Carbon dioxide, COVID-19 and the importance of restaurant ventilation: a case study from Spain approaching Christmas 2021

Teresa Moreno¹, Wes Gibbons²

¹ Institute of Environmental Assessment and Water Research, IDAEA-CSIC, 08034 Barcelona, Spain
² Bimón Press, Sitges, 08870 Barcelona, Spain

*Corresponding author: teresa.moreno@idaea.csic.es

Abstract

Restaurants present an especial challenge in the prevention of the spread of COVID-19 via exhalatory bioaerosols because customers are unprotected by facemasks while eating, so that ventilation protocols in such establishments become especially important. However, despite the fact that this pandemic airborne disease has been with us for two full years, many restaurants are still not successfully prioritising air renovation as a key tool for reducing infection risk. We demonstrate this in the run-up to the 2021 Christmas celebrations by reporting on CO₂ concentration data obtained from a hotel breakfast room and restaurants during the 5-day Spanish holiday period of 4th-8th December. In the case of the breakfast room, poor ventilation resulted in average CO₂ levels ranging from 868 to 1237 on five consecutive days, with the highest levels coinciding with highest occupancy numbers. Inside the five restaurants, three of these were well ventilated, maintaining stable average CO₂ concentrations below 700ppm. In contrast, two restaurants failed to keep average CO₂ levels below 1000ppm, despite sporadic, but ineffective, attempts by one of them to ventilate the establishment. More effort needs to be made to foster in both restaurant managers and the general public an improved awareness of the value of CO₂ concentrations as an infection risk proxy and the relevance of ventilation issues to the propagation of respiratory diseases.

Introduction

The concentration of CO₂ in each human exhalation is around 100 times higher than that in outside ambient air. Thus, in a working restaurant CO₂ levels will quickly rise unless the indoor air is renovatowed by introducing outdoor air. The concentration of CO₂ in a public eating area at any given time therefore provides an indication of how successfully the ventilation is managing to refresh the air, that is to say, how much a customer is likely to be breathing air that has passed through the lungs of other people sharing the same space. As such, the airborne infection risk of a given respiratory pathogen would be expected to increase with increasing concentrations of exhaled CO₂ in a given restaurant, as well as being influenced by the behaviour of the occupants.

COVID-19 is known to be capable of airborne transmission within indoor environments and this method of propagation is fuelling the ongoing pandemic (e.g. Bazant and Bush, 2021; Buonanno et al., 2020a; Greenhalgh et al., 2021; Miller et al., 2021; Morawska and Milton, 2020; Peng et al., 2021; Shen et al., 2020; Wang et al., 2021; Zhang et al., 2021). The dominant mechanism for such transmission is widely considered to involve infected individuals exhaling viable virus-bearing aerosols. These exhalatory “viraerosols” (Moreno and Gibbons, 2021) can be released in great numbers not only by coughing, sneezing and normal vocalisation, but also simply by passive tidal breathing (e.g. Almstrand et al., 2010; Bake et al., 2019; Haslbeck et al., 2010; Johnson and Morawska, 2009; Schwarz et al., 2010). Once released into the indoor atmosphere, the potentially infective respiratory pathogens will be carried away from the diseased individual in a buoyant turbulent cloud of gas and particles (Boubouiba, 2021; Jones and Bross, 2015; Lv et al., 2021; Randall et al., 2021). Thus, to minimise respiratory infection risk in public indoor spaces the obvious
recommendation is to wear a well-fitted, high quality facemask, and combine this with efficient ventilation that ensures the constant introduction of fresh air from outside.

The use of facemasks is however not practicable in restaurant settings, so that ventilation protocols in such establishments become especially important. It is fully two years since the emergence of SARS-CoV-2, and there has been a clear call from some in the scientific community that a revolution is needed in the way we think about indoor air quality (e.g. Melikov, 2020; Morawska et al., 2021). Nevertheless, the message that air renovation by ventilation is likely to be of vital importance to reduce the spread of COVID-19 has still not hit home in many public eating places. We demonstrate this by reporting on data collected during the busy nationwide early December Spanish double bank holiday (6th and 8th) which is celebrated throughout the country and presents the threat of boosting a viral superspreading event linked to Christmas celebrations during the rest of the month.

In 2021 the early December holiday period in Spain centred on a Monday (6th) and Wednesday (8th), so many people chose to take a longer break that included the previous weekend. Hotels and restaurants were exceptionally busy, despite concerns relating to the ongoing spread of the highly infectious Omicron SARS-CoV-2 viral variant. In this study we collected CO2 data during the 5-day holiday period (Saturday 4th to Wednesday 8th) from (1) a hotel breakfast room, and (2) whilst eating meals at five different restaurants. In order to ensure we were recording real-life conditions, we did not ask permission to measure CO2 in any of these establishments and therefore provide no location details. CO2, RH, temperature and PM2.5 measurements were obtained at around 50cm above floor level using an IQAir (Air Visual Pro, https://www.iqair.com/en/air-quality-monitors/airvisual-pro) monitor, which measures CO2 concentrations between 400-10,000ppm every 10 seconds. The system operates portably for 4 hours using a lithium battery. The person responsible for collecting the CO2 measurements in all establishments tested negative for COVID-19 on the 12th December.

