

Oxytocin has been implicated in so many aspects of social functioning. The therapeutic effects of oxytocin have not only been explored in dementia prevention and treatment, but also have targeted the treatment of diseases for other aberrant social behaviour related disorders [87], such as autism spectrum disorder [88, 89], posttraumatic stress disorder [90], schizophrenia [91], and anxiety disorders [92].

The nature of vascular dementia (VaD) is strongly associated with stroke [93, 94]. To date, there are few therapeutic options to protect cognitive decline arising from cerebrovascular diseases [95, 96]. Worldwide, prevention of strokes and management of post-stroke symptoms have been considered approaches to reduce the vascular dementia initiation [97]. Based on a number of studies in human and animal models, a systematic review conducted by Gutkowska and colleagues concluded that oxytocin has multiple role in protecting cardiovascular system [98], which prevents VaD onset and might be the candidate treatment for VaD [96]. This role includes anti-inflammation, lowering blood pressure, immune-modulation, vasodilatation, antioxidation and wound healing and metabolic moderation [98]. With the reference to the protecting effects of oxytocin in myocardial infarction [99, 100], hepatic ischemia-reperfusion injury [101], renal ischemia/reperfusion injury [102] and cardiomyocyte disorder [103], McKay and co-workers found oxytocin receptor upregulation in postmortem human with VaD through microarray-based profiling and validation [96]. The increased oxytocin receptor expression in peri-infarct regions indicates that oxytocin is the response to microvascular insults. This finding is believed to be a strong evidence of the therapeutic effects of oxytocin on cardiovascular system, and may lead to more research to explore the therapeutic potential of oxytocin on VaD [96].

Frontotemporal dementia (FTD) is an umbrella term for a group of uncommon neurological diseases due to progressive damage to the frontal and/or temporal lobes of the brain. Empathy loss is one of hallmark symptoms of FTD [104, 105]. Oxytocin is an important mediator of social behaviour, potentially enhancing empathy and prosocial behaviours [106]. Finger and colleagues reported that intranasal oxytocin improved the behavioural symptoms in FTD, including levels of apathy and expressions of empathy [106]. And the benefit or efficacy was associated with dosage and time related [106, 107]. This beneficial effect of oxytocin also improved emotional expression.
processing [108, 109], empathy [110], anxiety [111] and cooperative behaviour [112] in healthy adults and autism patients. Therefore, the mechanism of upregulated oxytocin mediation of empathy and behavioural deficits have been postulated as a potential treatment approach in FTD [106].

4.2 Large household creates positive psychological well-being, in particular life purpose to lower dementia risk.

Large household promotes more mind-body interaction which offers biological protection against dementia through the therapeutic effects of oxytocin. At the same time, positive psychosocial well-being produced by large household may exert a beneficial slow-down on dementia development [55]. Family members who receive more family support may feel comprehensive positive psychological well-being [55, 113-115]. However, a greater meaning (purpose) of life may be the most important psychological resource to lower dementia risk [55, 113]. Stutin and colleagues explored the protective effects of psychological functioning (life satisfaction, optimism, mastery, purpose in life, positive affect) on preventing high risky population from developing dementia [55]. The results revealed that people from large household showed more psychological well-being leading to lower risk of dementia onset [55]. Interestingly, purpose in life explained 30% dementia risk and this protecting role was independent of the competing effects of other multiple risk factors, such as chronic disease and low physical activities, genetic risk, psychological distress and socioeconomic status [55]. Similarly, five (5) studies conducted by Lambert and co-workers also identified the independent relationship between meaning of life and family support among your people [116].

4.3 Social support from household residents promotes healthy lifestyle.

Household residents may interact with each other more often to create life satisfaction [26, 117]. They may also share healthcare knowledge, encourage each other to establish healthy lifestyle and utilize health care services in an effective way [118-120]. People with positive psychological well-being tend to practice healthy lifestyle, have more knowledge of health risk factors and attend regular physical examination [121]. The protecting role of such positive psychological well-being has been postulated to decrease the risk in the development of breast cancer and general cancers [121-124].

Large household is even more important for pre-dementia patient, especially the young onset dementia. Generally, young onset dementia present non-specific signs and symptoms at the early onset in young patient, but they are progressing and irreversible [125]. With household residents’ observations and encouragement, the atypical dementia symptoms can be noticed by co-residential members, and accordingly they can have the examination in time, and proper treatment subsequently.
Additionally, from the perspective of evolution, a population with large household offers more chance to survive the natural selection. This population offers the opportunity to have portion of population with less fitness removed without disturbing its activities, for instance, dementia, through greater mortality rate [126-132]. In other words, the genetic background of dementia in such population may be more often eliminated from the population with large household without affecting population as a whole. Therefore, population with large household may have less genes/mutations of dementia to incur high mortality rate of dementia. Furthermore, a population with large household means less birth control and high total fertility rate which allows more biological variation in fertility [133]. A portion of this additional variation, however small, provides the opportunity for the natural selection [133].

