COMPARATIVE ANALYSIS OF ANTIBODY RESPONSES FROM COVID-19 CONVALESCENTS RECEIVING VARIOUS VACCINES REVEALS CONSISTENT HIGH NEUTRALIZING ACTIVITY FOR SARS-CoV-2 VARIANT OF CONCERN OMICRON.

Daniele Focosi¹, Massimo Franchini², Michael J. Joyner³, Arturo Casadevall⁴

¹North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy.
²Division of Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy;
³Department of Anesthesiology & Perioperative Medicine, Mayo Clinic, Rochester, MN 55902, USA

joyner.michael@mayo.edu;
³Department of Medicine, Johns Hopkins School of Public Health and School of Medicine, Baltimore, MD 21218, USA; acasade1@jh.edu.

#corresponding author: via Paradise 2, 56124 Pisa, Italy. E-mail: daniele.focosi@gmail.com

Keywords: COVID19; Omicron; convalescent plasma; vaccine; neutralizing antibodies; outpatients.

Word count: abstract 101; body 1478.

Acknowledgements: none.

Funding Information: none.

Author contributions: D.F. and M.J.J. conceived the manuscript; D.F. and M.F. analyzed the literature; M.F. provided Figure 1; D.F. provided Figure 2; A.C. and M.J.J. revised the manuscript.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The novel SARS-CoV-2 Omicron variant of concern (VOCs), with its escape from unboosted vaccines and monoclonal antibodies, demonstrates the continued relevance of COVID-19 convalescent plasma therapies. Lessons learnt from previous usage of CCP suggests focusing on outpatients and using high nAb-titer units in early disease stages. In this systematic analysis, we show that CCP from unvaccinated donors is not effective against Omicron, while CCP from vaccinees convalescents from previous VOCs or third-dose uninfected vaccinees is likely to remain effective against Omicron. CCP remains the only antibody-based therapy that keeps up with the variants and provides an effective tool to combat the emergence of variants that defeat monoclonal antibodies. Consequently, there is a need for continue study of the variables that determine CCP efficacy.
Introduction

The SARS-CoV-2 Omicron variant of concern (VOC), named VUI-21NOV-01 by Public Health England and belonging to GiSAID clade GR/484A, was first reported on November 8, 2021 in South Africa (particularly in Gauteng, North West and Limpopo regions, where it is likely to have been circulating for weeks [1]), and shortly thereafter spread all around the world. Omicron mutations impact 27% of T cell epitopes [2] and 31% of B cell epitopes of Spike, while percentages for other VOC were significantly lower [3]. The omicron variant already includes several sublineages (with more expected soon during such a massive spread), which are named by PANGO phylogeny using the BA alias: BA.1 (which represents the majority of cases) and BA.3 (a.k.a. 21K in NextStrain, both harboring the HV69-70 deletion which leads to S-gene target failure in Thermo Fisher TaqPath® RT-PCR), and BA.2 (a.k.a. 21L in NextStrain).

The novel VOC Omicron is reducing the efficacy of all vaccines approved to date (unless 3 doses are delivered) [4-19], represents an unexpected boost over CCP usage, with Omicron being treated as an entirely novel virus instead of a SARS-CoV-2 variants. Two years into the pandemics, we are back to the starting line for some therapeutic agents. Importantly, Omicron evades most monoclonal antibodies (mAbs) approved to date [5,12-14,20,21] with the lone exception of sotrovimab: nevertheless, as expected for non-cocktail mAb therapies, sotrovimab treatment-emergent immune escape from S:E340K has been shown to be as high as 10% [22,23]. Despite the development of promising oral small-chemical antivirals (molnupiravir and nirmatrelvir), the logistical and economical hurdles for deploying these drugs worldwide will prevent their immediate availability. COVID19 convalescent plasma (CCP) was used as a frontline treatment from the very beginning of the pandemic. Efficacy outcomes have been mixed to date, with most failures explained by low dose and late usage [24], but efficacy of high-titer CCP has been definitively proven in outpatients with mild disease stages [25,26]. Neutralizing antibody (nAb) efficacy against variants of concerns (VOC) remains a prerequisite to support CCP usage, which could now be collected also from vaccinated convalescents including breakthrough infections [27]: pre-Omicron evidences suggest that those nAbs have higher titers and are more effective against VOCs than those from unvaccinated convalescents [28,29].