The hotel breakfast room

Table 1 and Figure 1 summarise the data from the hotel breakfast room. This was a large room on the first floor, connected to the rest of the hotel by a door leading to a staircase down to the hotel ground floor (not directly to outside air). This door was kept fully open throughout the breakfast period, but all six windows were kept closed. There was no CO2 meter in the breakfast room, although one was operating in the ground floor bar below. All CO2 measurements for this study were taken during the same breakfast time-slot (10.00-10.45 am) and from a similar part of the restaurant and at a height around 50cm above the floor. Seating protocols ensured that guests were separated by >1m and they were required to wear masks when helping themselves to the food buffet. Most guests wore correctly fitted masks when standing at the buffet, although there were a few notable exceptions.

<table>
<thead>
<tr>
<th>CO2 (ppm)</th>
<th>RH (%)</th>
<th>T (°C)</th>
<th>PM2.5 (µg/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Mean</td>
</tr>
<tr>
<td>Day 1</td>
<td>868</td>
<td>919</td>
<td>56</td>
</tr>
<tr>
<td>Day 2</td>
<td>1237</td>
<td>1342</td>
<td>54</td>
</tr>
<tr>
<td>Day 3</td>
<td>1140</td>
<td>1180</td>
<td>54</td>
</tr>
<tr>
<td>Day 4</td>
<td>948</td>
<td>1004</td>
<td>59</td>
</tr>
<tr>
<td>Day 5</td>
<td>955</td>
<td>997</td>
<td>48</td>
</tr>
</tbody>
</table>
Figure 1: CO₂ concentration curves for hotel breakfast periods on the five days 4th-8th December 2021. The curves record initial hotel room conditions (600-650ppm) interrupted by a brief trough marking a short outdoor walk to the breakfast room inside which CO₂ levels rose steeply, especially on the 5th (Day 2 on Table 1) when the room was fully occupied. The pre-breakfast transient peak on the 6th records entry into the hotel bar area. See text for details.

The lowest CO₂ concentrations in the hotel breakfast room (average 868ppm: Table 1) were measured at the beginning of the holiday period (4th), before hotel occupancy numbers reached their peak. During this first breakfast CO₂ levels climbed slowly to a maximum value of 919ppm (Table 1). In contrast, the following day (5th), after high hotel occupancy levels during the Saturday night, the breakfast room was exceptionally busy (CO₂ average 1237ppm). Under these conditions CO₂ concentrations at 10.00 were already approaching 1200ppm and then climbed to a peak of 1342ppm in the fully occupied room before slowly declining as people began to finish their breakfast and leave the establishment (Figure 1). On the morning of the bank holiday on the 6th December CO₂ levels were again high (Day 3 average 1140ppm: Table 1), falling to around 950ppm average on the remaining two days (Days 4 and 5: Figure 1). The atmospheric stability of this indoor setting over the five mornings was reflected by minimal variation in both temperature and RH. Apart from the exceptionally busy Day 2 (marked by much staff movement and occasional toast burning events), average PM\textsubscript{2.5} levels also showed little variation on a given morning (varying by only 2-4 μg/m3; Table 1). With the windows closed and the internal entry door left open, the dominant control on CO₂ concentrations appears to have been the number of guests attending breakfast. On the morning of the second day (5th), the headwaiter was made aware of the fact that the ventilation could be better, and agreed with this observation. However, nothing obvious was changed on subsequent mornings: in particular all windows remained closed.

The restaurants

Five restaurants were chosen to sample contrasting atmospheric scenarios (Table 2 and Figure 2). The data collected indicate that three of these restaurants (A, B, C: Figure 2) were well ventilated, maintaining stable CO₂ concentrations which averaged below 700ppm and never reached maxima of 1000ppm (Table 2), despite the fact that each establishment was different in character. Restaurant A was small, with few (<20) customers and with the front door continuously held slightly open it registered CO₂ average levels of 665ppm, although combined with relatively high PM\textsubscript{2.5} concentrations attributed to cooking emissions. Restaurant B was a narrow bar restaurant (<20
clients indoors), with tables separated by screens, the front door fully open, and showed similar air quality conditions to Restaurant A (Table 2). Restaurant C was a large, busy open-plan converted market building with multiple food outlets and two floors (the monitor recorded on the upper floor) and a prominent new ceiling HVAC system. Despite a multitude of customers and waiters housed in this establishment, its large size combined with the HVAC system successfully kept average CO$_2$ levels at 684ppm and average PM$_{2.5}$ concentrations at 9µg/m3 (Table 2). Despite the considerable differences between these three establishments, all of them thus managed to maintain stable, relatively low CO$_2$ levels, punctuated only occasionally by transient peaks due to people clustering near the monitor.