Interestingly, large household has shown its consistent and significant, but inverse correlations to dementia mortality rates in the developed world. Several unique phenomena in the developed world can explain this interesting relationship: 1) The fertility rate keeps falling down leading to small household/family size. 2) The cultural doctrines, especially individualism and independence, have reduced the interactions between people living in the developed world. 3) Importantly, dementia care delivery in the developed world is primarily through individual home support service because dementia patients live with small family/household or through nursing homes [134]. While in the developing world, people live with big family/household for most of their life and they would receive the “informal” healthcare from family members and/or household residents [135], instead of the “formal” care through nursing homes.

4.5 Strengths and limitations in this study are worth considering.

Little work has been done on the dementia epidemiology studies, which may be due to extremely low onset rate for data collection. For example, worldwide, mortality rate of dementia is only 26.61 per 100,000, and this presence is not noticeable. Therefore, the low presence rate of dementia would require unaffordable sample size for identifying small household as the potential risk factor for dementia in individual based epidemiological or laboratory approaches. Ecological studies are based on aggregated quantitative data zooming in the rare presence of dementia 100,000 times, which make dementia presence noticeable for analysing the potential effects of dementia risk-modifying factors at population level. This also suggests the necessity of engaging ecological study into the epidemiology studies of rare chronic disease such as dementia and cancer [42, 43, 126] and Type 1 diabetes [130].

Due to the nature of the cross-sectional data, a couple of intrinsic limitations should be mentioned. Firstly, the results in this study only showed the relationship between household size and dementia mortality rate was correlational, instead of causal. Secondly, the results based on the ecological approach in this work are subject to ecological fallacy. Therefore, the protective role of large household size may not always hold true for each individual to predict their dementia specific death.
risk. A further limitation of this work is that the data employed in this study might be crude. The WHO, United Nations and World Bank may have made some random errors arising from the methodologies used for collecting and aggregating the data.

Regardless of the strength and limitations of the data quality, we have showed that countries with large household size had lower dementia mortality rate in different data analysis models. The findings in this study may have shed light for further research into the subject with exposure based longitudinal cohort studies at population level. Accordingly, this will lead to far reaching public health implications in dementia and its prevention.

5. Conclusions

Independent of ageing, urban lifestyle and low socio-economic status, large household has been shown its significant protective role against dementia mortality in this study. This forward-thinking study approach will help shed light on the further study into the protective role of positive psychological well-being against dementia. As part of dementia prevention, healthcare practitioners should encourage people to increase their positive interactions with people from their neighbourhood or other fields when large household/family size is impossible to achieve.

List of abbreviations

- GDP: Gross Domestic Product
- Life e(60): Life expectancy at 60 years old
- SES: Socioeconomic status
- UN: United Nations
- WHO: World Health Organization
- DMR: Dementia mortality rate

Ethics approval and informed consent: All the data supporting our findings in this paper were freely downloaded from the UN agencies’ websites. No ethical approval or written informed consent for participation was required.

Funding: There is no specific funding related to this study.

Authors’ contributions

WY Conceptualization; Data curation; Formal analysis; Investigation; Methodology;

Roles/Writing - original draft; Writing - review & editing.

MH before interpreting the analysis results. WY drafted the text with contributions from MH Conceptualization; Formal analysis; Investigation; Methodology; Validation; Visualization;

Writing - review & editing.
Acknowledgments
The authors express appreciation to Cherian Varghese from the Management of on communicable Diseases, Disability, Violence and Injury Prevention Department (NVI) of World Health Organization for the assistance in locating the data.

Declarations
Consent for publication: Not applicable.

Availability of data and materials
The data sources have been described in the section of “Materials and Methods”. All data for this study are freely available from the United Nation agencies’ official websites. The formal permission to use the data for non-commercial purpose is not necessary as it is compliant with the agency’s public permission in their terms and conditions.

Competing interest: The authors declared that there is no conflict of interest.

References

44. Country and Lending Groups | Data [http://data.worldbank.org/about/country-and-lending-groups]
45. WHO regional offices [http://www.who.int]
46. Member Countries [http://www.acddialogue.com]
47. Member Economies-Asia-Pacific Economic Cooperation [http://www.apec.org]
48. UNESCO Regions-Latin America and the Caribbean [http://www.unesco.org]
49. Southern African Development Community: Member States [http://www.sadc.int]

Data source & definition: Household size (the United Nations): the number of persons who make common provision of food, shelter and other essentials for living. Dementia Mortality Rate (World Health Organization): Calculated from Global Health Estimates. Both data were not log-transformed.

Figure 1: The relationship between household size and dementia mortality rate