Several countries have up to 48 different possible vaccine schedules according to EMA and FDA approvals including a number of homologous or heterologous boosts, but the most commonly delivered in the westernized countries were 1) BNT162b2 and mRNA-1273 for 2 doses eventually followed by a homologous boost; 2) ChAdOx1 for 2 doses eventually followed by a BNT162b2 boost; 3) Ad26.COV2.S for 1 dose eventually followed by a BNT162b2 boost. Many more inactivated vaccines have been in use in low-and-middle income countries, the ideal target regions for CCP therapy, widen that this therapy is relatively inexpensive. All these patients can have received the vaccine schedule before, after or without having been infected, and, further complicating the picture, the nAb titer generally declines with time. Hence identifying the settings where the nAb titer is highest will definitely increase the appropriateness of CCP collections. Variations in nAb titers against a given SARS-CoV-2 strain are usually reported as fold-changes in geometric mean titer (GMT) compared to wild-type strains: nevertheless, fold-changes for groups that include non-responders can lead to highly artificial results and possibly over-interpretation. Rigorous studies have hence reported the percentage of responders as primary outcome and provided fold-changes of GMT where calculation is reasonable (100% responders in both arms) [19].

To date the most rigorous data repository for SARS-CoV-2 sensitivity to antivirals is the Stanford University Coronavirus Antiviral & Resistance Database, but as of December 22, 2021 the tables there summarizing “Virus Variants and Spike Mutations vs Convalescent Plasma”...
(https://covdb.stanford.edu/page/susceptibility-data/#:~:text=Table%202%20Virus%20Variants%20and%20Spike%20Mutations%20vs%20Convalescent%20Plasma) and “Virus Variants and Spike Mutations vs Plasma from Vaccinated Persons” (https://covdb.stanford.edu/page/susceptibility-data/table.2.virus.variants.and.spike.mutations.vs.convalescent.plasma) report aggregate data from only 6 studies, and do not dissect the infecting sublineages, nor the different heterologous or homologous vaccination schemes, nor the time from infection/vaccine to neutralization assay. Consequently, a more in-depth analysis is needed to better stratify the populations.

Methods
On December 22, 2021, we searched PubMed, medRxiv and bioRxiv for research investigating the efficacy of COVID19 convalescent plasma (either from vaccinated or unvaccinated donors) against SARS-CoV-2 VOC Omicron. In unvaccinated patients, convalescence was annotated according to infecting sublineage (unspecified, D614G wild-type, VOC Alpha, VOC Beta or VOC Delta). Given the heterologous immunity that develops after vaccination in convalescents, the infecting lineage was not annotated in vaccine recipients. In vaccinees, strata were created for uninfected, 1 dose, 2 homologous doses, 3 homologous doses, or heterologous combinations.

Results
Figure 1 shows the PRISMA flowchart for this study. Our literature search identified 22 studies, that were then manually mined for relevant details.

Given the urgency to assess efficacy against the upcoming VOC Omicron, most studies (with a few exceptions [21,30]) relied over Omicron pseudovirus development and neutralization assays, which, as opposed to live authentic virus, are scalable, do not require BSL-3 facilities, and provide results in less than 1 week.

Table 1 shows that CCP collected from unvaccinated convalescents (regardless of the infecting lineage) harbors very low or no neutralizing activity against Omicron, and are hence clinically useless.

Table 2 shows that CCP from vaccinees that have not been previously or later infected has very low nAb content against Omicron. On the other hand, CCP collected from vaccinated convalescents is generally high in nAb content against Omicron, regardless of the order of events (infection/vaccination vs. vaccination/breakthrough infection [31]), of the infecting sublineage, and of the number of vaccine doses.

Discussion
Although nAb titers correlate with vaccine efficacy [32,33], it is important to keep in mind that SARS-CoV-2 binding non-neutralizing antibodies can similarly provide protection via Fc-mediated functions [34,35]. However, these are harder to measure in the laboratory and no automated assay exist for use in clinical laboratories. Hence, whereas the presence of a high nAb titer in CCP is evidence for antibody effectiveness in vitro, the absence of nAb titer does not imply lack of protection in vivo where Fc effects mediate protection by other mechanisms such as ADCC, complement activation and
phagocytosis. That said, it is always preferable to use CCP with a high nAb titer since that is positive correlate for antiviral activity and there is now strong clinical evidence that such titers correlate with efficacy in clinical trials [25,26].