Table 2. Restaurants

<table>
<thead>
<tr>
<th></th>
<th>CO$_2$ (ppm)</th>
<th>RH (%)</th>
<th>T (°C)</th>
<th>PM$_{2.5}$ (µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Max</td>
<td>Mean</td>
<td>Max</td>
</tr>
<tr>
<td>A</td>
<td>665</td>
<td>860</td>
<td>55</td>
<td>57</td>
</tr>
<tr>
<td>B</td>
<td>651</td>
<td>924</td>
<td>60</td>
<td>71</td>
</tr>
<tr>
<td>C</td>
<td>684</td>
<td>754</td>
<td>47</td>
<td>55</td>
</tr>
<tr>
<td>D</td>
<td>1029</td>
<td>1310</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>E</td>
<td>1014</td>
<td>1116</td>
<td>60</td>
<td>71</td>
</tr>
</tbody>
</table>

Figure 2: CO$_2$ concentration curves for the five restaurants sampled during the study. A, B and C record good, generally stable ventilation conditions, with average CO$_2$ <700ppm, in contrast to Restaurants D and E. Whereas Restaurant D made sporadic efforts to ventilate the establishment by opening the front door (marked by two precipitate falls towards 600ppm), Restaurant E kept doors and windows closed. See text for details.

In contrast, two of the restaurants failed to maintain average CO$_2$ concentrations below 1000ppm during the meal (D and E: Table 2). In the case of Restaurant D, this was a medium-sized establishment which was fully occupied for much of the time, although maintaining correct adherence to table separation rules. The restaurant owner was aware of the need for ventilation, which she attempted to achieve by fully opening the front door from time to time, allowing a blast of cold air into the room that was not appreciated by some guests. Carbon dioxide concentration data for Restaurant D are shown on Figure 2 and show levels of around 1050ppm on entry into the
establishment, with slight declines in the curve recording the arrival of guests briefly opening the front door. Ventilating the restaurant suddenly by fully opening the front door caused CO₂ levels to drop immediately to 600ppm (Figure 2), but after this levels rose rapidly, interrupted by further guest arrivals, to peak at 1310ppm. A repeated ventilation episode suddenly reduced CO₂ concentrations once again to 600ppm before beginning another cycle of rising levels (Figure 2). Another notable characteristic of this restaurant was its high levels of average and maximum PM₁₀.₅ (Table 2).

The other establishment failing to ensure minimum levels of CO₂ was a smaller establishment (Restaurant E) which, although much less busy (<20 clients), had chosen to keep the front door firmly closed. This scenario generated stable but high levels of CO₂ which were nearly 1000ppm upon entry and subsequently rose gradually to peak at 1116ppm (Figure 2; Table 2).

Discussion and conclusion

The risk of COVID-19 infection in an indoor space will depend on several factors, and modelling calculations based on the mid-20th century works by William Wells, Richard Riley and their colleagues have been applied to the problem by several authors (e.g. Buonanno et al., 2020b; Buonanno and Stabile in Moreno et al., 2021; Bazant and Bush, 2021; Peng and Jimenez, 2021; Peng et al., 2021). Key influencing factors include the number, infectiousness and behaviour of diseased occupants, the room size and air renovation rates, the overall occupancy and duration of exposure, the temperature, relative humidity and the evaporation rate of vir aerosols of different sizes (Kin and Marr, 2019). In this context, CO₂ concentrations offer a proxy for the infection risk although, as emphasised by Peng and Jimenez (2021), this risk varies greatly depending on the exact nature of the indoor setting.

With respect to restaurants, each establishment has its own transiently varying atmospheric microenvironment that needs to be managed, and this dynamic adds local complexity to the problem of ventilation control. To this challenge may be added the vagaries of customer behaviour (including complaints regarding the entry of cold air), concern for increased heating costs and, as we observed in one establishment, grossly inaccurate CO₂ monitors on display. Despite these difficulties, however, it is clear that some establishments are being much more successful than others at maintaining low CO₂ concentrations, and this is likely to impact on health effects. To take a hypothetical example from our study locations, an asymptomatic but virally loaded COVID-19-positive family conversing enthusiastically over an early breakfast on the 5th December could have left a turbulent cloud of SARS-CoV-2-bearing aerosols dispersing slowly through the poorly ventilated room. Successive waves of breakfast guests arriving according to their pre-planned 45-minute timeslot that morning, as CO₂ levels rose above 1200ppm, could have been exposed to airborne viruses previously exhaled by the family and thus been potentially vulnerable to infection. If the same family had later dined at Restaurant C, their exhalatory pathogens would have been more quickly dispersed and diluted within a better ventilated atmosphere averaging 684ppm CO₂, and they would thus have presented less of a potential threat to other customers sharing the same space.

The short and straightforward nature of this study was designed to be equal to the simplicity of the message it contains: in the run-up to our third COVID-19 Christmas some restaurant managers are still not successfully prioritising the need for air renovation within their establishments, and they are therefore failing to minimise the risk of airborne viral transmission between their customers.

Acknowledgements

IDAEA-CSIC is a Centre of Excellence Severo Ochoa (Spanish Ministry of Science and Innovation, Project CEX2018-000794-S).
References