This systematic review provides strong evidence that CCP from unvaccinated donors is unlikely to be effective against Omicron. On the contrary, despite the huge heterogeneity of vaccine schedules, CCP from vaccinated COVID-19 convalescent individuals consistently harbors high nAb titers against Omicron if collected up to 6 months since last event (either vaccine dosage or infection). Consequently, prescreening of CCP donors for nAb titers is not necessary, and qualification of CCP units remains advisable only within clinical trials. A more objective way to assess previous infection would be measuring anti-nucleocapsid (N) antibodies, but unfortunately these vanish quickly [36,37].

Previous symptomatic infection and vaccination can be established by collecting past medical history (PMH) during the donor selection visit, which is cheaper, faster, and more reliable than measuring rapidly declining anti-N antibodies. Although there is no formal evidence for this, it is likely that asymptomatic infection (leading to lower nAb levels) also leads to lower nAb levels after vaccination compared to symptomatic infection, given that disease severity correlates with antibody titer [38,39]; hence those asymptotically infected donors missed by investigating PMH are less likely to be useful.

The same reasoning applies to uninfected vaccinees receiving third dose boosts, but several authorities, including FDA, do not allow collection from such donors for CCP therapy on the basis that the convalescent polyclonal and poly-target response is a prerequisite for efficacy and superior to the polyclonal anti-Spike only response of vaccinees. This may be a false premise for recipients of inactivated whole-virus vaccines (e.g., BBIBP-CorV or VLA2001): for BBIBP-CorV, the efficacy against Omicron is largely reduced [40,41], but the impact of boost doses is still unreported at the time of writing. For CoronaVac® (Sinovac), three doses led to 5.1 fold-reduction in nAb titer [41], while for Sputnik V nAb titer moved from a 12-fold reduction at 6-12 months up to a 7-fold reduction at 2-3 months after a boost with Sputnik Light [30].

Another point to consider is that information on levels after third dose do not currently exceed more than one month of follow-up, while studies on convalescents extend to more than 6 months: to date it seems hence advisable to start from convalescent vaccinees rather than uninfected 3-dose vaccinees. Vaccine schedules with a delayed boost seem to elicit higher and broader nAb levels than the approved, short schedules [42-45], but this remain to be confirmed in larger series.

With the increase of Omicron seroprevalence in time, polyclonal intravenous immunoglobulins collected from regular donors could become a more standardized alternative to CCP (see Figure 2), but their efficacy to date (at the peak of the vaccinations campaign) is still 16-fold reduced against Omicron compared to wild-type SARS-CoV-2 [14], and such preparations include only IgG and not IgM and IgA, which have powerful SARS-CoV-2 activity.

CCP collection from vaccinated convalescents (regardless of infecting sublineage, vaccine type and number of doses) is likely to achieve high nAb titer against VOC Omicron, and, on the basis of lessons learnt with CCP usage during the first 2 years of the pandemic. Although in ideal situations one would prefer RCT evidence of efficacy against omicron before deployment there is concern that variants are generated so rapidly that by the time such trials commenced this variant could be replaced for another. Given the success of CCP in 2 outpatient RCTs reducing hospitalization [25,26] and the loss of major mAb therapies due to Omicron antigenic changes, the high titers in CCP collected from vaccinated convalescents provides an immediate option for COVID-19, especially in resource poor areas. Given the reduced hospitalization rate with Omicron compared to Delta
[46,47], it is even more relevant to identify patient subsets at risk of progression in order to minimize the number needed to treat to prevent a single hospitalization: moving from the same criteria used for mAb therapies while using the same (now unused) in-hospital facilities seems a logical approach.

We declare we have no conflict of interest related to this manuscript.
Table 1

Efficacy of CCP collected from unvaccinated COVID19 survivors, infected from different SARS-CoV-2 VOC, against VOC Omicron. Efficacy is reported as ED₅₀/IC₅₀ or fold-reductions (FR) compared to wild-type D614G lineages (e.g. USA-WA1/2020) at different time points since onset of symptoms or positivity, expressed in days (d) or months (m). BAU: binding arbitrary unit. LOD: limit of dilution.

<table>
<thead>
<tr>
<th>convalescents from VOC</th>
<th>unspecified</th>
<th>D614G</th>
<th>Alpha</th>
<th>Beta</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>no activity @ 1.5 and 12m</td>
<td>Gruell [48]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID₅₀ < 135 @ 1m</td>
<td>Liu [13]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 FR, all < LOD (1:20)</td>
<td>Aggarwal [14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 FR</td>
<td>Ikemura [8]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80 FR @ 2m</td>
<td>Hoffman [49]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAU/ml reduced from 3x10⁸ to 8x10⁶ at 7-25 days (n = 27)</td>
<td>Schubert [11]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none at 6m and 12m (36 pts)</td>
<td>Planas [12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58 FR @ 1.3m</td>
<td>Schmidt [50]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32 FR @ 6.2m</td>
<td>Zhang [51]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ED₅₀ 68 (10.6 FR @ 1 mo), 65 (5.1 FR @ 3 mo)</td>
<td>Rossler [15]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC₅₀ < 1:16 in 0/10 pts</td>
<td>17 FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC₅₀ < 1:16 in 7/8 pts</td>
<td>Zhao [41]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC₅₀ < 1:16 in 6/7 pts</td>
<td>Zeng [17]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 FR</td>
<td>Sheward [18]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none (2/9 of ICU and 1/9 of hospitalized above cutoff)</td>
<td>Lechmere [31]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 FR (IC₅₀ 23.4 IU/ml) @ 1m or 4m</td>
<td>28.9 FR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>none in 73.3%</td>
<td>Carreno [21]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 FR @ 1 m</td>
<td>Zou [52]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 FR @ 6 m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/20 pts, 2.3-70.1 FR @ 1m</td>
<td>15/17 pts, 22.1-74.4 FR @ 1m</td>
<td>Lusvarghi [53]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC_{50} 15-18 at ? mo</td>
<td>$@ 1m$</td>
<td></td>
<td>Syed [54]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2

Efficacy against VOC Omicron of convalescent plasma collected from vaccinated donors, either infected (either before, between or after vaccination with 1 or more homologous or heterologous doses) or uninfected (with 3 homologous or heterologous doses), reported as NT_{50}/ED_{50}/IC_{50} (dilution factors that yields 50% neutralization of SARS-CoV-2) or fold-reduction (FR) in nAb titers compared to wild-type D614G lineage. Time after last event (infection or vaccination) is reported when available from the original source. The single reference for CoronaVax and Sputnik V are both discussed within the text for space constraints.

<table>
<thead>
<tr>
<th>Convalescent Plasma</th>
<th>BNT162b2/Tozinameran (Comirnaty®) (Pfizer/BioNTech)</th>
<th>mRNA-1273/elasomeran (Spikevax®) (Moderna)</th>
<th>AZD1222 / ChAdOx1 (Vaxzevria®, Covishield®) (AstraZeneca)</th>
<th>JNJ-78436735 / Ad26.COV2.S® (J&J/Janssen)</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 doses</td>
<td>3 doses</td>
<td>convalescent + 1 dose</td>
<td>convalescent + 2 doses</td>
<td>convalescent + 3 doses</td>
<td></td>
</tr>
<tr>
<td>11.4 FR @ 6 m</td>
<td>10 at 0.5 m, 8 FR; 0 @ 3 m (20 FR)</td>
<td>32.8-FR @ 1-7m</td>
<td>0 (20 FR compared to Delta) @ 6m</td>
<td>10 FR compared to Delta @ 0.5m</td>
<td>Wilhelm [4]</td>
</tr>
<tr>
<td>>6.0 FR @ 1 m</td>
<td>>4.1 FR @ 1 m</td>
<td>>6.0 FR @ 1m</td>
<td>>4.1 FR @ 1m</td>
<td>ID_{50} < 153 @ 1m</td>
<td>Liu [13]</td>
</tr>
<tr>
<td>17.9-26.6 FR</td>
<td></td>
<td>17.9-26.6 FR</td>
<td></td>
<td>ID_{50} < 153 @ 1m</td>
<td>Aggarwal [14]</td>
</tr>
<tr>
<td>27 FR @ 3m</td>
<td></td>
<td>27 FR @ 3m</td>
<td>14 FR @ 1m</td>
<td></td>
<td>Ikemura [8]</td>
</tr>
<tr>
<td>34 FR @ 3m</td>
<td></td>
<td>8 FR @ 1m</td>
<td>4.5 FR @ 12-</td>
<td></td>
<td>Hoffman [49]</td>
</tr>
<tr>
<td>4.5 FR @ 12-</td>
<td></td>
<td></td>
<td>4.5 FR @ 12-</td>
<td></td>
<td>Lechmere [31]</td>
</tr>
<tr>
<td>BAU/ml reduced from 3x10^3 to 8x10^2 @ 7-25d (n = 27)</td>
<td>22d after Delta BTI</td>
<td>22d Delta BTI</td>
<td>BAU/ml minimally reduced @ 5-49d</td>
<td>Schubert [11]</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>none @ 5m</td>
<td>ED_{50} of 1050 @ 1m</td>
<td>none @ 5m</td>
<td>NT_{50} < 25 @ ~1m and 43 @ 5m</td>
<td>Schmidl [50]</td>
<td></td>
</tr>
<tr>
<td>127 FR @ 1.2m</td>
<td>NT_{50} 3871 @ 1m</td>
<td>NT_{50} 8106 (154 folds increase compared to prevaccination)</td>
<td>NT_{50} 3871 @ 1m</td>
<td>Planas [12]</td>
<td></td>
</tr>
<tr>
<td>27 FR @ 5m</td>
<td>127 FR @ 1.2m 27 FR @ 5m</td>
<td>NT_{50} 3871 @ 1m</td>
<td>NT_{50} 3871 @ 1m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 FR @ 10-60d</td>
<td>22 FR @ 10-60d</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC_{50} < 1:16 in 11/20 pts</td>
<td>IC_{50} < 1:16 in 1/5 pts vaccinated first</td>
<td>IC_{50} < 1:16 in 9/10 pts</td>
<td>IC_{50} < 1:16 in 20/20 pts</td>
<td>IC_{50} > 1:16 in 7/20 pts</td>
<td>Rossler [15]</td>
</tr>
<tr>
<td>and 0/5 infected first</td>
<td>22.9 FR @ 1m (20 pts)</td>
<td>3.3 FR @ 1-11w (23 pts)</td>
<td>22.9 FR @ 1m (28 pts)</td>
<td>3.3 FR @ 1-11w (23 pts)</td>
<td>Zeng [17]</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>23 FR</td>
<td>7.5 FR</td>
<td>14 FR</td>
<td>13 FR</td>
<td>42 FR</td>
<td>Carreno [21]</td>
</tr>
<tr>
<td>none @ 6m</td>
<td>22 FR @ 6m</td>
<td>14 FR @ < 1 m</td>
<td>none @ 6m</td>
<td>22 FR @ 6m</td>
<td>Edara [56]</td>
</tr>
<tr>
<td>16w apart: @ 3w @ 4m @ 6m (10 pts)</td>
<td>4w apart: @ 3w @ 4m (10 pts)</td>
<td>@ 3w @ 4m (10 pts)</td>
<td></td>
<td></td>
<td>Chatterjee [42]</td>
</tr>
<tr>
<td>only in 5/29 pts: 25.5 FR @ 1m</td>
<td>In 29/29 pts, 31.8-fold increase @ 43d compared to dose 2</td>
<td></td>
<td></td>
<td></td>
<td>Lusvarghi [53]</td>
</tr>
<tr>
<td>45 FR</td>
<td>45 FR</td>
<td></td>
<td></td>
<td>7 FR</td>
<td>Sheward [18]</td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.
Figure 1

PRISMA flowchart for the current study.

- **Included**
- **Eligibility**
- **Screening**
- **Identification**

Studies included in the systematic review (n = 21)

Full-text articles assessed for eligibility (n = 21)

Records identified through database searching (n = 55)

Records after duplicates removed (n = 55)

Records excluded (n = 25)

- Additional records identified through other sources

Full-text articles excluded (n = 12)
Figure 2

Simplified representation of the evolution of nAb-based therapeutics along the course of a pandemic.

- Convalescent plasma
- Monoclonal antibodies
- Hyperimmune serum
- Standard immunoglobulins

Relative usage over time:
- 0 month
- 6 months
- 1 year
- 2 years

Key events:
- Initiation of vaccine campaigns
- Emergence of highly divergent VOC

The graph illustrates the relative usage of different therapeutic agents over time during a pandemic.

